首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Human immunodeficiency virus (HIV)-1 Tat released from HIV-1-infected monocytes is believed to enter other cells via an integrin-facilitated pathway, resulting in altered gene expression. Indeed, exogenous Tat protein can increase cell adhesion molecule gene expression in human endothelial cells. Signaling pathways initiated by Tat in endothelial cells are not known. We evaluated the ability of endogenous tat to stimulate monocyte adhesion via activation of nuclear factor-kappaB (NF-kappaB) within human umbilical vein endothelial cells. Transfection with pcTat, but not control vector DNA, increased NF-kappaB binding activity, NF-kappaB luciferase reporter activity, and monocyte adhesion. pcTat also increased kappaB-dependent HIV-1-LTR-CAT reporter activity 28-fold compared with a 3-fold increase produced by transfection with an equivalent amount of pcTax (from human leukemia virus). The pcTat-induced increase in pNF-kappaB-Luc activity and monocyte adhesion to endothelial cells was blocked by cotransfection with dominant-negative mutant IkappaBalpha and by incubation with 10 mM aspirin. We conclude that monocyte adhesion to human endothelial cells stimulated by pcTat is mediated via an NF-kappaB-dependent mechanism. Furthermore, inhibition studies using aspirin suggest that pcTat-stimulated NF-kappaB activation and monocyte adhesion occur via a redox-sensitive mechanism.  相似文献   

4.
5.
A finding commonly observed in human immunodeficiency virus type 1 (HIV-1)-infected patients is invasion of the brain by activated T cells and infected macrophages, eventually leading to the development of neurological disorders and HIV-1-associated dementia. The recruitment of T cells and macrophages into the brain is likely the result of chemokine expression. Indeed, earlier studies revealed that levels of different chemokines were increased in the cerebrospinal fluid of HIV-1-infected patients whereas possible triggers and cellular sources for chemokine expression in the brain remain widely undefined. As previous studies indicated that HIV-1 Tat, the retroviral transactivator, is capable of inducing a variety of cellular genes, we investigated its capacity to induce production of chemokines in astrocytes. Herein, we demonstrate that HIV-1 Tat(72aa) is a potent inducer of MCP-1, interleukin-8 (IL-8), and IP-10 expression in astrocytes. Levels of induced IP-10 protein were sufficiently high to induce chemotaxis of peripheral blood lymphocytes. In addition, Tat(72aa) induced IL-8 expression in astrocytes. IL-8 mRNA induction was seen less then 1 h after Tat(72aa) stimulation, and levels remained elevated for up to 24 h, leading to IL-8 protein production. Tat(72aa)-mediated MCP-1 and IL-8 mRNA induction was susceptible to inhibition by the MEK1/2 inhibitor UO126 but was only modestly decreased by the inclusion of the p38 mitogen-activated protein kinase (MAPK) inhibitor SB202190. In contrast, Tat-mediated IP-10 mRNA induction was suppressed by SB202190 but not by the MEK1/2 inhibitor UO126. These findings indicate that MAPKs play a major role in Tat(72aa)-mediated chemokine induction in astrocytes.  相似文献   

6.
HIV-1 infection has significant effect on the immune system as well as on the nervous system. Breakdown of the blood-brain barrier (BBB) is frequently observed in patients with HIV-associated dementia (HAD) despite lack of productive infection of human brain microvascular endothelial cells (HBMEC). Cellular products and viral proteins secreted by HIV-1 infected cells, such as the HIV-1 Gp120 envelope glycoprotein, play important roles in BBB impairment and HIV-associated dementia development. HBMEC are a major component of the BBB. Using cocultures of HBMEC and human astrocytes as a model system for human BBB as well as in vivo model, we show for the first time that cannabinoid agonists inhibited HIV-1 Gp120-induced calcium influx mediated by substance P and significantly decreased the permeability of HBMEC as well as prevented tight junction protein down-regulation of ZO-1, claudin-5, and JAM-1 in HBMEC. Furthermore, cannabinoid agonists inhibited the transmigration of human monocytes across the BBB and blocked the BBB permeability in vivo. These results demonstrate that cannabinoid agonists are able to restore the integrity of HBMEC and the BBB following insults by HIV-1 Gp120. These studies may lead to better strategies for treatment modalities targeted to the BBB following HIV-1 infection of the brain based on cannabinoid pharmacotherapies.  相似文献   

7.
8.
9.
10.
The cytokine resistin and the chemokine fractalkine (FKN) were found at increased levels in human atherosclerotic plaque, in the subendothelium, but their role in this location still needs to be characterized. Recently, high local resistin in the arterial vessel wall was shown to contribute to an enhanced accumulation of macrophages by mechanisms that need to be clarified. Our recent data showed that resistin activated smooth muscle cells (SMC) by up-regulating FKN and MCP-1 expression and monocyte chemotaxis by activating toll-like receptor 4 (TLR4) and Gi/o proteins. Since in the vessel wall both endothelial cells (EC) and SMC respond to cytokines and promote atherosclerosis, we questioned whether subendothelial resistin (sR) has a role in vascular cells cross-talk leading to enhanced monocyte transmigration and we investigated the mechanisms involved. To this purpose we used an in vitro system of co-cultured SMC and EC activated by sR and we analyzed monocyte transmigration. Our results indicated that: (1) sR enhanced monocyte transmigration in EC/SMC system compared to EC cultured alone; (2) sR activated TLR4 and Gi/o signaling in EC/SMC system and induced the secretion of more FKN and MCP-1 compared to EC cultured alone and used both chemokines to specifically recruit monocytes by CX3CR1 and CCR2 receptors. Moreover, FKN produced by resistin in EC/SMC system, by acting on CX3CR1 on EC/SMC specifically contributes to MCP-1 secretion in the system and to the enhanced monocyte transmigration. Our study indicates new possible targets for therapy to reduce resistin-dependent enhanced macrophage infiltration in the atherosclerotic arterial wall.  相似文献   

11.
Immature dendritic cells are among the first cells infected by retroviruses after mucosal exposure. We explored the effects of human immunodeficiency virus-1 (HIV-1) and its Tat transactivator on these primary antigen-presenting cells using DNA microarray analysis and functional assays. We found that HIV-1 infection or Tat expression induces interferon (IFN)-responsive gene expression in immature human dendritic cells without inducing maturation. Among the induced gene products are chemokines that recruit activated T cells and macrophages, the ultimate target cells for the virus. Dendritic cells in the lymph nodes of macaques infected with simian immunodeficiency virus (SIV) have elevated levels of monocyte chemoattractant protein 2 (MCP-2), demonstrating that chemokine induction also occurs during retroviral infection in vivo. These results show that HIV-1 Tat reprograms host dendritic cell gene expression to facilitate expansion of HIV-1 infection.  相似文献   

12.
Trafficking of peripheral blood mononuclear cells (PBMCs) into the brain is a critical step in the initiation of human immunodeficiency virus (HIV)-associated central nervous system disease. To examine potential factors that control trafficking during the earliest stages of infection, PBMC transmigration across a cultured feline brain endothelial cell (BECs) monolayer was measured after selective exposure of various cell types to feline immunodeficiency virus (FIV). Infection of the PBMCs with FIV increased the trafficking of monocytes and CD4 and CD8 T cells. Additional exposure of the BECs to FIV suppressed mean monocyte, CD4 T cell, and CD8 T cell trafficking. B cell trafficking was unaltered by these changing conditions. Subsequent exposure of astrocytes or microglia to FIV altered transmigration of different PBMC subsets in different ways. Treated microglia compared with treated astrocytes decreased monocyte transmigration, whereas B cell transmigration was increased significantly. When both astrocytes and microglia were exposed to FIV, an increase in CD8 T cell transmigration relative to BECs alone, to BECs plus astrocytes, or to BECs plus microglia was demonstrated. Thus, initial exposure of PBMCs to FIV is sufficient to induce a general increase in trafficking, whereas initial exposure of endothelial cells to FIV tends to down-regulate this effect. Selectivity of trafficking of specific PBMC subsets is apparent only after exposure of cells of the central nervous system to FIV in co-culture with the endothelium.  相似文献   

13.
Acquired immunodeficiency syndrome (AIDS)-associated dementia is often characterized by chronic inflammation, with infected macrophage infiltration of the CNS resulting in the production of human immunodeficiency virus type 1 (HIV-1) products, including tat, and neurotoxins that contribute to neuronal loss. In addition to their established role in leukocyte recruitment and activation, we identified an additional role for chemokines in the CNS. Monocyte chemoattractant protein-1 (MCP-1 or CCL2) and regulated upon activation normal T cell expressed and secreted (RANTES) were found to protect mixed cultures of human neurons and astrocytes from tat or NMDA-induced apoptosis. Neuronal and astrocytic apoptosis in these cultures was significantly inhibited by co-treatment with MCP-1 or RANTES but not IP-10. The protective effect of RANTES was blocked by antibodies to MCP-1, indicating that RANTES protection is mediated by the induction of MCP-1. The NMDA blocker, MK801, also abolished the toxic effects of both tat and NMDA. Tat or NMDA treatment of mixed cultures for 24 h resulted in increased extracellular glutamate ([Glu]e) and NMDA receptor 1 (NMDAR1) expression, potential contributors to apoptosis. Co-treatment with MCP-1 inhibited tat and NMDA-induced increases in [Glu]e and NMDAR1, and also reduced the levels and number of neurons containing intracellular tat. These data indicate that MCP-1 may play a novel role as a protective agent against the toxic effects of glutamate and tat.  相似文献   

14.
15.
16.
Strong evidence for the direct modulation of the immune system by opioids is well documented. Mu-opioids have been shown to alter the release of cytokines important for both host defense and the inflammatory response. Proinflammatory chemokines monocyte chemoattractant protein-1 (MCP-1), RANTES, and IFN-gamma-inducible protein-10 (IP-10) play crucial roles in cell-mediated immune responses, proinflammatory reactions, and viral infections. In this report, we show that [D-Ala(2),N:-Me-Phe(4),Gly-ol(5)]enkephalin (DAMGO), a mu-opioid-selective agonist, augments the expression in human PBMCs of MCP-1, RANTES, and IP-10 at both the mRNA and protein levels. Because of the proposed relationship between opioid abuse and HIV-1 infection, we also examined the impact of DAMGO on chemokine expression in HIV-infected cells. Our results show that DAMGO administration induces a significant increase in RANTES and IP-10 expression, while MCP-1 protein levels remain unaffected in PBMCs infected with the HIV-1 strain. In contrast, we show a dichotomous effect of DAMGO treatment on IP-10 protein levels expressed by T- and M-tropic HIV-infected PBMCs. The differential modulation of chemokine expression in T- and M-tropic HIV-1-infected PBMCs by opioids supports a detrimental role for opioids during HIV-1 infection. Modulation of chemokine expression may enhance trafficking of potential noninfected target cells to the site of active infection, thus directly contributing to HIV-1 replication and disease progression to AIDS.  相似文献   

17.
Tumors commonly produce chemokines for recruitment of host cells, but the biological significance of tumor-infiltrating inflammatory cells, such as monocytes/macrophages, for disease outcome is not clear. Here, we show that all of 30 melanoma cell lines secreted monocyte chemoattractant protein-1 (MCP-1), whereas normal melanocytes did not. When low MCP-1-producing melanoma cells from a biologically early, nontumorigenic stage were transduced to overexpress the MCP-1 gene, tumor formation depended on the level of chemokine secretion and monocyte infiltration; low-level MCP-1 secretion with modest monocyte infiltration resulted in tumor formation, whereas high secretion was associated with massive monocyte/macrophage infiltration into the tumor mass, leading to its destruction within a few days after injection into mice. Tumor growth stimulated by monocytes/macrophages was due to increased angiogenesis. Vessel formation in vitro was inhibited with mAbs against TNF-alpha, which, when secreted by cocultures of melanoma cells with human monocytes, induced endothelial cells under collagen gels to form branching, tubular structures. These studies demonstrate that the biological effects of tumor-derived MCP-1 are biphasic, depending on the level of secretion. This correlates with the degree of monocytic cell infiltration, which results in increased tumor vascularization and TNF-alpha production.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号