首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
slyD encodes a 196 amino acid polypeptide that is a member of the FKBP family of cis–trans peptidyl–prolyl isomerases (PPIases). slyD mutations affect plaque formation by the phage φX174 by blocking the action of the phage lysis protein E. Here we describe the selection of a set of spontaneous slyD mutations conferring resistance to the expression of gene E from a plasmid. These mutations occur disproportionately in residues of SlyD that, based on the structure of the prototype mammalian FKBP12, make ligand contacts with immunosuppressing drug molecules or are conserved in other FKBP proteins. A wide variation in the plating efficiency of φX174 on these E  R strains is observed, relative to the parental, indicating that these alleles differ widely in residual SlyD activity. Moreover, it is found that slyD mutations cause significant growth rate defects in Escherichia coli B and C backgrounds. Finally, overexpression of slyD causes filamentation of the host. Thus, among the FKBP genes found in organisms across the evolutionary spectrum, slyD is unique in having three distinct drug-independent phenotypes.  相似文献   

2.
Most bacteriophages abruptly terminate their vegetative cycle by causing lysis of the host cell. The ssDNA phage phi X174 uses a single lysis gene, E, encoding a 91-amino-acid membrane protein that causes lysis of Escherichia coli by inhibiting MraY, a conserved enzyme of murein biosynthesis. Recessive mutations in the host gene slyD (sensitivity to lysis) absolutely block E-mediated lysis and phi X174 plaque formation. The slyD gene encodes a FKBP-type peptidyl-prolyl cis-trans isomerase (PPIase). To investigate the molecular basis of this unique FKBP-dependence, spontaneous plaque-forming mutants of phi X174 were isolated on a slyD lawn. All of these Epos ('plates on slyD') suppressors encode proteins with either a R3H or L19F change. The double mutant was also isolated and generated the largest plaques on the slyD lawn. A c-myc epitope tag sequence was incorporated into the parental E and Epos genes without effect on lytic function. Western blots and pulse-chase labelling experiments showed that both Epos and E are highly unstable in a slyD background; however, Epos is synthesized at a higher rate, allowing a lysis-sufficient level of Epos to accumulate. Our results indicate that SlyD is required for stabilizing the E protein and allowing it to accumulate to the levels required to exert its lytic effect. These data are discussed in terms of a model for the specific role of the SlyD PPIase in E folding, and of the use of the very strict SlyD- dependence phenotype for identifying elements of PPIase selectivity.  相似文献   

3.
Abstract The role of helper elements in the mobilisation of pBR recombinant plasmids ( tra , mob , ori T+ and tra , mob , ori T) from genetically engineered Escherichia coli K12 strains to other K12-strains and to wild-type E. coli strains of human faecal origin was examined. Transfer experiments were done in the digestive tract of axenic (germ free) and gnotobiotic mice, associated with human faecal flora, HFF. The kinetics of implantation of donors, recipients and transconjugants were determined. Mobilisation of ori T+ pBR-type plasmids, by trans-complementation with the products of tra and mob genes was obtained with E. coli K12, in the digestive tract of axenic mice and the resulting transconjugants became established together with the recipient and donor strains. Such mobilisation was only observed sporadically with one E. coli of human origin in axenic mice, but did not occur in gnotobiotic HFF mice. The E. coli strains of human origin were able to promote transfer of an ori T pBR-type plasmid in vitro but not in axenic or gnotobiotic mice. Transconjugants of wild-type strains obtained in in vitro mating experiments and inoculated into gnotobiotic HFF mice were eliminated as rapidly as the recombinant K12 strains. This work indicates that ≥ 50% of wild-type E. coli strains were able to promote transfer of pBR ori T plasmids in vitro.  相似文献   

4.
Abstract Expression of bacteriophage φX174 gene E from plasmid pUH51 induced lysis of Escherichia coli . Before onset of bacterial lysis, cellular phospholipase activity was induced due to the presence of gene E product within the cells. By comparison of the lytic behaviour of phospholipase-negative E. coli strains with the corresponding wild-type strain it was found that neither the action of detergent-resistant phospholipase A nor of detergent-sensitive phospholipase were essential for the lysis-inducing properties of the gene E product. It was concluded that induction of phospholipases after expression of the φX174 gene E was a consequence of membrane perturbation caused by the integration of the gene E product into the cytoplasmic membrane of E. coli .  相似文献   

5.
Hybrid lambda phages which have the E lysis gene of the bacteriophage phi X174 in cis to defective nonsense and deletion alleles of the normal lambda lysis genes S and R have been constructed and shown to be fully competent for plaque-forming ability, which demonstrates that the single-gene, lysozyme-independent lysis system of phi X174 and related phages can serve the lytic function for large complex phages. These hybrid phages are unable to form plaques on a slyD host. Moreover, plaque morphology indicates that in E-mediated lysis the soluble lambda R endolysin can participate in lysis, indicating that the protein E-mediated lesions are not completely sealed off from the periplasm.  相似文献   

6.
In Escherichia coli the histidine kinase sensor protein, EnvZ, undergoes autophosphorylation and subsequently phosphorylates the regulatory protein, OmpR. Modulation of the levels of OmpR-phosphate controls the differential expression of ompF and ompC . While the phosphotransfer reaction between EnvZ and OmpR has been extensively studied, the domains involved in the sensing function of EnvZ are not well understood. We have used a comparative approach to study the sensing function of EnvZ. During our search of numerous bacteria we found that the symbiotic/pathogenic bacterium Xenorhabdus nematophilus contained the operon encoding both ompR and envZ . Nucleotide sequence analysis revealed that EnvZ of X. nematophilus (EnvZX.n.) is composed of 342 amino acid residues, which is 108 residues shorter than EnvZ of E. coli (EnvZE.c.). Amino acid sequence comparison showed that the cytoplasmic domains of the EnvZ moleculsshared 57% sequence identity. In contrast, the large hydrophilic periplasmic domain of EnvZE.c. was absent in EnvZX.n., and was replaced by a shorter hydrophobic region. Although the periplasmic domains had diverged extensively, envZX.n. was able to complement a Δ envZ strain of E. coli . OmpF and OmpC were differentially produced in response to changes in medium osmolarity in this strain. Further genetic analysis established that heterologous phosphorylation between EnvZX.n. and OmpR of E. coli (OmpRE.c.) accounted for the complementation of the Δ envZ strain. In addition we show that the OmpR molecules of X. nematophilus and E. coli share 78% amino acid sequence identity. These results indicate that the EnvZ protein of X. nematophilus was able to sense changes in the osmolarity of the growth environment and properly regulate the levels of OmpR-phosphate in E. coli .  相似文献   

7.
Killing of wild-type spores of Bacillus subtilis with formaldehyde also caused significant mutagenesis; spores (termed αβ) lacking the two major α/β-type small, acid-soluble spore proteins (SASP) were more sensitive to both formaldehyde killing and mutagenesis. A recA mutation sensitized both wild-type and αβ spores to formaldehyde treatment, which caused significant expression of a recA - lacZ fusion when the treated spores germinated. Formaldehyde also caused protein–DNA cross-linking in both wild-type and αβ spores. These results indicate that: (i) formaldehyde kills B. subtilis spores at least in part by DNA damage and (b) α/β-type SASP protect against spore killing by formaldehyde, presumably by protecting spore DNA.  相似文献   

8.
9.
Abstract Cobra venoms cause irreversible destruction of cells cultured in vitro [1,2]. The venom of Naja nigricollis nigricollis possessed the most potent cytotoxic activity towards B16F10 melanoma cells among various examined venoms [2]. The main cytotoxic factor (P4) isolated from this venom showed preferential activity on tumor cell lines and caused lysis at concentrations of 10−7 M (0.8–1 μg/ml) [3]. The present study examined the binding of cytotoxin P4 to melanoma B16F10 and WEHI-3B leukemia cell lines and found that, like cytotoxicity, it depended on concentration, temperature and incubation time. Cytotoxin concentrations that elicited no apparent damage to cells during the first hour of incubation caused lysis after a longer period of incubation, suggesting that a critical number of bound molecules is required in order to cause cell death. Bivalent ions, such as Mg2+, Ca2+ or Sr2+, which decreased binding to the cells also inhibited cytotoxicity. Competition experiments as well as the displacement of 75% of the bound radiolabelled cytotoxin with 'cold' cytotoxin, suggest the presence of specific binding sites for the toxin in the examined tumor cells. The non-specific binding of the cytotoxin P4 to sea urchin ova and sperm cells without affecting their fertility, even at high concentrations of 10−5 M, indicates that the specific binding to cells is probably a necessary condition for cell lysis.  相似文献   

10.
Even in the presence of glucose the growth of Marchantia polymorpha L. (cell line HYH-2F) requires light, and growth is more sensitive to 10−6 M 3-(3, 4-dichlorophenyl)-1, 1-dimethylurea than to 10−4 Antimycin A. The inability of the cells to grow in the dark is due to the low level of respiration. The respiration rate under light increased to four times the dark value. The values of the compensation ratio (the photosyntehtic rate/the respiration rate) for the oxygen exchange were below 1.0 daring the growth period, although oxygen evolution was found. At the early exponential phase, oxygen evolution was 0.373 μmol (mg cell dry weight)−1 h−1 [61.7 μmol (mg chlorophyll)−1 h−1]. M. polymorpha cells are unable to grow anaerobically in the light without a supply of carbon dioxide. When 1% carbon dioxide in nitrogen is supplied, photochemically produced oxygen and energy are sufficient for sustained growth although at significantly reduced yields in both cell dry weight and chlorophyll. Photosyntehtic CO2 assimilation rate was 0.13 μmol (mg cell dry weight)−1 h−1[11.3 μmol (mg chlorophyll)−1 h−1]. At least one-third of the carbon atoms in cellular constituents seem to be derived from atmospheric carbon dioxide, which indicates that M. polymorpha cells grow photomixotrophicaily.  相似文献   

11.
Abstract The CbpA protein is an analog of the DnaJ molecular chaperone of Escherichia coli . The dnaJ cbpA double-null mutant exhibits severe defects in cell growth, namely, a very narrow temperature range for growth. To gain insight into the functions of CbpA as well as DnaJ, we isolated a multicopy suppressor gene that permits this dnaJ cbpA ~ mutant to grow normally at low temperatures. The suppressor gene was identified as rpoD , the gene that encodes the major σ 70. The biological implications of this finding are examined and discussed.  相似文献   

12.
Abstract: Hyperphosphorylated τ, the major component of the paired helical filaments of Alzheimer's disease, was found to accumulate in the brains of mice in which the calcineurin Aα gene was disrupted [calcineurin Aα knockout (CNAα−/−)]. The hyperphosphorylation involved several sites on τ, especially the Ser396 and/or Ser404 recognized by the PHF-1 monoclonal antibody. The increase in phosphorylated τ content occurred primarily in the mossy fibers of the CNAα−/− hippocampus, which contained the highest level of calcineurin in brains of wild-type mice. The CNAα−/− mossy fibers also contained less neurofilament protein than normal, although the overall level of neurofilament phosphorylation was unchanged. In the electron microscope, the mossy fibers of CNAα−/− mice exhibited abnormalities in their cytoskeleton and a lower neurofilament/microtubule ratio than those of wild-type animals. These findings indicate that hyperphosphorylated τ can accumulate in vivo as a result of reduced calcineurin activity and is accompanied by cytoskeletal changes that are likely to have functional consequences on the affected neurons. The CNAα−/− mice were found in a separate study to have deficits in learning and memory that may result in part from the cytoskeletal changes in the hippocampus.  相似文献   

13.
14.
Abstract IncP group plasmid pRL180 was conjugally transferred from Agrobacterium tumefaciens LBA928 into extra-slow-growing (ESG) Bradyrhizobium japonicum strains and between ESG strains, RJ17W and RJ12S. pRL180 was integrated into the chromosome of RJ12S, RJ17W and RJ19FY. ESG strains efficiently transferred pRL180 into Escherichia coli at about a 3 × 10−5 frequency. IncW group plasmid pTY97 was transferred in intergeneric matings from E. coli into ESG strains at a high frequency of 2.5 × 10−3; between RJ17W and RJ12S transfer was about 5.6 × 10−4. pTY97 was maintained as an R' plasmid in RJ12S. The R' plasmid was resolved upon transfer into E. coli C where only pTY97 was autonomously replicated.  相似文献   

15.
The antimicrobial activity of the indoloquinoline alkaloid, cryptolepine, isolated from Cryptolepis sanguinolenta (Fam. Periplocaceae) was determined against selected micro-organisms. The minimum inhibitory concentration (MIC) ranges obtained, expressed as μg ml−1, were: 5–10 for Saccharomyces cerevisiae NCPF 3139; 10–20 for S. cerevisiae NCPF 3178; 20–40 for Escherichia coli NCTC 10418; 40–80 for E. coli NCTC 11560, Candida albicans ATCC 10231 and C. tropicalis NCPF; and 80–160 for C. albicans NCPF 3242 and NCPF 3262.
Biocidal effects were noted at concentrations 2–4 times those of the MIC of the alkaloid following challenge with 106 cfu ml−1 of micro-organisms. Time-kill studies showed a reduction in viable count from 106 to < 10 cfu ml−1 in 4 h in C. albicans ATCC 10231 exposed to 320 μg ml−1 of the agent; 3 log cycle reductions were recorded for the 6 h counts of E. coli NCTC 10418 and S. cerevisiae NCPF 3139 exposed to 40μg ml−1 and 160 μg ml−1 of the alkaloid respectively.
These results were consistent with findings using scanning electron microscopy. Exposure of cells to biocidal concentrations of cryptolepine produced filamentation prior to lysis in E. coli NCTC 10418 and extreme disturbance of surface structure, including partial and total collapse, followed by lysis in C. albicans ATCC 10231 and S. cerevisiae NCPF 3139.  相似文献   

16.
Abstract: Rhabditis nematodes fed a diet of Escherichia coli defecate viable undigested bacteria. These bacteria retain phenotypic characteristics, including those encoded on plasmids. Nematodes can survive a 2-min surface sterilization with 2% chlorine bleach; internalized bacteria also survive this treatment and are released in the nematode wastes. Bacteria alone or on the surface of dead nematodes are unable to survive incubation with this solution. There were 3.2 × 105 viable bacteria per nematode, indicating that sufficient bacteria were present for gene transfer. Transconjugants ( lac nal R str R cm R) were recovered in the nematode fecal material following a protocol where nematodes were initially fed a plasmidless lac nal R str S cm S E. coli and then, after surface sterilization, a lac + nal S E. coli plasmid donor containing the conjugative R100JA ( str R cm R) plasmid. The presence of plasmids in the transconjugants was confirmed by gel electrophoresis. The occurrence of conjugation in the gut was confirmed by dissection of individual surface-sterilized nematodes and isolation of transconjugants.  相似文献   

17.
An in vitro method of growing bacteria as a defined nutrient-depleted biofilm is proposed. The medium was defined nutritionally in terms of the quantitative composition and by the total amount of nutrient required to achieve a defined population size. Escherichia coli and Burkholderia cepacia were incubated on a filter support placed on a defined volume of solid medium. The change of biomass of the biofilm population was compared with the change in a planktonic culture. The size of the population in stationary phase was proportional to the concentration of limiting substrate up to 40 μmol cm−2 glucose for E. coli and up to 2·7 × 10−9 mol cm−2 iron for B. cepacia . Escherichia coli growing exponentially had a growth rate of μ = 0·30 h−1 in a biofilm and μ = 0·96 h−1 in planktonic culture. The growth rate, μ, for exponentially growing B. cepacia in a biofilm was 1·12 h−1 and in planktonic culture 0·78 h−1. This method allows the limitation of the size of a biofilm population to a chosen value.  相似文献   

18.
Citrus ( Citrus sinensis L. Osbeck) leaf explants completely abscise within 48 h when exposed to saturating amounts of ethylene at 25°C. When 2,5-norbornadiene was added, 2000 μl 1−1 reduced abscission of explants also exposed to 2 μl 1−1 of ethylene to the level of the control, and 8000 μl 1−1 reduced abscission in explants exposed to 10 μl 1−1 of ethylene to the level of the control, but abscission was complete when 1 000 μl 1−1 of ethylene was used in the presence of 8 000 μl 1−1 of 2,5-norbornadiene. When explants were exposed to 2 μl 1−1 of ethylene, 2000 μl 1−1 of 2,5-norbornadiene prevented abscission if applied up to 10 h after exposure to ethylene. After 18 h, applied 2,5-norbornadiene had little effect on abscission at 48 h. A Lineweaver-Burk plot gave a 1/2 maximum value of 0.12 μl 1−1 for ethylene on abscission, 2,5-Norbornadiene gave competitive kinetics with respect to ethylene with a K1 value of approximately 120 μl 1−1 of 2,5-norbornadiene. The presence of 2,5norbornadiene stimulated ethylene production, which progressively increased as the 2,5-norbornadiene concentration was increased from 250 to 8 000 μl 1−1 2,5-Norbornadiene also suppressed the induction of cellulase and polygalacturonase by ethylene. Together, 2,5-norbornadiene and 2,4-dichlorophenoxyacetic acid were more effective than either alone in reducing abscission. 2,5-Norbornadiene also was effective in preventing the reduction of indole-3-acetic acid transport induced by ethylene.  相似文献   

19.
Preference responses of zebrafish to 10−3, 10−4 and 10−5M alanine (Ala) were concentration- dependent. Behavioural responses to copper (Cu) and Cu + Ala mixtures were also assessed. Zebrafish avoided 100 and 10 μg Cu l−1, but not 1 μg l−1. Mixtures of 10−3 m Ala+ 100 μg Cu l−1 and 10 4 M Ala + 10 μg Cu 1−1 were avoided as intensely as was Cu alone. Responses to 10−3 M Ala + 10 or 1 μg Cu l−1 and 10 4 M Ala +1 μg Cu l−1 did not differ statistically from controls (no detectable preference or avoidance). These results demonstrate, firstly, that a concentration of a pollutant avoided by itself (10 μg Cu l−1) may not be avoided when encountered with an attractant chemical stimulus (Ala) and may suppress the preference for an attractant stimulus, and secondly, that a concentration of a pollutant not avoided by itself and not considered deleterious (1 μg Cu l−1) suppresses attraction to Ala (an important constituent of prey odours for many fishes).  相似文献   

20.
Abstract Batch mating experiments were employed to study the kinetics of the conjugal transfer of a TOL plasmid, using the transconjugant strain Pseudomonas aeruginosa PAO 1162 (TOL) as the plasmid donor and Pseudomonas putida PB 2442 and Pseudomonas aeruginosa PAO 1162N as the plasmid recipients. Transfer rates from PAO 1162 (TOL) to PAO 1162N and PB 2442 measured for exponentially grown PAO 1162 (TOL) were 1.81 × 10−14 (standard error (S.E.) 1.25 × 10−15) ml·cell−1min−1 and 3.32 × 10−13 (S.E. 4.42 × 10−14) ml·cell−1min−1, respectively. The instability of the TOL plasmid in PAO 1162 (TOL) was evaluated under conditions that were non-selective for maintenance of the TOL catabolic functions. The measured rates of instability were 6.7 10−6 to 8.3 10−6 min−1, and the loss of the catabolic functions was mainly caused by structural instability of the plasmid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号