首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
R Krsti?  D Nicolas 《Acta anatomica》1988,133(2):122-126
The vitamin-D-dependent calcium-binding protein, calbindin-D28k, was detected immunocytochemically in the majority of pericapillary pinealocytes of the rat superficial pineal body. The interstitial cells were calbindin-negative. The significance of these findings is discussed.  相似文献   

2.
In the adult palm squirrel, F. pennanti the pineal is a club shaped, elongated structure with a connective tissue capsule. It consists of various types of pinealocytes, glial cells, neurons, nerve fibres, blood vessels and connective tissue. Two types of pinealocytes could be identified by light microscopy. They are large rounded with centrally placed nucleus, and small rounded pinealocytes. They have medium sized processes stainable with Alcian blue, periodic acid Schiff and Nissl methods. The pinealocytes are not stainable with bromophenol blue. However, they are moderately stainable with PAS, Sudan black and Baker's acid hematin. Neurons are seen either singly or in groups with axonal processes. Cystic cavities often lined by cells are a normal feature of adult squirrel pineal, and the lining cells are both pinealocytes and glial cells. Often neuronal endings are seen terminating on these lining cells. PAS positive globules were also seen inside the cysts. In some squirrel pineals, fibrous cysts with an inner core of cells are also seen. Occasionally groups of lymphocytes were also encountered in the pineal. In the fetal pineal, the cells are both larger and smaller ones and arranged in a cortex and medulla pattern and no cystic cavities are seen. The third ventricle enters the base of the pineal as pineal recess.  相似文献   

3.
Summary In the pineal organ of the lovebird, Uroloncha domestica, bulbous, cup-shaped and elongated outer segments of photoreceptor-like pinealocytes are demonstrated by scanning electron microscopy. These scarce outer segments, 4–11 m in length, extend into the pineal lumen. The present structural observations speak in favor of photosensitive pinealocytes in the pineal organ of Uroloncha domestica. The relation of the photoreceptor-like pinealocytes to acetylcholinesterase-positive nerve cells and a nervous connection between the pineal and the brain indicate that the pineal organ of this passeriform species may be the site of neuroendocrine and photoreceptive functions.Supported by a fellowship from the Japan Society for the Promotion of Science to M. UeckSupported by a grant from the Ministry of Education of Japan to K. Wake and by a grant of the Deutsche Forschungsgemeinschaft to M. Ueck  相似文献   

4.
Summary Induction of c-fos protein (FOS) after the onset of darkness was studied immunocytochemically in the rat and hamster pineal gland. The animals were kept on a 12:12 h light-dark cycle. Before the dark period no FOS staining was seen in either rat or hamster pineal cells. Five hours after the onset of darkness 342±18 pinealocytes/0.2 mm2 (mean±SD) displayed FOS-like immunoreactivity in the hamster pineal gland; in the rat pineal gland only 5±2 pinealocytes/0.2 mm2 showed a faint staining. Two hours later the density of FOS positive cells was decreased to 60±11/0.2 mm2 in the hamster but increased to 519±103/0.2 mm2 in the rat pineal gland. Three hours before the beginning of the light period no FOS positive cells were detected in either animal. Both the rat and hamster pineal gland showed a transient and temporally defined expression of c-fos protein in the middle of the dark period. This may be related to a more active functional state of pinealocytes, which is reflected in a peak of melatonin synthesis during the darkness.  相似文献   

5.
Several neuropeptides are present in the mammalian pineal gland. Most of these peptides, eg neuropeptide Y, vasoactive intestinal peptide, and peptide histidine isoleucine, are located in nerve fibres innervating the gland. In some mammalian species, neuropeptides are also found in cells scattered in the pineal parenchyma. In the rat, bipolar cells immunoreactive for somatostatin are present, just as cells containing mRNA encoding somatostatin can be detected in the gland by in situ hybridisation. In the pineal gland of the European hamster, many cells are immunoreactive for enkephalin. Ultrastructural cytochemical analysis of these cells reveals a pinealocyte morphology. Processes from the opioidergic pinealocytes terminate in the parenchyma between the non-immunoreactive pinealocytes. Some of the processes contain small clear and large dense core vesicles and end in club shaped swellings which make synapse-like contacts with other pinealocytes. The ultrastructural morphology suggests that the opioidergic cells exert a paracrine regulation on other pinealocytes.  相似文献   

6.
The ultrastructure of the pineal gland of the wild-captured eastern chipmunk (Tamias striatus) was examined. A homogenous population of pinealocytes was the characteristic cellular element of the chipmunk pineal gland. Often, pinealocytes showed a folliclelike arrangement. Mitochondria, Golgi apparatus, granular endoplasmic reticulum, lysosomes, centrioles, dense-core vesicles, clear vesicles, glycogen particles, and microtubules were consistent components of the pinealocyte cytoplasm. The extraordinary ultrastructural feature of the chipmunk pinealocyte was the presence of extremely large numbers of “synaptic” ribbons. The number of “synaptic” ribbons in this species exceeded by a factor of five to 30 times that found in any species previously reported. In addition to pinealocytes, the pineal parenchyma contained glial cells (oligodendrocytes and fibrous astrocytes). Capillaries of the pineal gland of the chipmunk consisted of a fenestrated endothelium. Adrenergic nerve terminals were relatively sparse.  相似文献   

7.
Summary Electron microscopy was employed in a study of the pineal gland of the Mongolian gerbil (Meriones unguiculatus). It was determined that the gerbil pineal gland contains pinealocytes and glial cells with the pinealocytes being the predominant cell type. The pinealocytes contain numerous organelles traditionally considered as being either synthetic or secretory in function such as an extensive Golgi region, smooth (SER) and rough (RER) endoplasmic reticulum, secretory vesicles and microtubules. Other cytoplasmic components are also present in the pinealocytes (synaptic ribbons, subsurface cisternae) for which no function has been assigned. Dense-cored vesicles are rare. Vacuolated pinealocytes are present and appear to be intimately associated with the formation of the pineal concertions. Evidence presented supports the proposal that the concretions form within the vacuoles. Once the concretions reach an enlarged state, the vacuolated pinealocytes break down and the concretions are thus extruded into the extracellular space where they apparently continue to increase in size. The morphology of the glial cells was interpreted as indicative of a high synthetic activity. The glial cells contain predominantly the rough variety of endoplasmic reticulum and form an expansion around the wide perivascular area.Supported by NSF grant PCM 77-05734  相似文献   

8.
Summary Immunocytochemistry with a rod-specific antiserum was used to study the post-hatch development (2 days–300 days) of photoreceptor elements within the pineal of the Japanese quail. At all ages staining was restricted to limited numbers of pinealocytes scattered throughout the gland. An enzyme-linked immunosorbent assay (ELISA), with the same rod-specific antibody, was then used to obtain a quantitative measure of rod opsin in total eye and pineal extracts in both the developing retina and pineal. The opsin content of both tissues shows a marked increase during the first 30 days after hatch and then plateaued to 0.84±0.02 nmoles opsin in the eye and 2.20±0.11 pmoles opsin equivalents in the pineal. The increase in opsin in the retina may be associated with continued post-hatch development of the photoreceptors. We then attempted to demonstrate the presence of the rhodopsin chromophore within pineal and retinal extracts using HPLC analysis. In both retinal and pineal extracts, 11-cis retinaldehyde was identified and a light-induced shift from the 11-cis to the all-trans isomer was clearly shown. This analysis also allowed us to calculate the total content of 11-cis and all-trans retinaldehyde (derived from both rod and non-rod photoreceptors) of the eye and pineal (eye: 1.7±0.2 nmoles; pineal: 4.6±0.5 pmoles). In the quail eye, the total amount of retinaldehyde is more than twice the amount of rod-like opsin. This probably reflects the large contribution of cones in the quail retina; the cone pigments will contribute to the retinaldehyde content but are not recognized by the rodspecific antibodies. In the pineal, we also found more than double the concentration of retinaldehyde than we would have predicted from the amount of rod-like opsin. These results, coupled with our immunocytochemical findings, suggest that the quail pineal contains at least two classes of photoreceptor, some rod-like, others non rod-like.Abbreviations HPLC high-performance liquid chromatography - ELISA enzyme-linked immunosorbent assay Work conducted while member of the AFRC Research Group on Photoperiodism and Reproduction, Department of Zoology, University of Bristol, Bristol, BS8 1UG, United Kingdom  相似文献   

9.
The pineal gland of the Mongolian gerbil consists of a superficial gland, stalk and deep pineal. The deep pineal differentiates postnatally. Histochemical studies of the superficial pineal gland indicate that it may be involved in the secretion of protein. Presumptive secretory material visualized by aldehyde fuchsin (AF) and chrome hematoxylin was observed along the course of blood vessels and among the pinealocytes. The distribution and texture of the AF-positive material was distinctive. It did not correspond to the pattern and texture of material stained with PAS, Sudan Black or acid orcein. Staining with AF was markedly reduced after incubation with trypsin, indicating that the AF-positive material is at least partially protein. The amount of stainable material increased with age. The AF-positive material was observed in what appeared to be interstitial or glial cells and processes, and in the processes of perivascular cells. Cells and fibrous processes with high non-specific esterase activity ("high-esterase cells") were observed among the pinealocytes and along the course of blood vessels. The distribution of the "high-esterase cells" and the morphology and texture of their esterase-containing processes were remarkably similar to the morphology and distribution of the material that stained with AF. It may be that the "high-esterase cells" contain AF-positive material. The "high-esterase cells" hydrolyzed both alpha-naphthyl acetate and alpha-naphthyl butyrate. The pinealocytes hydrolyzed only alpha-naphthyl acetate. The "high-esterase cells" appear to form a distinct class of cells within the superficial pineal gland. They are tentatively identified as a type of glial cell.  相似文献   

10.
Summary The retinal proteins opsin,-transducin, S-antigen and interstitial retinol-binding protein (IRBP) are essential for the processes of vision. By use of immunocyto-chemistry we have employed antibodies directed against these photoreceptor proteins in an attempt to identify the photoreceptor systems (retina, pineal and deep brain) of the Japanese quail. Opsin immunostaining was identified within many outer (basal portion) and inner segments of retinal photoreceptor cells and limited numbers of photoreceptor perikarya. Opsin immunostaining was also demonstrated in limited numbers of pinealocytes with all parts of these cells being immunoreactive. These results differ from previous observations. In contrast to the results obtained with the antibody against opsin, S-antigen and-transducin immunostaining was seen throughout the entire outer segments and many photoreceptor perikarya of the retina. In the pineal organ immunostaining was seen in numerous pinealocytes in all follicles. These results conform to previous findings in birds. In addition, IRBP has been demonstrated for the first time in the avian retina and pineal organ. These findings underline the structural and functional similarities between the retina and pineal organ and provide additional support for a photoreceptive role of the avian pineal. No specific staining was detected in any other region of the brain in the Japanese quail; the hypothalamic photoreceptors of birds remain unidentified.  相似文献   

11.
The type AB pineal body of the common vampire bat, Desmodus rotundus, was recessed and lobulated, was extensively vascularized and intimately related to great veins, and was unassociated with the epithalamic region. The habenular and the posterior commissures coursed anteriorly and were unassociated with the pineal. The saccular suprapineal recess of the third ventricle extended dorsally juxtaposed to the pineal body. These anatomical features are likely to make pinealectomies in the vampire more difficult to manage. The pineal parenchyma consisted of light pinealocytes surrounded by canaliculi of various sizes, often transmitting unmyelinated nerve fibers and glial processes. Desmosomes were common. The pinealocyte nuclei were large and highly infolded; characteristic cytoplasmic constituents included abundant dilated Golgi complexes associated with clear vesicles, numerous polyribosomes, few single cisternae of ribosome-studded rough endoplasmic reticulum, mitochondria, and occasional multivesicular bodies and lysosomes. Almost all pinealocytes exhibited centrioles and some, in addition, displayed basal bodies but rarely ciliary shafts. A conspicuous feature of the pinealocyte cytoplasm was the presence of branched bundles of intermediate filaments, especially in the perinuclear zone. Siderotic macrophages, lipofuscin-pigment-containing phagocytic cells, mast cells, myelin bodies, and both fenestrated and continuous capillaries were present. The perivascular compartment was densely packed with unmyelinated nerve bundles containing small to large fibers exhibiting axoaxonic densities. Other constituents of the perivascular compartment were club-shaped pinealocyte processes filled with clear vesicles, microtubules, an occasional mitochondrion, glial processes, and collagen fibers. "Synapselike" contacts were observed between the axons and pinealocyte processes. Abundant pinocytotic vesicles in the capillary endothelium indicated active pinocytosis. Myelinated nerve fibers were lacking. The pineal ultrastructure of Desmodus is in part unlike that reported for other mammals, including bats.  相似文献   

12.
Summary The innervation of the pineal gland, the cell junctions in this organ and junctions between ependymal cells in the pineal recess were investigated in 27 human fetuses (crown-rump length 30–190 mm).Free nerve boutons containing clear and a few dense core vesicles were present in the pineal parenchyma and in the perivascular spaces. The boutons did not make synaptic contacts with the pinealocytes. No evidence for the presence of noradrenaline in the vesicles of nerve boutons was found.Gap junctions, intermediate-like junctions and desmosomes were frequently seen between the pinealocytes. Ruthenium red was used in three fetuses as an extracellular marker.The continuous endothelial cells surrounding the capillary lumen were connected by tight junctions. This indicates the presence of a blood-brain barrier.Tight junctions were present between the ependymal cells in the pineal recess. These junctions constitute an extracellular barrier between the pineal and the cerebrospinal fluid. Acknowledgements: The author wishes to thank Inger Ægidius and Jb Machen for their technical, Ruth Fatum for her linguistic and Karsten Bundgaard for his photographical assistance  相似文献   

13.
Summary Colloid-containing follicles in the pars distalis of pituitary glands from guinea pigs at various ages ranging from 5 days to 36 months were examined by the periodic acid-Schiff (PAS) reaction, immunohistochemistry, and electron microscopy. The follicles storing PAS-positive colloid were first detected in 6-month-old animals, in which only a few follicles were present and mean diameters of colloid deposits were small: 4.3±1.0 m in males and 4.1±0.4 m in females. Thereafter, the follicles gradually increased in number and size with age. The largest number of follicles was observed in the senile groups: 410.5±92.3 in males, 454.7±84.7 in females. Mean diameters of colloid masses in the senile groups were more than 2 times larger than those in 6-month-old animals: 10.0±0.1 m in males, 9.7±0.1 m in females. These findings suggest that the formation of colloidcontaining follicles in the guinea-pig pars distalis is an aging phenomenon. The follicular lumina were mainly surrounded by thin cytoplasmic processes or cell bodies of folliculo-stellate cells immunoreactive for S-100 protein. The lining folliculo-stellate cells showed aggregations of intermediate-sized filaments, numerous lysosomes and colloid-like inclusions. Granulated cells in contact with colloid were occasionally encountered. Intracellular cavities storing colloid-like and fibrous materials were detected in the syncytial formation of GH cells.  相似文献   

14.
Summary S-antigen-immunoreactive pinealocytes located in the deep portion of the pineal organ of inbred and wild pigmented mice give rise to long, beaded processes penetrating into the habenular and pretectal regions. In addition, the medial habenular nuclei and the pretectal area contain S-antigen-immunoreactive perikarya, which resemble pinealocytes in size, shape and immunoreactivity and are considered as pinealocyte-like epithalamic cells. Immunoblotting techniques reveal that a single protein band of approximately 48 kDa molecular weight accounts for this immunoreactivity. As shown with the use of the electron microscope, the majority of the S-antigen-immunoreactive processes is closely apposed to immunonegative neuronal profiles and perikarya of the habenular and pretectal regions. S-antigen-immunoreactive processes and perikarya of both pinealocytes of the deep pineal organ and pinealocyte-like epithalamic cells may form the postsynaptic element in conventional synapses involving axons provided with clear synaptic vesicles. Thus, certain mammalian pinealocytes may receive and transmit signals via point-to-point connections resembling neuro-neuronal contacts. These results challenge the concept that the mammalian pineal organ exerts its influence exclusively via the release of melatonin into the general circulation. Furthermore, they provide evidence (i) that neuronal circuits not involving the sympathetic system participate in the regulation of pineal functions in mammals, and (ii) that intimate histogenetic and functional relationships exist between the pineal organ and the habenular-pretectal nuclei in mammals.  相似文献   

15.
Summary The pineal organ of Raja clavata was studied by light and electron microscopy, including the immunocytochemical antiopsin reaction. The pineal organ of the ray consists of three portions: (i) a large proximal pineal, (ii) a long tube-like connecting stalk, and (iii) a short distal terminal enlargement. This latter end-vesicle lies in the deep connective tissue layers of the braincase. All portions of the pineal are composed of pinealocytes, intrinsic neurons, ependymal/glial cells, and bundles of nerve fibers embedded in thin neuropil formations. The inner segments of the pinealocytes protrude into the lumen in all parts of the organ and usually contain basal bodies and numerous mitochondria. Often, two outer segments were found to arise from the basal bodies of a single inner segment. By means of light-microscopic immunocytochemistry the outer segments showed a strong antiopsin reaction.The axons of the pinealocytes form ribbon-containing synapses on dendritelike profiles, which appear to belong to the intrinsic pineal neurons. There are other axo-dendritic synapses established by presynaptic terminals lacking ribbons and containing granular and synaptic vesicles. Pineal neurons may contain granular vesicles approximately 60–100 nm in diameter; their processes contribute to the bundles of unmyelinated axons.The fine structural organization of the pineal organ and the opsin immunoreactivity of the outer segments of the pinealocytes indicate a photoreceptive capacity of the organ. The double outer segments represent a peculiar multiplication of the photoreceptor structures.This investigation was supported by grants from the Deutsche Forschungsgemeinschaft to A. Oksche (Ok 1/24; 1/25: Mechanismen biologischer Uhren)On leave from the 2nd Department of Anatomy, Semmelweis OTE, Budapest, Hungary  相似文献   

16.
Induction of c-fos protein (FOS) after the onset of darkness was studied immunocytochemically in the rat and hamster pineal gland. The animals were kept on a 12:12 h light-dark cycle. Before the dark period no FOS staining was seen in either rat or hamster pineal cells. Five hours after the onset of darkness 342 +/- 18 pinealocytes/0.2 mm2 (mean +/- SD) displayed FOS-like immunoreactivity in the hamster pineal gland; in the rat pineal gland only 5 +/- 2 pinealocytes/0.2 mm2 showed a faint staining. Two hours later the density of FOS positive cells was decreased to 60 +/- 11/0.2 mm2 in the hamster but increased to 519 +/- 103/0.2 mm2 in the rat pineal gland. Three hours before the beginning of the light period no FOS positive cells were detected in either animal. Both the rat and hamster pineal gland showed a transient and temporally defined expression of c-fos protein in the middle of the dark period. This may be related to a more active functional state of pinealocytes, which is reflected in a peak of melatonin synthesis during the darkness.  相似文献   

17.
Summary Mammalian pinealocytes have been shown to contain synaptic-like microvesicles with putative secretory functions. As a first step to elucidate the possibility that pinealocyte microvesicles store messenger molecules, such as neuroactive amino acids, we have studied the distributional pattern of glutamate immunoreactivity in the pineal gland of the Mongolian gerbil (Meriones unguiculatus) at both light- and electron-microscopic levels. In semithin sections of plastic-embedded pineals, strong glutamate immunoreactivity could be detected in pinealocytes throughout the pineal gland. The density of glutamate immunolabeling in pinealocytes varied among individual cells and was mostly paralled by the density of immunostaining for synaptophysin, a major integral membrane protein of synaptic and synaptic-like vesicles. Postembedding immunogold staining of ultrathin pineal sections revealed that gold particles were enriched over pinealocytes. In particular, a high degree of immunoreactivity was associated with accumulations of microvesicles that filled dilated process terminals of pinealocytes. A positive correlation between the number of gold particles and the packing density of microvesicles was found in three out of four process terminals analyzed. However, the level of glutamate immunoreactivity in pinealocyte process endings was lower than in presumed glutamatergic nerve terminals of the cerebellum and posterior pituitary. The present results provide some evidence for a microvesicular compartmentation of glutamate in pinealocytes. Our findings thus lend support to the hypothesis that glutamate serves as an intrapineal signal molecule of physiological relevance to the neuroendocrine functions of the gland.  相似文献   

18.
Summary Brine shrimp (Artemia salina) males and females entered precopula assortatively by size in the laboratory; large males also had a pairing advantage over smaller males. We investigated the causes of such nonrandom pairing to test hypotheses on size-assortative mating.We found precopulatory biases with respect to male size in the absence of direct competition among males (which produces pairing biases in other species). Large males encountered females significantly more often than did small males. Similarly, large females encountered males more often than did small females, but showed less willingness than small females to enter precopula when housed with small males. Consequently, large females took longer than small females to enter precopula with small males. Although large males entered precopula readily with small females, such size-mismatched pairs appeared short-lived.We conclude that non-random pairing by size in A. salina is determined by several factors including: encounter rates between males and females of different sizes, female behavior, and time following initial pair formation. Our results are likely applicable to other species and can help explain variation for selection on size or other traits.  相似文献   

19.
Summary A ganglion-like aggregate consisting of acetyl-cholinesterase-positive neurons was demonstrated in the pineal organ of the domestic fowl by means of light and electron microscopy. This ganglion is located in juxtaposition with the pineal tract at the posterior (caudal) aspect of the pineal stalk. Numerous large and small neurons formed the ganglion in 40-day-old domestic fowl. Some of these nerve cells established direct neuro-neuronal contacts, others were surrounded by satellite cells. These ganglion cells displayed axo-somatic and axo-dendritic synapses. The above-mentioned cluster of nerve cells may be considered as a pineal ganglion. Its central or peripheral nature is open to discussion. Send offprint requests to: Dr. K. Wake, Department of Anatomy, Faculty of Medicine, Tokyo Medical and Dental University, Yushima, Bunkyo-ku, 113, Japan  相似文献   

20.
The aim of the present study was to characterize the rod-opsin immunoreaction in the mammalian pineal organ. Pigmented mice (strain C57BL) were selected as the animal model. Immunocytochemical investigations involving the use of highly specific polyclonal and monoclonal antibodies against bovine rod-opsin (the apoprotein of the photopigment rhodopsin) showed that approximately 25% of all pinealocytes were rod-opsin immunoreactive. Immunoblotting techniques revealed three protein bands of approximately 40, 75, and 110 kDa; these were detected by the monoclonal antibody and the polyclonal antiserum in retinal and pineal extracts. These protein bands presumably represented the monomeric, dimeric and trimeric forms of rod-opsin. The amount of rod-opsin in retina and pineal organ was quantified by means of an enzyme-linked immunosorbent assay. This yielded 570±30 pmoles rod-opsin per eye and 0.3±0.05 pmoles rod-opsin per pineal organ. High pressure liquid chromatography analysis of whole eye extracts demonstrated the chromophoric group of the photopigment rhodopsin, 11-cis retinal, and its isomer, all-trans-retinal. A shift from 11-cis retinal to all-trans-retinal was found upon light adaptation. No retinals were detected in the pineal organ. Autoradiographic investigations showed that 3H-retinol, intraperitoneally injected into the animals, was incorporated into the outer and inner segments of retinal photoreceptors, but not into the pineal organ. It is concluded that the mouse pineal organ contains the authentic apoprotein of rhodopsin but that it lacks retinal derivatives as essential components of all known vertebrate photopigments. Consequently, the photoreceptor-specific proteins of the mammalian pineal organ are not involved in photoreception and phototransduction, but may serve other functions to be explored in future studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号