首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Microelectrodes were used to measure oxygen profiles and local mass transfer coefficient profiles in biofilm clusters and interstitial voids. Both profiles were measured at the same location in the biofilm. From the oxygen profile, the effective diffusive boundary layer thickness (DBL) was determined. The local mass transfer coefficient profiles provided information about the nature of mass transport near and within the biofilm. All profiles were measured at three different average flow velocities, 0.62, 1.53, and 2.60 cm sec-1, to determine the influence of flow velocity on mass transport. Convective mass transport was active near the biofilm/liquid interface and in the upper layers of the biofilm, independent of biofilm thickness and flow velocity. The DBL varied strongly between locations for the same flow velocities. Oxygen and local mass transfer coefficient profiles collected through a 70 micrometer thick cluster revealed that a cluster of that thickness did not present any significant mass transport resistance. In a 350 micrometer thick biofilm cluster, however, the local mass transfer coefficient decreased gradually to very low values near the substratum. This was hypothetically attributed to the decreasing effective diffusivity in deeper layers of biofilms. Interstitial voids between clusters did not seem to influence the local mass transfer coefficients significantly for flow velocities of 1.53 and 2.60 cm sec-1. At a flow velocity of 0.62 cm sec-1, interstitial voids visibly decreased the local mass transfer coefficient near the bottom.  相似文献   

2.
The problem of the affinity and quantity determination of two classes of binding sites for ligand-receptor interaction using either Scatchard or Klotz plots was considered. Klotz and Hunston previously solved this problem only for the case of a representation of experimental data using the Scatchard plot. Since their publication, it was the common view that only the use of the Scatchard plot allows solving this problem. However, in some cases, using the Klotz plot is more convenient for a representation of experimental data concerning ligand-receptor interaction, though usually, this plot was used only for the evaluation of receptor affinity with one class of binding sites. In the present paper, it was demonstrated that Klotz plot also could be used for the evaluation affinity and quantity of two classes of binding sites.  相似文献   

3.
4.
5.
6.
Donor livers available to transplant for patients with end-stage liver disease are in severe shortage. One possible avenue to expand the donor pool is to recondition livers that would be otherwise discarded due to excessive fat content. Severely steatotic livers (also known as fatty livers) are highly susceptible to ischemia-reperfusion injury and as a result, primary liver non-function post-transplantation. Prior studies in isolated perfused rat livers suggest that “defatting” may be possible in a timeframe of a few hours; thus, it is conceivable that fatty liver grafts could be recovered by machine perfusion to clear stored fat from the organ prior to transplantation. However, studies using hepatoma cells and adult hepatocytes made fatty in culture report that defatting may take several days. Because cell culture studies were done in static conditions, we hypothesized that the defatting kinetics are highly sensitive to flow-mediated transport of metabolites. To investigate this question, we experimentally evaluated the effect of increasing flow rate on the defatting kinetics of cultured HepG2 cells and developed an in silico combined reaction-transport model to identify possible rate-limiting steps in the defatting process. We found that in cultured fatty HepG2 cells, the time required to clear stored fat down to lean control cells can be reduced from 48 to 4–6 h by switching from static to flow conditions. The flow required resulted in a fluid shear of .008 Pa, which did not adversely affect hepatic function. The reaction-transport model suggests that the transport of l-carnitine, which is the carrier responsible for taking free fatty acids into the mitochondria, is the key rate-limiting process in defatting that was modulated by flow. Therefore, we can ensure higher levels of l-carnitine uptake by the cells by choosing flow rates that minimize the limiting mass transport while minimizing shear stress.  相似文献   

7.
A new method for measuring mucociliary tracheal transport rates (MTTR's) is described. An aqueous aerosol containing albumin microspheres labeled with 99mTc was inhaled in such a manner that it was deposited in local concentrations in the large airways. These boli of microspheres were transported up the trachea and their MTTR's measured using a gamma camera. MTTR's were measured in 42 healthy nonsmoking adults (32 men and 10 women, mean age 28 yr). The mean MTTR's appeared to be log normally distributed with a geometric mean of 3.6 mm/min and a coefficient of variation of 75%. The MTTR's of men and women were similar. Each individual's short-term coefficient of variation was 25%. Twenty-two repeat studies 1 wk to 15 mo apart showed the variation within individuals was less than between individuals. The parasympatholytic drug, atropine (0.6 mg iv) decreased MTTR's for at least 3 h. Inhalation of the sympathomimetic drug, Th1165a increased MTTR's. Chronic and acute smoking did not appreciably change the MTTR'S.  相似文献   

8.
Photosystem II cyclic electron transport was investigated at low pH in spinach thylakoids and PS II preparations from the cyanobacteriumPhormidium laminosum. Variable fluorescence (Fv) quenching at a very low light intensity was examined as an indicator of cyclic electron flow. A progressive quenching of Fv was observed as the pH was lowered; however, this was shown to be mainly due to an inhibition of oxygen evolution. Cyclic electron flow in the uninhibited centres was estimated to occur at a rate comparable to or smaller than 1 mole O2 mg Chl–1 h–1 in the pH range 5.0 to 7.8.The quantum yeeld of oxygen production is known to decrease at low pH and has been taken to indicate cyclic electron flow (Crofts and Horton (1991) Biochim Biophys Acta 1058: 187–193). However, a direct all-or-none inhibition of oxygen production at low pH has also been reported (Meyer et al. (1989) Biochim Biophys Acta 974: 36–43). We have analysed the effects of light intensity on the rates of oxygen evolution in order to calculate U, the quantum yield of open and uninhibited centres. U was found to be constant over a broad pH range, and by using ferricyanide and phenyl-p-benzoquinone as electron acceptors the maximum possible rate of cyclic electron transport was equivalent to no more than 1 mole O2 mg Chl–1 h–1. The rate was no greater when the acceptor was adjusted to provide the most favourable conditions for cyclic flow.  相似文献   

9.
A three-parameter model was used to test a curvilinear regression for its gamma-intercept. It was applied in the kinetic analysis of a model reaction and of real experiments. The model reaction consisted of a dialysis experiment with increasing amounts of background added at t0. In the presence of this background, initial rates of solute exchange were determined precisely enough to be in agreement with Fick's law of diffusion. The biological experiments were concerned with the saturation kinetics of the acid-soluble radioactivity of cells exposed to 3H-labelled amino acids. Two models of regression were applied, facilitated and physical diffusion, both consistent with the assumption of a substantial amount of background. This background was assumed to be caused by adsorption of 3H-labelled amino acids to cell-surface proteins. Without further consideration it caused a systematic overestimation of the initial rates.  相似文献   

10.
Y Lanir 《Biorheology》1984,21(4):643-647
The possibility of fluid flux within the thickened subendothelial intima is considered. Both the media and the endothelium were already shown to be major hydraulic barriers. It is hypothesized that if the hydraulic conductivity of the inbetween layer of the subendothelial intima is considerably higher, then fluid flux in the downstream (axial) direction is likely to occur within the intima as a result of the luminal blood pressure wave. Macromolecular species (as lipoproteins) would then be transported axially by the fluid. This convective transport may give rise to the formation of early atheromas. The proposed mechanism is in accord with several clinical and experimental observations.  相似文献   

11.
12.
Most of the experimental observations on facilitated transport have been done with millipore filters, and all the theoretical studies have assumed homogeneous spatial properties. In striated muscle there exist membranes that may impede the diffusion of the carrier myoglobin. In this paper a theoretical study is undertaken to analyze the transport in the presence of membranes in the diffusion path. For the numerical computations physiologically relevant values of the parameters were chosen. The numerical results indicate that the presence of membranes tends to decrease the facilitation. For the nonlinear chemical kinetics of the reaction of oxygen with the carrier, this decrement also depends on the location of the membranes. At the higher oxygen concentration side of each membrane the flow of combined oxygen is transferred to the flow of dissolved oxygen. The reverse process occurs at the lower concentration side. Jump discontinuities of the concentration of the oxygen-carrier compound at each membrane are associated with these transfers. The decrement of facilitation is due to the cumulative effect of these jump discontinuities.  相似文献   

13.
Computation of indirect-adjusted rates in the presence of confounding   总被引:3,自引:0,他引:3  
N Mantel  C R Stark 《Biometrics》1968,24(4):997-1005
  相似文献   

14.
The transport of histidine in the gram negative bacterium S. typhimurium has been studied over a number of years and found to occur through five transport systems (Ames, 1972). Of these, the one with the highest affinity has been studied in detail from the genetic, physiological and biochemical point of view. This system, known as the high-affinity histidine permease, is composed of two subsystems, the J-P and K-P systems, which have a component in common, the P protein, presumed to be membrane-bound. The J-P system, moreover, is known to require the presence of a periplasmic histidine-binding protein, the J protein. The J protein is coded for by the hisJ gene and the P protein is coded for by the hisP gene. Both of these genes have been mapped at 75 min on the Salmonella chromosomal map. Adjacent to them is a regulatory gene, the dhuA gene. The periplasmic histidine-binding protein J has been shown to interact directly with the second component of transport, the P protein (Ames and Spudich, 1976). In accordance with this, histidine-binding protein J has been shown to contain, besides the histidine-binding site, a second site, essential for function, the interaction site (Kustu and Ames, 1974). We have recently shown that a mutant J protein with a defective interaction site but an intact histidine-binding site cannot function in histidine transport, unless an appropriate compensating mutation is introduced in the P protein. The interaction between the J and P proteins is an obligatory step in transport. The mutation in the interaction site of the J protein has been shown to map in the hisJ gene, and the compensating supressor mutation in the P protein has been shown to map in the hisP gene. Our contention that the J and P proteins engage in a functional interaction assumes further strength from other studies on protein-protein interaction in bacteriophage development and in ribosomal structure. Among the possible functions of the J-P interaction in histidine transport, a likely one is the transmission of information to the P protein, concerning whether or not the histidine-binding site on the J protein is occupied. Appropriate conformational changes then can occur in either the J or the P protein, or both, such that the histidine is released in the correct location and direction on the inside of the cell. This could occur either by a pore-formation mechanism or by binding-site translocation. Another alternative is that the P protein is part of an energy transducing mechanism in which energy is transmitted to the J protein, through the interaction site, as a prerequisite for the J protein participation in translocation. Among the interesting findings coming out of this work, is also the fact that the P protein performs a central function in transport being involved in the permeation of other substrates besides histidine. It is likely that other binding proteins besides the J protein require the P protein. Thus an interesting question which we are trying to answer at present is whether the P protein has separate interaction sites for each of these other binding proteins requiring its function, or whether they all interact at one common site.  相似文献   

15.
Ligand design in biotechnology is underpinned by the control of molecular affinity. Hence, measuring binding interactions is a key component in designing ligands for such uses as therapeutics, diagnostics, biomaterials and separation science. Mass transport, kinetic and thermodynamic methods have been used for macromolecular interaction analysis but also have potential applicability as direct methods for measuring small molecular interactions. They can enhance the ligand design process by providing the ability to choose ligands based on both their kinetic and thermodynamic binding properties.  相似文献   

16.
We study effects of convective transport on a chemical front wave representing a signal propagation at a simple (single layer) epithelium by means of mathematical modeling. Plug flow and laminar flow regimes were considered. We observed a nonmonotonous dependence of the propagation velocity on the ligand receptor binding constant under influence of the convective transport. If the signal propagates downstream, the region of high velocities becomes much broader and spreads over several orders of magnitude of the binding constant. When the convective transport is oriented against the propagating signal, either velocity of the traveling front wave is slowed down or the traveling front wave can stop or reverse the direction of propagation. More importantly, chemical signal in epithelial systems influenced by the convective transport can propagate almost independently of the ligand-receptor binding constant in a broad range of this parameter. Furthermore, we found that the effects of the convective transport becomes more significant in systems where either the characteristic dimension of the extracellular space is larger/comparable with the spatial extent of the ligand diffusion trafficking or the ligand-receptor binding/ligand diffusion rate ratio is high.  相似文献   

17.
Experiments were performed to investigate whether the fluid transported across the small intestine is isoosmotic with the mucosal solution when the active transport of glucose is partially inhibited. Everted hamster mid small intestine was incubated in one of the following four mucosal solutions: (1) Isotonic control, Krebs-Ringer bicarbonate solution containing 10 mM glucose (KRBSG), (2) Isotonic with phlorizin, KRBSG + 5X10-5 M phlorizin, (3) Hypertonic control, KRBSG + 50 mM mannitol, (4) Hypertonic with phlorizin, KRBSG + 50 MM mannitol + 5x10-5 M phlorizin. The serosal surface of the intestine was not bathed. Results indicate that the transported fluid was always isoosmotic with any of the mucosal solutions used. When the mucosal solution was made hypertonic with mannitol, the concentration of glucose and electrolytes in the absorbate increased, and as a result, the absorbate became hypertonic and isoosmotic with the mucosal solution. The presence of phlorizin either in the isotonic or in the hypertonic mucosal solution decreased the glucose concentration of the absorbate, but the transported fluid became isoosmotic with the mucosal solution due to a higher concentration of Na, K, and their associated anions. Phlorizin caused a decrease in the transmural potential difference. In spite of this, the presence of this glucoside in the mucosal solution increased the transport of sodium in relation to glucose transport. It is suggested that, at the concentrations used, phlorizin inhibits sodium movement through the electrogenic pathway, but increases the transport of this ion through the non-electrogenic route. This increase in neutral sodium transport seems to compensate for the low concentration of glucose in the absorbate, so that the absorbate becomes isoosmotic with the mucosal solution whether the latter is isotonic or hypertonic. It is suggested further that isoosmotic transport of fluid is an inherent property of the small intestine and that there may be an osmoregulatory mechanism in the gut which controls this process.  相似文献   

18.
The mass transfer in a hemodialyser in the presence of combined dialysis and ultrafiltration has been calculated by integration of mass fluxes across the boundary layers in blood and dialysate phase taking into account the partial rejection of solute as well as changes in local blood flow and ultrafiltration flux along the membrane. Clearances of creatinin, vitamin B12, and myoglobin have been calculated as a function of blood and ultrafiltrate flow rate and were found to be in good agreement with in vitro measurements. The data suggest the following empirical correlation for the hemodiafiltration clearance.  相似文献   

19.
Even though immobilized-cell reactors possess several engineering advantages over free-cell reactors, their full potential has not been realized because mass transfer often limits the rate of nutrient supply and product removal from immobilized cell supports. We studied the interaction between mass transfer and reaction kinetics in the anaerobic conversion of glucose to CO2 and ethanol by yeast immobilized in a porous rotating disk on the agitator shaft of a conventional CSTR. A Sherwood number correlation was used to show that external mass-transfer resistances were negligible under typical operating conditions. The modulus of Weisz based on observable reaction parameters was used to gauge the importance of pore diffusion limitations. Under conditions for which significant pore diffusion effects and hence low effectiveness factors (eta = ca. 0.1) would be predicted, the observed reaction rates were much higher than expected (eta = ca. 1), suggesting that pore diffusion limitations were at least partially relieved by convective transport of glucose into the support. Two possible mechanisms of convective transport are discussed. We hypothesize that gas evolution was responsible for the convective enhancement of glucose supply.  相似文献   

20.
R L Sutton 《Cryobiology》1992,29(5):585-598
The technique of isothermal emulsion differential scanning calorimetry was used to determine time-temperature-transformation (TTT) curves for aqueous glycerol and butane-2,3-diol in the presence of various polysaccharides and sugars. The critical cooling rate required to avoid the crystallization of ice in these solutions was then calculated from the experimental TTT curves. The polysaccharides used in this study included starch hydrolysis products and dextrans of various molecular weights. The sugars used here were sucrose, glucose, trehalose, and raffinose. The results show that the critical cooling rates of butane-2,3-diol and glycerol are reduced by varying amounts by the addition of such materials but that the reduction is not as great as is achieved by the addition of polyethylene glycol with a molecular weight of 400.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号