首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Sweet sorghum has been identified as a possible ethanol feedstock because of its biomass yield and high concentration of readily fermentable sugars. It has found limited use, however, because of poor post-harvest storage characteristics and short harvest window in cooler climates. Previous research (Bennett, A.S., Anex, R.P., 2008. Farm-gate production costs of sweet sorghum as a bioethanol feedstock. Transactions of the ASABE 51(2), 603-613) indicates that fermentable carbohydrates (FC) can be produced at less expense from sweet sorghum than from corn grain. Previous research, however, did not include costs associated with off-farm transportation, storage, or capital costs associated with milling and energy recovery equipment that are required to provide FC suitable for biological conversion. This study includes these additional costs and reevaluates sweet sorghum as a biocommodity feedstock. A total of eight harvest-transport-processing options are modeled, including 4-row self-propelled and 2-row tractor-pulled forage harvesters, two different modes of in-field transport, fresh processing, on-farm ensilage and at-plant ensilage. Monte Carlo simulation and sensitivity analysis are used to account for system variability and compare scenarios. Transportation costs are found to be significant ranging from $33 to $71 Mg (-1) FC, with highest costs associated with at-plant ensilage scenarios. Economies of scale benefit larger milling equipment and boiler systems reducing FC costs by more than 50% when increasing annual plant capacity from 37.9 to 379 million liters. Ensiled storage of high moisture sweet sorghum in bunkers can lead to significant losses of FC (>20%) and result in systems with net FC costs well above those of corn-derived FC. Despite relatively high transport costs, seasonal, fresh processed sweet sorghum is found to produce FC at costs competitive with corn grain derived FC.  相似文献   

2.
Honey mesquite (Prosopis glandulosa Torr.), a multistemmed tree that grows on grasslands and rangelands in the South Central USA (Texas, Oklahoma, and New Mexico), may have potential as a bioenergy feedstock due to a large amount of existing standing biomass and significant regrowth potential following initial harvest. The objective of this research was to determine the cost to harvest, store, and deliver mesquite biomass feedstock to a bioelectricity plant under the assumption that the rights to harvest mesquite could be acquired in long-term leases. The advantage of mesquite and similar rangeland shrubs as bioenergy feedstocks is that they do not grow on land better suited for growing food or fiber and thus will not impact agricultural food markets as corn grain ethanol has done. In addition, there are no cultivation costs. Results indicated that mesquite biomass density (Mg?ha?1) and harvesting costs are major factors affecting cost of delivered biomass. Annual biomass consumption by the bioelectricity plant and percent of the total system area that contains biomass density that is suitable for harvest significantly affected land- related factors including total system area needed per bioelectricity plant and transport costs. Simulation results based on actual biomass density in Texas showed that higher and more spatially consistent biomass density would be an important factor in selecting a potential location for the bioelectricity plant. Harvesting mesquite has the potential for bioenergy feedstock given certain densities and total land areas since higher harvest and transport costs are offset by essentially no production costs.  相似文献   

3.
We use the wavelet coherence methodology to investigate the relations between prices of ethanol and its feedstocks. Our continuous wavelet framework allows for discovering price connections and their evolution in both time and frequency domain in the most important ethanol markets – Brazil and the USA. For both of these markets, we show that the long‐run relationship between prices of ethanol and corn (in the USA) or sugar (in Brazil) is positive, strong and stable in time. Importantly, we show that the prices of feedstock lead the prices of ethanol and not the other way around. The price lead of feedstock is documented for both short‐ and long‐run horizons. Our qualitative results hold true even when the influence of crude oil prices is accounted for by utilizing partial wavelet coherence approach.  相似文献   

4.

Background

While advantages of biofuel have been widely reported, studies also highlight the challenges in large scale production of biofuel. Cost of ethanol and process energy use in cellulosic ethanol plants are dependent on technologies used for conversion of feedstock. Process modeling can aid in identifying techno-economic bottlenecks in a production process. A comprehensive techno-economic analysis was performed for conversion of cellulosic feedstock to ethanol using some of the common pretreatment technologies: dilute acid, dilute alkali, hot water and steam explosion. Detailed process models incorporating feedstock handling, pretreatment, simultaneous saccharification and co-fermentation, ethanol recovery and downstream processing were developed using SuperPro Designer. Tall Fescue (Festuca arundinacea Schreb) was used as a model feedstock.

Results

Projected ethanol yields were 252.62, 255.80, 255.27 and 230.23 L/dry metric ton biomass for conversion process using dilute acid, dilute alkali, hot water and steam explosion pretreatment technologies respectively. Price of feedstock and cellulose enzymes were assumed as $50/metric ton and 0.517/kg broth (10% protein in broth, 600 FPU/g protein) respectively. Capital cost of ethanol plants processing 250,000 metric tons of feedstock/year was $1.92, $1.73, $1.72 and $1.70/L ethanol for process using dilute acid, dilute alkali, hot water and steam explosion pretreatment respectively. Ethanol production cost of $0.83, $0.88, $0.81 and $0.85/L ethanol was estimated for production process using dilute acid, dilute alkali, hot water and steam explosion pretreatment respectively. Water use in the production process using dilute acid, dilute alkali, hot water and steam explosion pretreatment was estimated 5.96, 6.07, 5.84 and 4.36 kg/L ethanol respectively.

Conclusions

Ethanol price and energy use were highly dependent on process conditions used in the ethanol production plant. Potential for significant ethanol cost reductions exist in increasing pentose fermentation efficiency and reducing biomass and enzyme costs. The results demonstrated the importance of addressing the tradeoffs in capital costs, pretreatment and downstream processing technologies.  相似文献   

5.
With the aim of understanding the contribution of enzymes to the cost of lignocellulosic biofuels, we constructed a techno-economic model for the production of fungal cellulases. We found that the cost of producing enzymes was much higher than that commonly assumed in the literature. For example, the cost contribution of enzymes to ethanol produced by the conversion of corn stover was found to be $0.68/gal if the sugars in the biomass could be converted at maximum theoretical yields, and $1.47/gal if the yields were based on saccharification and fermentation yields that have been previously reported in the scientific literature. We performed a sensitivity analysis to study the effect of feedstock prices and fermentation times on the cost contribution of enzymes to ethanol price. We conclude that a significant effort is still required to lower the contribution of enzymes to biofuel production costs.  相似文献   

6.
The energy security needs of energy importing nations continue to escalate. It is clear that biofuels can help meet some of the increasing need for energy. Theoretically, these can be produced from a variety of biological materials, including agricultural residues (such as corn stover and wheat straw), perennial grasses, legumes, algae, and other biological materials. Currently, however, the most heavily utilized material is corn starch. Industrial fuel ethanol production in the US primarily uses corn, because it is readily converted into fuel at a relatively low cost compared to other biomass sources. The production of corn-based ethanol in the US is dramatically increasing. As the industry continues to grow, the amount of byproducts and coproducts also increases. At the moment, the nonfermentable residues (which are dried and sold as distillers dried grains with solubles – DDGS) are utilized only as livestock feed. The sale of coproducts provides ethanol processors with a substantial revenue source and significantly increases the profitability of the production process. Even though these materials are used to feed animals in local markets, as the size and scope of the industry continues to grow, the need to ship large quantities of coproducts grows as well. This includes both domestic as well as international transportation. Value-added processing options offer the potential to increase the sustainability of each ethanol plant, and thus the industry overall. However, implementation of new technologies will be dependent upon how their costs interact with current processing costs and the logistics of coproduct deliveries. The objective of this study was to examine some of these issues by developing a computer model to determine potential cost ramifications of using various alternative technologies during ethanol processing. This paper focuses specifically on adding a densification unit operation (i.e., pelleting) to produce value-added DDGS at a fuel ethanol manufacturing plant. We have examined the economic implications of pelleting DDGS for varying DDGS production rates (100–1000 tons/d) and pelleting rates (0–100%), for a series of DDGS sales prices ($50–$200/ton). As the proportion of pelleting increases, the cost of transporting DDGS to distant markets drastically declines, because the rail cars can be filled to capacity. For example, at a DDGS sales price of $50/ton, 100% pelleting will reduce shipping costs (both direct and indirect) by 89% compared to shipping the DDGS in bulk form (i.e., no pelleting), whereas at a DDGS sales price of $200/ton, it will reduce costs by over 96%. It is clear that the sustainability of the ethanol industry can be improved by implementing pelleting technology for the coproducts, especially at those plants that ship their DDGS via rail.  相似文献   

7.
Cellulosic ethanol is widely believed to offer substantial environmental advantages over petroleum fuels and grain‐based ethanol, particularly in reducing greenhouse gas emissions from transportation. The environmental impacts of biofuels are largely caused by precombustion activities, feedstock production and conversion facility operations. Life cycle analysis (LCA) is required to understand these impacts. This article describes a field‐to‐blending terminal LCA of cellulosic ethanol produced by biochemical conversion (hydrolysis and fermentation) using corn stover or switchgrass as feedstock. This LCA develops unique models for most elements of the biofuel production process and assigns environmental impact to different phases of production. More than 30 scenarios are evaluated, reflecting a range of feedstock, technology and scale options for near‐term and future facilities. Cellulosic ethanol, as modeled here, has the potential to significantly reduce greenhouse gas (GHG) emissions compared to petroleum‐based liquid transportation fuels, though substantial uncertainty exists. Most of the conservative scenarios estimate GHG emissions of approximately 45–60 g carbon dioxide equivalent per MJ of delivered fuel (g CO2e MJ?1) without credit for coproducts, and 20–30 g CO2e MJ?1 when coproducts are considered. Under most scenarios, feedstock production, grinding and transport dominate the total GHG footprint. The most optimistic scenarios include sequestration of carbon in soil and have GHG emissions below zero g CO2e MJ?1, while the most pessimistic have life‐cycle GHG emissions higher than petroleum gasoline. Soil carbon changes are the greatest source of uncertainty, dominating all other sources of GHG emissions at the upper bound of their uncertainty. Many LCAs of biofuels are narrowly constrained to GHG emissions and energy; however, these narrow assessments may miss important environmental impacts. To ensure a more holistic assessment of environmental performance, a complete life cycle inventory, with over 1100 tracked material and energy flows for each scenario is provided in the online supplementary material for this article.  相似文献   

8.
With cellulosic energy production from biomass becoming popular in renewable energy research, agricultural producers may be called upon to plant and collect corn stover or harvest switchgrass to supply feedstocks to nearby facilities. Determining the production and transportation cost to the producer of corn stover or switchgrass and the amount available within a given distance from the plant will result in a per metric ton cost the plant will need to pay producers in order to receive sufficient quantities of biomass. This research computes up-to-date biomass production costs using recent prices for all important cost components including seed, fertilizer, herbicide, mowing/shredding, raking, baling, storage, handling, and transportation. The cost estimates also include nutrient replacement for corn stover. The total per metric ton cost is a combination of these cost components depending on whether equipment is owned or custom hired, what baling options are used, the size of the farm, and the transport distance. Total costs per dry metric ton for biomass with a transportation distance of 60 km ranges between $63 and $75 for corn stover and $80 and $96 for switchgrass. Using the county quantity data and this cost information, we then estimate biomass supply curves for three Indiana coal-fired electric utilities. This supply framework can be applied to plants of any size, location, and type, such as future cellulosic ethanol plants. Finally, greenhouse gas emissions reductions are estimated from using biomass instead of coal for part of the utility energy and also the carbon tax required to make the biomass and coal costs equivalent. Depending on the assumed CO2 price, the use of biomass instead of coal is found to decrease overall costs in most cases.  相似文献   

9.
This study optimized the net present value (NPV) of profit of various switchgrass-based ethanol supply chains and estimated associated greenhouse gas (GHG) emissions in west Tennessee. Three configurations of feedstock harvesting and storage, including a large round baler system, a large square baler system, and a chopping/densification system, were evaluated. A mixed-integer mathematical programming model incorporating high-resolution spatial data was used to determine the optimal locations and capacities of cellulosic ethanol plants and feedstock preprocessing facilities, and associated feedstock-draw areas by maximizing the NPV of profit over 20 years. The optimized outputs were then used to estimate the GHG emissions produced in the biofuel supply chain (BSC) per year. The study shows that BSC configurations have important implications for the economic and environmental performance of the system. The harvest and storage configurations affect the locations of conversion and preprocessing facilities, and associated feedstock-draw areas, hence impacting the cost and emissions of both feedstock and biofuels transportation. The findings suggest the BSC system that harvests feedstock with forage choppers and utilizes stretch-wrap balers to increase feedstock density has the highest NPV of profit. The BSC system that uses large square balers for harvest and storage emits the lowest amount of GHGs per year. In addition, the sensitivity analysis suggests that biofuel price and scaling factor of facility capital was influential to the economics of BSC systems. The breakeven price of biofuel for the three BSCs was around $0.97 L?1.  相似文献   

10.
Biomass‐based biofuels have gained attention because they are renewable energy sources that could facilitate energy independence and improve rural economic development. As biomass supply and biofuel demand areas are generally not geographically contiguous, the design of an efficient and effective biomass supply chain from biomass provision to biofuel distribution is critical to facilitate large‐scale biofuel development. This study compared the costs of supplying biomass using three alternative biomass preprocessing and densification technologies (pelletizing, briquetting, and grinding) and two alternative transportation modes (trucking and rail) for the design of a four‐stage biomass–biofuel supply chain in which biomass produced in Illinois is used to meet biofuel demands in either California or Illinois. The BioScope optimization model was applied to evaluate a four‐stage biomass–biofuel supply chain that includes biomass supply, centralized storage and preprocessing (CSP), biorefinery, and ethanol distribution. We examined the cost of 15 scenarios that included a combination of three biomass preprocessing technologies and five supply chain configurations. The findings suggested that the transportation costs for biomass would generally follow the pattern of coal transportation. Converting biomass to ethanol locally and shipping ethanol over long distances is most economical, similar to the existing grain‐based biofuel system. For the Illinois–California supply chain, moving ethanol is Biomass‐based biofuels have gained attention because they are renewable energy sources that could facilitate energy independence and improve rural economic development. As biomass supply and biofuel demand areas are generally not geographically contiguous, the design of an efficient and effective biomass supply chain from biomass provision to biofuel distribution is critical to facilitate large‐scale biofuel development. This study compared the costs of supplying biomass using three alternative biomass preprocessing and densification technologies (pelletizing, briquetting, and grinding) and two alternative transportation modes (trucking and rail) for the design of a four‐stage biomass–biofuel supply chain in which biomass produced in Illinois is used to meet biofuel demands in either California or Illinois. The BioScope optimization model was applied to evaluate a four‐stage biomass–biofuel supply chain that includes biomass supply, centralized storage and preprocessing (CSP), biorefinery, and ethanol distribution. We examined the cost of 15 scenarios that included a combination of three biomass preprocessing technologies and five supply chain configurations. The findings suggested that the transportation costs for biomass would generally follow the pattern of coal transportation. Converting biomass to ethanol locally and shipping ethanol over long distances is most economical, similar to the existing grain‐based biofuel system. For the Illinois–California supply chain, moving ethanol is $0.24 gal?1 less costly than moving biomass even in densified form over long distances. The use of biomass pellets leads to lower overall costs of biofuel production for long‐distance transportation but to higher costs if used for short‐distance movement due to its high capital and processing costs. Supported by the supply chain optimization modeling, the cellulosic‐ethanol production and distribution costs of using Illinois feedstock to meet California demand are $0.08 gal?1 higher than that for meeting local Illinois demand.  相似文献   

11.
Ethanol is the primary liquid transportation fuel produced from renewable feedstocks in the United States today. The majority of corn grain, the primary feedstock for ethanol production, has been historically processed in wet mills yielding products such as gluten feed, gluten meal, starch, and germ. Starch extracted from the grain is used to produce ethanol in saccharification and fermentation steps; however the extraction of starch is not 100% efficient. To better understand starch extraction during the wet milling process, we have developed fluorescent probes that can be used to visually localize starch and cellulose in samples using confocal microscopy. These probes are based on the binding specificities of two types of carbohydrate binding modules (CBMs), which are small substrate-specific protein domains derived from carbohydrate degrading enzymes. CBMs were fused, using molecular cloning techniques, to a green fluorescent protein (GFP) or to the red fluorescent protein DsRed (RFP). Using these engineered probes, we found that the binding of the starch-specific probe correlates with starch content in corn fiber samples. We also demonstrate that there is starch internally localized in the endosperm that may contribute to the high starch content in corn fiber. We also surprisingly found that the cellulose-specific probe did not bind to most corn fiber samples, but only to corn fiber that had been hydrolyzed using a thermochemical process that removes the residual starch and much of the hemicellulose. Our findings should be of interest to those working to increase the efficiency of the corn grain to ethanol process.  相似文献   

12.
A modification of the conventional dry grind process for producing ethanol from yellow dent corn is considered with respect to its economic value. Process modifications include recycling distillers' grains, after being pretreated and hydrolyzed, with the ground corn and water to go through fermentation again and increase ethanol yields from the corn starch. A dry grind financial model, which has been validated against other financial models in the industry, is utilized to determine the financial impact of the process changes. The hypothesis was that the enhanced process would yield higher revenues through additional ethanol sales, and higher valued dried distillers' grains (DDGS), due to its higher protein content, to mitigate the drop in DDGS yields. A 32% increase in net present value (NPV) for the overall operation is expected when applying the process modifications to a 100million gallon ethanol plant, and an enzyme cost of $0.20 for each additional gallon of ethanol produced. However, there may be no value added to the enhanced dried distillers' grains (eDDGS), even in light of its higher protein levels, as current pricing is expected to be more sensitive to the amino acid profile than the total protein level, and the eDDGS has lower lysine levels, a key amino acid. Thus, there is a decrease in revenue from eDDGS due to the combination of no price change and loss of DDGS yield to ethanol. The financial improvements are a result of the increased revenue from higher ethanol yields outpacing the sum of all added costs, which include higher capital costs, larger loan payments, increased operating costs, and decreased revenues from dried distillers' grains.  相似文献   

13.
A detailed model based on a non-dimensional transportation factor is developed to assess the economics of biomass collection, transportation, and storage. The optimum plant size for bio-refineries is investigated; ethanol production from corn stover via dilute acid hydrolysis is presented as a case study. The conversion of straight-line, farm-to-plant distances to road distances via a winding factor leads to a shift in the distribution of transportation distances towards shorter hauls. The capital investment scaling exponent was calculated using the model developed at the National Renewable Energy Laboratory (Aden et al., NREL/TP-510-32438, 2002) and found to be 0.7. The cost of the delivered corn stover is proportional to the square root of the inverse of the farmer participation; as a consequence, bio-fuel producers intending to use agricultural residues as feedstock should work towards a farmer participation of fifty percent. Costs associated with storage represent a significant portion of the production cost.  相似文献   

14.
This study conducts a life cycle assessment of a simulated dry mill corn ethanol facility in California’s Central Valley retrofitted to also produce ethanol from corn stover, a cellulosic feedstock. The assessment examines three facility designs, all producing corn ethanol and wet distiller’s grains and solubles as a co-product: a baseline facility with no cellulosic retrofit, a facility retrofitted with a small capacity for stover feedstock, and a facility retrofitted for a large capacity of stover feedstock. Corn grain is supplied by rail from the Midwest, while stover is sourced from in-state farms and delivered by truck. Two stover feedstock supply scenarios are considered, testing harvest rates at 25 or 40 % of stover mass. Allocation is required to separate impacts attributable to co-products. Additional scenarios are explored to assess the effect of co-product allocation methods on life cycle assessment results for the two fuel products, corn ethanol and stover ethanol. The assessment tracks greenhouse gas (GHG) emissions, energy consumption, criteria air pollutants, and direct water consumption. The GHG intensity of corn ethanol produced from the three facility designs range between 61.3 and 68.9 g CO2e/MJ, which includes 19.8 g CO2e/MJ from indirect land use change for Midwestern corn grain. The GHG intensity of cellulosic ethanol varies from 44.1 to 109.2 g CO2e/MJ, and 14.6 to 32.1 g CO2e/MJ in the low and high stover capacity cases, respectively. Total energy input ranges between 0.60 and 0.71 MJ/MJ for corn ethanol and 0.13 to 2.29 MJ/MJ for stover ethanol. This variability is the result of the stover supply scenarios (a function of harvest rate) and co-product allocation decisions.  相似文献   

15.
Currently in America the biofuel ethanol is primarily being produced by the dry grind technique to obtain the starch contained in the corn grains and subsequently subjected to fermentation. This so-called 1st generation technology has two setbacks; first the lingering debate whether its life cycle contributes to a reduction of fossil fuels and the animal feed sectors future supply/demand imbalance caused by the co-product dry distillers grains (DDGS). Additional utilization of the cellulosic components and separation of the proteins for use as chemical precursors have the potential to alleviate both setbacks. Several different corn feedstock layouts were treated with 2nd generation ammonia fiber expansion (AFEX) pre-treatment technology and tested for protein separation options (protease solubilization). The resulting system has the potential to greatly improve ethanol yields with lower bioprocessing energy costs and satisfy a significant portion of the organic chemical industry.  相似文献   

16.
Secure access to energy and food are two of the challenges facing the Northeast region of the United States. Traditional biofuel feedstocks, such as corn and oil seed, are able to satisfy energy requirements. However, they compete with food production for desirable land and water resources and, in any case, are not likely to exploit the region's current comparative advantages. This study investigates a potential solution to the energy security problem in the Northeast: biofuel from advanced feedstock in the form of net forest growth and woody wastes, of which the region has abundant endowments. The federal government has committed to requiring 79.5 billion liters (BL) of advanced biofuel production annually by 2022. We evaluate both the physical capacity for its production and its cost competitiveness using an input‐output model of consumption, production, and trade in the 13‐state region. The model minimizes resource use required to satisfy given consumer demand using alternative technological options and subject to resource constraints. We compile data from the technical literature quantifying state‐level biofuel feedstock endowments and the technological requirements for cellulosic ethanol production. We find that exploiting the region's endowment of cellulosic feedstock requires either making the price of biofuels competitive with gasoline through subsidies or restricting imports of gasoline. Based on this initial investigation, we conclude that the region can produce significant amounts of advanced biofuel, up to 20.28 BL of cellulosic ethanol per year, which could displace nearly 12.5% of the gasoline that is now devoted to motorized transport in the region.  相似文献   

17.
Reducing the use of non-renewable fossil energy reserves together with improving the environment are two important reasons that drive interest in the use of bioethanol as an automotive fuel. Conversion of sugar and starch to ethanol has been proven at an industrial scale in Brazil and the United States, respectively, and this alcohol has been able to compete with conventional gasoline due to various incentives. In this paper, we examined making ethanol from the sugar extracted from the juice of sweet sorghum and/or from the hemicellulose and cellulose in the residual sorghum bagasse versus selling the sugar from the juice or burning the bagasse to make electricity in four scenarios in the context of North China. In general terms, the production of ethanol from the hemicellulose and cellulose in bagasse was more favorable than burning it to make power, but the relative merits of making ethanol or sugar from the juice was very sensitive to the price of sugar in China. This result was confirmed by both process economics and analysis of opportunity costs. Thus, a flexible plant capable of making both sugar and fuel-ethanol from the juice is recommended. Overall, ethanol production from sorghum bagasse appears very favorable, but other agricultural residues such as corn stover and rice hulls would likely provide a more attractive feedstock for making ethanol in the medium and long term due to their extensive availability in North China and their independence from other markets. Furthermore, the process for residue conversion was based on particular design assumptions, and other technologies could enhance competitiveness while considerations such as perceived risk could impede applications.  相似文献   

18.
Before the industrial revolution, the global economy was largely based on living carbon from plants. Now the economy is mainly dependent on fossil fuels (dead carbon). Biomass is the only sustainable bioresource that can provide sufficient transportation fuels and renewable materials at the same time. Cellulosic ethanol production from less costly and most abundant lignocellulose is confronted with three main obstacles: (1) high processing costs ($/gallon of ethanol), (2) huge capital investment ($∼4–10/gallon of annual ethanol production capacity), and (3) a narrow margin between feedstock and product prices. Both lignocellulose fractionation technology and effective co-utilization of acetic acid, lignin and hemicellulose will be vital to the realization of profitable lignocellulose biorefineries, since co-product revenues would increase the margin up to 6.2-fold, where all purified lignocellulose co-components have higher selling prices (>∼1.0/kg) than ethanol (∼0.5/kg of ethanol). Isolation of large amounts of lignocellulose components through lignocellulose fractionation would stimulate R&D in lignin and hemicellulose applications, as well as promote new markets for lignin- and hemicellulose-derivative products. Lignocellulose resource would be sufficient to replace significant fractionations (e.g., 30%) of transportation fuels through liquid biofuels, internal combustion engines in the short term, and would provide 100% transportation fuels by sugar–hydrogen–fuel cell systems in the long term. JIMB-2008: BioEnergy—Special issue.  相似文献   

19.
A wide range of bioenergy crops has been proposed as feedstocks that can serve as renewable and ecologically sound substitutes to fossil fuels. In the United States, corn grain (Zea mays) ethanol is the primary biofuel, with over 49 billion liters produced in 2010. Along with the Energy Independence and Security Act (EISA) of 2007 mandate, concerns about competition for food, land availability, nutrient and water requirements, energy balances, and greenhouse gas (GHG) emissions have prompted researchers to investigate other potential feedstocks. These include second-generation lignocellulosic feedstock and third-generation biodiesel from microalgae and cyanobacteria. However, each feedstock option has associated benefits and consequences for its use. One technique used to evaluate the energy efficiency of bioenergy production systems is the life-cycle assessment (LCA), where system inputs and outputs are computed in terms of either C or energy equivalents to assess the net gains in energy or C offsets. This article collates and synthesizes information about feedstock production options. Results show a wide range of calculated energy and GHG balances, even for the same feedstock species. Discrepancies in LCA and uncertainty thus make direct comparisons difficult and prevent a consensus in determining feedstock suitability. Recommendations must be based upon LCA model assumptions, crop species, cultivation methods, management practices, and energy conversion choices. Currently lignocellulosic feedstock, while a better alternative than corn grain, is not a long-term viable energy source. New feedstocks and technologies are necessary if bioenergy is to be C-neutral and efficient in energy production and land use. Although C fluxes are considered in LCA, one important ecosystem C stock that has previously been left out of many LCA models is changes to soil organic carbon (SOC). Future research, developments, and priorities are discussed for options to produce low C fuel sources and stabilize the climate.  相似文献   

20.
The Energy Independence and Security Act (EISA) of 2007 mandates US production of 136 billion L of biofuel by 2022. This target implies an appropriation of regional primary production for dedicated feedstocks at scales that may dramatically affect water supply, exacerbate existing water quality challenges, and force undesirable environmental resource trade offs. Using a comparative life cycle approach, we assess energy balances and water resource implications for four dedicated ethanol feedstocks – corn, sugarcane, sweet sorghum, and southern pine – in two southeastern states, Florida and Georgia, which are a presumed epicenter for future biofuel production. Net energy benefit ratios for ethanol and coproducts range were 1.26 for corn, 1.94 for sweet sorghum, 2.51 for sugarcane, and 2.97 for southern pine. Corn also has high nitrogen (N) and water demand (11.2 kg GJnet?1 and 188 m3 GJnet?1, respectively) compared with other feedstocks, making it a poor choice for regional ethanol production. Southern pine, in contrast, has relatively low N demand (0.4 kg GJnet?1) and negligible irrigation needs. However, it has comparatively low gross productivity, which results in large land area per unit ethanol production (208 m2 GJnet?1), and, by association, substantial indirect and incremental water use (51 m3 GJnet?1). Ultimately, all four feedstocks require substantial land (10.1, 3.1, 2.5, and 6.1 million ha for corn, sugarcane, sweet sorghum, and pine, respectively), annual N fertilization (3230, 574, 396, 109 million kg N) and annual total water (54 400, 20 840, 8840, and 14 970 million m3) resources when scaled up to meet EISA renewable fuel standards production goals. This production would, in turn, offset only 17.5% of regional gasoline consumption on a gross basis, and substantially less when evaluated on a net basis. Utilization of existing waste biomass sources may ameliorate these effects, but does not obviate the need for dedicated primary feedstock production. Careful scrutiny of environmental trade‐offs is necessary before embracing aggressive ethanol production mandates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号