首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
An efficient and practical route for the large-scale synthesis of 2-deoxy-L-erythro-pentose (2-deoxy-L-ribose) starting from L-arabinose was developed using Barton-type free-radical deoxygenation reaction as a key step. The radical precursor, a phenoxythiocarbonyl ester, was prepared in situ, and the most efficient deoxygenation was achieved by slow addition of tributyltin hydride to the reaction mixture.  相似文献   

2.
The celB gene of Caldicellulosiruptor saccharolyticus was cloned and expressed in Escherichia coli to create a recombinant biocatalyst for hydrolyzing lignocellulosic biomass at high temperature. The GH5 domain of CelB hydrolyzed 4-nitrophenyl-β-d-cellobioside and carboxymethyl cellulose with optimum activity at pH 4.7-5.5 and 80 °C. The recombinant GH5 and CBM3-GH5 constructs were both stable at 80 °C with half-lives of 23 h and 39 h, respectively, and retained >94% activity after 48 h at 70 °C. Enzymatic hydrolysis of corn stover and cellulose pretreated with the ionic liquid 1-ethyl-3-methylimidazolium acetate showed that GH5 and CBM3-GH5 primarily produce cellobiose, with product yields for CBM3-GH5 being 1.2- to 2-fold higher than those for GH5. Confocal microscopy of bound protein on cellulose confirmed tighter binding of CBM3-GH5 to cellulose than GH5, indicating that the enhancement of enzymatic activity on solid substrates may be due to the substrate binding activity of CBM3 domain.  相似文献   

3.
The alpha-L-arabinofuranosidase (AF) from the fungus Rhizomucor pusillus HHT-1 released arabinose at appreciable rates from (1-->5)-alpha-L-arabinofuranooligosaccharides, sugar beet arabinan and debranched arabinan. This enzyme preferentially hydrolyzed the terminal arabinofuranosyl residue [alpha-(1-->5)-linked] of the arabinan backbone rather than the arabinosyl side chain [alpha-(1-->3)-linked residues]. The enzyme-hydrolyzed arabinan reacted at and debranched the arabinan almost at the same rate, and the degree of conversion for both cases was 65%. Methylation analysis of arabinan showed that the arabinosyl-linkage proportions were 2:2:2:1, respectively, for (1-->5)-Araf, T-Araf, (1-->3, 5)-Araf and (1-->3)-Araf, while the ratios for the AF-digested arabinan shifted to 3:1:2:1. Enzyme digestion resulted in an increase in the proportion of (1-->5)-linked arabinose and a decrease in the proportion of terminal arabinose indicated this AF cleaved the terminal arabinosyl residue of the arabinan back bone [alpha-(1-->5)-linked residues]. Peak assignments in the 13C NMR spectra also confirmed this linkage composition of four kinds of arabinose residues. Both 1H and 13C NMR spectra are dominated by signals of the alpha-anomeric configuration of the arabinofuranosyl moieties. No signals were recorded for arabinopyranosyl moieties in the NMR spectra. Methylation and NMR analysis of native and AF-digested arabinan revealed that this alpha-L-arabinofuranosidase can only hydrolyse alpha-L-arabinofuranosyl residues of arabinan.  相似文献   

4.
L-Arabinose isomerase (AI) catalyzes the isomerization of L-arabinose to L-ribulose. It can also convert d-galactose to d-tagatose at elevated temperatures in the presence of divalent metal ions. The araA genes, encoding AI, from the mesophilic bacterium Bacillus halodurans and the thermophilic Geobacillus stearothermophilus were cloned and overexpressed in Escherichia coli, and the recombinant enzymes were purified to homogeneity. The purified enzymes are homotetramers with a molecular mass of 232 kDa and close amino acid sequence identity (67%). However, they exhibit quite different temperature dependence and metal requirements. B. halodurans AI has maximal activity at 50 degrees C under the assay conditions used and is not dependent on divalent metal ions. Its apparent K(m) values are 36 mM for L-arabinose and 167 mM for d-galactose, and the catalytic efficiencies (k(cat)/K(m)) of the enzyme were 51.4 mM(-1)min(-1) (L-arabinose) and 0.4 mM(-1)min(-1) (d-galactose). Unlike B. halodurans AI, G. stearothermophilus AI has maximal activity at 65-70 degrees C, and is strongly activated by Mn(2+). It also has a much higher catalytic efficiency of 4.3 mM(-1)min(-1) for d-galactose and 32.5 mM(-1)min(-1)for L-arabinose, with apparent K(m) values of 117 and 63 mM, respectively. Irreversible thermal denaturation experiments using circular dichroism (CD) spectroscopy showed that the apparent melting temperature of B. halodurans AI (T(m)=65-67 degrees C) was unaffected by the presence of metal ions, whereas EDTA-treated G. stearothermophilus AI had a lower T(m) (72 degrees C) than the holoenzyme (78 degrees C). CD studies of both enzymes demonstrated that metal-mediated significant conformational changes were found in holo G. stearothermophilus AI, and there is an active tertiary structure for G. stearothermophilus AI at elevated temperatures for its catalytic activity. This is in marked contrast to the mesophilic B. halodurans AI where cofactor coordination is not necessary for proper protein folding. The metal dependence of G. stearothermophilus AI seems to be correlated with their catalytic and structural functions. We therefore propose that the metal ion requirement of the thermophilic G. stearothermophilus AI reflects the need to adopt the correct substrate-binding conformation and the structural stability at elevated temperatures.  相似文献   

5.
The transformation of D-xylose and L-arabinose, the two major components of wheat straw and bran, into a unique multifunctional, optically pure, five-carbon synthon has been achieved. The synthetic sequence requires three steps: suitable protection of the hydroxyl groups of the pentoses, introduction of an iodide at the C-5 position and zinc-mediated opening of the furanose ring leading to the formation of a common substituted pent-4-enal.  相似文献   

6.
In this study, interactions of selected monosaccharides with the Pseudomonas aeruginosa Lectin II (PA-IIL) are analyzed in detail. An interesting feature of the PA-IIL binding is that the monosaccharide is interacting via two calcium ions and the binding is unusually strong for protein-saccharide interaction. We have used Molecular Mechanics Poisson-Boltzmann Surface Area (MM/PBSA) and normal mode analysis to calculate the free energy of binding. The impact of intramolecular hydrogen bond network for the lectin/monosaccharide interaction is also analyzed.  相似文献   

7.
The lectin from Pseudomonas aeruginosa (PA-IIL) is involved in host recognition and biofilm formation. Lectin not only displays an unusually high affinity for fucose but also binds to L-fucose, L-galactose and D-arabinose that differ only by the group at position 5 of the sugar ring. Isothermal calorimetry experiments provided precise determination of affinity for the three methyl-glycosides and revealed a large enthalpy contribution. The crystal structures of the complexes of PA-IIL with L-galactose and Met-beta-D-arabinoside have been determined and compared with the PA-IIL/fucose complex described previously. A combination of the structures and thermodynamics provided clues for the role of the hydrophobic group in affinity.  相似文献   

8.
4-Nitrophenyl 5-O-trans-feruloyl-alpha-L-arabinofuranoside and 4-nitrophenyl 2-O-trans-feruloyl-alpha-L-arabinofuranoside, synthesized by our group (M. Mastihubová, J. Szemesová, and P. Biely), were found to be suitable substrates for determination of activity of feruloyl esterases (FeEs) exhibiting affinity for 5-O- and 2-O-feruloylated alpha-L-arabinofuranosyl residues. One assay is based on coupling the FeE-catalyzed formation of 4-nitrophenyl alpha-L-arabinofuranoside with its efficient hydrolysis by alpha-L-arabinofuranosidase to release 4-nitrophenol. An alternative assay explores the difference in the molar absorbances at 340 nm of the substrate (ferulic acid esters) and the reaction products, which are (1) free ferulic acid and 4-nitrophenyl alpha-L-arabinofuranoside in samples free of alpha-L-arabinofuranosidase and (2) ferulic acid, 4-nitrophenyl alpha-L-arabinofuranoside, and/or 4-nitrophenol in samples containing alpha-L-arabinofuranosidase. The new substrates represent convenient tools to differentiate FeEs on the basis of substrate specificity.  相似文献   

9.
The synthesis of a trisaccharide and a hexasaccharide, the monomer and dimer of the repeating unit of O-antigen polysaccharide from Mesorhizobium huakuii IFO15243, has been accomplished through suitable protecting group manipulations and stereoselective glycosylation reactions starting from commercially available l-rhamnose. The target oligosaccharides in the form of their p-methoxyphenyl glycosides are suitable for further glycoconjugate formation via selective cleavage of this group.  相似文献   

10.
Base-catalysed isomerisation of aldoses of the arabino and lyxo series in aluminate solution has been investigated. L-Arabinose and D-galactose give L-erythro-2-pentulose (L-ribulose) and D-lyxo-2-hexulose (D-tagatose), respectively, in good yields, whereas lower reactivity is observed for 6-deoxy-D-galactose (D-fucose). From D-lyxose, D-mannose and 6-deoxy-L-mannose (L-rhamnose) are obtained mixtures of ketoses and C-2 epimeric aldoses. Small amounts of the 3-epimers of the ketoses were also formed. 6-Deoxy-L-arabino-2-hexulose (6-deoxy-L-fructose) and 6-deoxy-L-glucose (L-quinovose) were formed in low yields from 6-deoxy-L-mannose and isolated as their O-isopropylidene derivatives. Explanations of the differences in reactivity and course of the reaction have been suggested on the basis of steric effects.  相似文献   

11.
6-O-(L-Tyrosylglycyl)- and 6-O-(L-tyrosylglycylglycyl)-D-glucopyranose were synthesized by condensation of the pentachlorophenyl esters of the respective di- and tripeptide with fully unprotected D-glucose. The intramolecular reactivity of the sugar conjugates was studied in pyridine-acetic acid and in dry methanol, at various temperatures and for various incubation times. The composition of the incubation mixtures was monitored by a reversed-phase HPLC method that permits simultaneous analysis of the disappearance of the starting material and the appearance of rearrangement and degradation products. To determine the influence of esterification of the peptide carboxy group on its amino group reactivity, parallel experiments were done in which free peptides were, under identical reaction conditions, incubated with D-glucose (molar ratios 1:1 and 1:5). Depending on the starting compound, different types of Amadori products (cyclic and bicyclic form), methyl ester of peptides, and Tyr-Gly-diketopiperazine were obtained.  相似文献   

12.
A recombinant putative glycoside hydrolase from Caldicellulosiruptor saccharolyticus was purified with a specific activity of 12 U mg−1 by heat treatment and His-Trap affinity chromatography, and identified as a single 56 kDa band upon SDS-PAGE. The native enzyme is a dimer with a molecular mass of 112 kDa as determined by gel filtration. The enzyme exhibited its highest activity when debranched arabinan (1,5-α-l-arabinan) was used as the substrate, demonstrating that the enzyme was an endo-1,5-α-l-arabinanase. The K m, k cat, and k cat/K m values were 18 mg ml−1, 50 s−1, and a 2.8 mg ml−1 s−1, respectively. Maximum enzyme activity was at pH 6.5 and 75°C. The half-lives of the enzyme at 65, 70 and 75°C were 2440, 254 and 93 h, respectively, indicating that it is the most thermostable of the known endo-1,5-α-l-arabinanases.  相似文献   

13.
Dielectric relaxation measurements were performed on two enantiomers, d- and l-arabinose and their equimolar mixture, and compared to dielectric data obtained for d-ribose. d-Arabinose differs from d-ribose by having the opposite configuration at C2. This study reveals that both d- and l- of arabinose exhibit α-relaxation peaks with the same shape for the same α-relaxation time τα, and the same steepness index for the Tg-scale T-dependence of τα. However, the two isomers have slightly different glass transition temperatures Tg’s, and their secondary γ-relaxation times also differ slightly from the previously observed γ-relaxation in d-ribose at the same temperature. However, when samples of both investigated monosaccharides are annealed at higher temperatures, their glass transition temperatures become nearly identical. This is an effect of the mutarotation process, which leads to the formation of pairs of the enantiomers and accordingly they should have the same physical properties. The width of the α-relaxation of d- and l-arabinose is broader than that of d-ribose, as reflected by the smaller stretch exponent in the Kohlrausch-Williams-Watts function used to fit the data of the former (βKWW = 0.46 ± 0.01) than the latter (βKWW = 0.55 ± 0.01). The width of the α-relaxation of racemic mixture of the d- and l-arabinose is slightly broader than that of the pure isomers. While the dielectric loss data of d-ribose in the glassy state at ambient and elevated pressures show an inflexion indicating the presence of the JG β-relaxation, the data of d- and l-arabinose show no such feature for identification of the supposedly universal JG β-relaxation. Nevertheless, on comparing the loss spectra of d-arabinose with that of d-ribose, the presence of the JG β-relaxation in d-arabinose has been rationalized.  相似文献   

14.
The alpha-(1-->2)-L-galactosyltransferase from the albumen gland of the vineyard snail Helix pomatia exhibits high alpha-(1-->2)-L-fucosyltransferase activity and can be used to transfer L-fucose from GDP-L-fucose to terminal, non-reducing D-galactose residues of an oligosaccharide, thus providing facile access to a range of H-antigen-containing oligosaccharides. The enzymatic glycosylation was applied here on a milligram scale to a series of disaccharide acceptor substrates. Apparently the site of interglycosidic linkage between the terminal and subterminal acceptor sugar units is of little or no consequence. The homologous series of trisaccharides thus produced were fully characterised by NMR analysis of their peracetates.  相似文献   

15.
16.
The reaction conditions of galactose oxidase-catalyzed, targeted C-6 oxidation of galactose derivatives were optimized for aldehyde production and to minimize the formation of secondary products. Galactose oxidase, produced in transgenic Pichia pastoris carrying the galactose oxidase gene from Fusarium spp., was used as catalyst, methyl α-d-galactopyranoside as substrate, and reaction medium, temperature, concentration, and combinations of galactose oxidase, catalase, and horseradish peroxidase were used as variables. The reactions were followed by 1H NMR spectroscopy and the main products isolated, characterized, and identified. An optimal combination of all the three enzymes gave aldehyde (methyl α-d-galacto-hexodialdo-1,5-pyranoside) in approximately 90% yield with a substrate concentration of 70 mM in water at 4 °C using air as oxygen source. Oxygen flushing of the reaction mixture was not necessary. The aldehyde existed as a hydrate in water. The main secondary products, a uronic acid (methyl α-d-galactopyranosiduronic acid) and an α,β-unsaturated aldehyde (methyl 4-deoxy-α-d-threo-hex-4-enodialdo-1,5-pyranoside), were observed for the first time to form in parallel. Formation of uronic acid seemed to be the result of impurities in the galactose oxidase preparation. 1H and 13C NMR data of the products are reported for the α,β-unsaturated aldehyde for the first time, and chemical shifts in DMSO-d6 for all the products for the first time. Oxidation of d-raffinose (α-d-galactopyranosyl-(1-6)-α-d-glucopyranosyl-(1-2)-β-d-fructofuranoside) in the same optimum conditions also proceeded well, resulting in approximately 90% yield of the corresponding aldehyde.  相似文献   

17.
l-ribose isomerase (L-RI) from Cellulomonas parahominis MB426 can convert l-psicose and d-tagatose to l-allose and d-talose, respectively. Partially purified recombinant L-RI from Escherichia coli JM109 was immobilized on DIAION HPA25L resin and then utilized to produce l-allose and d-talose. Conversion reaction was performed with the reaction mixture containing 10% l-psicose or d-tagatose and immobilized L-RI at 40 °C. At equilibrium state, the yield of l-allose and d-talose was 35.0% and 13.0%, respectively. Immobilized enzyme could convert l-psicose to l-allose without remarkable decrease in the enzyme activity over 7 times use and d-tagatose to d-talose over 37 times use. After separation and concentration, the mixture solution of l-allose and d-talose was concentrated up to 70% and crystallized by keeping at 4 °C. l-Allose and d-talose crystals were collected from the syrup by filtration. The final yield was 23.0% l-allose and 7.30% d-talose that were obtained from l-psicose and d-tagatose, respectively.  相似文献   

18.
Different amounts and various types of bis-dinuclear tetradentate molybdate complexes of D-erythro-L-manno-octose, D-erythro-L-gluco-octose, D-erythro-L-manno-octitol and D-erythro-L-gluco-octitol were characterized by 1H and 13C NMR spectroscopy in aqueous solutions. Detailed analysis of 1H-(1)H coupling constants and NOEs, together with chemical shifts, allowed characterization of the different isomers of these complexes.  相似文献   

19.
The antigenic polysaccharide was obtained from the cell wall of Eubacterium saburreum strain T15 by trypsin digestion followed by gel permeation and ion-exchange chromatography. Its structure was determined using acid hydrolysis, methylation analysis, and 1D and 2D NMR spectroscopy. It contained L-threo-pent-2-ulose (Xul), D-fucose (Fuc), and D-glycero-D-galacto-heptose (Hep) in 2:3:3 ratio. Methylation analysis indicated an octasaccharide repeating-unit containing five branches. The 1H and 13C signals in NMR spectra of the sugar residues were assigned by COSY, HOHAHA, and HMQC 2D experiments, and the sequence of sugar residues in the repeating unit was determined by NOESY and HMBC experiments. The polysaccharide also contains two O-acetyl groups in the repeating unit, located on the Hep residue. The repeating structure can be written as: [see text for equation]. This is a novel structure in bacterial cell-wall polysaccharides from Gram-positive bacteria.  相似文献   

20.
Mills SJ  Liu C  Potter BV 《Carbohydrate research》2002,337(20):1795-1801
The preparation of D- and L-myo-inositol 2,4,5-trisphosphate is described, together with the phosphorothioate counterparts. The known chiral diols D- and L-1,4-di-O-benzyl-5,6-bis-O-p-methoxybenzyl-myo-inositol were regioselectively protected at the 3-position using a benzyl group via a 2,3-O-stannylene acetal. Removal of the p-methoxybenzyl groups of each enantiomer gave D- and L-1,3,6-tri-O-benzyl-myo-inositol. Phosphitylation with bis(benzyloxy)diisoproplyaminophosphine and 1H-tetrazole gave the trisphosphite intermediate for each enantiomer. Oxidation with 3-chloroperoxybenzoic acid gave the fully protected D- and L-myo-inositol 2,4,5-trisphosphates. Sulphoxidation of the D- and L-2,4,5-trisphosphite intermediates gave the fully protected D- and L-myo-inositol 2,4,5-trisphosphorothioate compounds. The fully protected trisphosphates were deblocked using hydrogenolysis and the phosphorothioates were deprotected using sodium in liquid ammonia. The individual compounds were then purified using ion exchange chromatography to afford pure D- and L-myo-inositol 2,4,5-trisphosphates together with the corresponding phosphorothioates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号