首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Discrimination of nestmates from non-nestmates has mainly been investigated in female social insects. Little is known about discrimination of males. Here we show that under natural conditions at the nest entrance, honeybee workers can discriminate nestmate drones from non-nestmate drones as effectively as they can discriminate nestmate workers from non-nestmate workers.  相似文献   

2.
Entomologists have used a range of techniques to treat insects with neuroactive compounds, but it is not always clear whether different treatment methods are equally effective in delivering a compound to a target organ. Here, we used five different techniques to treat honeybees with 3H-octopamine (3H-OA), and analysed the distribution of the 3H radiolabelled compound within different tissues and how it changed over time. All treatment methods, including injection of the median ocellus, resulted in 3H-OA detection in all parts of the honeybee. Injection through the median ocellus was the most effective method for delivering 3H-OA to the brain. Topical application of 3H-OA dissolved in dimethylformamide (dMF) to the thorax was as effective as thoracic injections of 3H-OA in delivering 3H-OA to the brain, but topical applications to the abdomen were less so. Most of the 3H-OA applied topically remained associated with the cuticle and the tissues of the body segment to which it had been applied. For all treatment methods, 3H-OA was rapidly lost from the brain and head capsule, and accumulated in the abdomen. Our findings demonstrate the value of thoracic topical treatment with compounds dissolved in dMF as an effective non-invasive method for short-term, systemic pharmacological treatments.  相似文献   

3.
Apis cerana and Apis mellifera normally display different strategies in cooling hive temperature, raising the question whether they would coordinate their efforts in to achieve stable thermoregulation in mixed colonies. The results show that the normal temperatures in the brood area in mixed colonies are more similar to those of pure A. cerana colonies than pure A. mellifera colonies. Under heat stress, A. cerana workers are more sensitive, and initiate fanning earlier than A. mellifera workers. In mixed colonies, the former become the main force for thermoregulation. When worker bees of both species were fanning together at the entrance, their own species-specific postures were adopted, but due to a significantly smaller number of A. mellifera workers engaged in fanning, the cooling efficiency of mixed colonies were closest to that of pure A. cerana colonies.  相似文献   

4.
5.
Dopamine plays multiple roles in the regulation of reproduction in female honeybees where it appears to act independently of juvenile hormone (JH). In males the role of dopamine and its relationship to JH control have not been elucidated. In the present study we determined hemolymph levels of dopamine and its metabolite (N-acetyldopamine) in males at post-emergence days 0-16. The development of locomotor and flight activities were recorded over the same period. Hemolymph levels of dopamine and N-acetyldopamine were found to increase at the time of onset of mating flight activity and those of dopamine decreased thereafter. Both locomotor and flight activities increased in parallel with hemolymph dopamine levels but the increased activity levels were maintained following decline of dopamine levels. Brain and meso-metathoracic ganglia levels of dopamine showed a similar developmental profile to hemolymph dopamine levels. Locomotor activities were temporarily inhibited by injection of a dopamine-receptor antagonist (cis(Z)-flupenthixol) into the thorax, and were enhanced by injection of a dopamine-receptor agonist (6,7-ADTN). These results suggest that dopamine regulates locomotor activities for mating and plays a role downstream of JH in premature males in honeybees.  相似文献   

6.
7.
European governments have banned the use of three common neonicotinoid pesticides due to insufficiently identified risks to bees. This policy decision is controversial given the absence of clear consistency between toxicity assessments of those substances in the laboratory and in the field. Although laboratory trials report deleterious effects in honeybees at trace levels, field surveys reveal no decrease in the performance of honeybee colonies in the vicinity of treated fields. Here we provide the missing link, showing that individual honeybees near thiamethoxam-treated fields do indeed disappear at a faster rate, but the impact of this is buffered by the colonies'' demographic regulation response. Although we could ascertain the exposure pathway of thiamethoxam residues from treated flowers to honeybee dietary nectar, we uncovered an unexpected pervasive co-occurrence of similar concentrations of imidacloprid, another neonicotinoid normally restricted to non-entomophilous crops in the study country. Thus, its origin and transfer pathways through the succession of annual crops need be elucidated to conveniently appraise the risks of combined neonicotinoid exposures. This study reconciles the conflicting laboratory and field toxicity assessments of neonicotinoids on honeybees and further highlights the difficulty in actually detecting non-intentional effects on the field through conventional risk assessment methods.  相似文献   

8.
Forager honey bees communicate the distance of food sources to nest mates through waggle dances, but how do bees measure these distances? Recent work suggests that bees measure distance flown in terms of the extent of image motion (integrated optic flow) that is experienced during flight. However, it is known that optic flow also regulates the speed of flight. Therefore, the duration of the flight to a destination is likely to co-vary with the optic flow that is experienced en route. This makes it difficult to tease apart the potential roles of flight duration and optic flow as cues in estimating distance flown. Here we examine whether flight duration alone can serve as an indicator of distance. We trained bees to visit feeders at two sites located in optically different environments, but positioned such that the flight durations to the two sites were similar. The distance estimates for the two sites, as reported in the waggle dance, were compared. We found that dances differed significantly between the two sites, even though flight times were similar. Flight time perse was a poor predictor of waggle dance behaviour. We conclude that foraging bees do not simply signal flight time as their measure of distance in the waggle dance; the environment through which they fly plays a dominant role. Received 11 April 2005; revised 16 May 2005; accepted 3 June 2005.  相似文献   

9.
10.
Honeybees Apis mellifera were trained to distinguish between the presence and the absence of a rewarded coloured spot, presented on a vertical, achromatic plane in a Y-maze. They were subsequently tested with different subtended visual angles of that spot, generated by different disk diameters and different distances from the decision point in the device. Bees were trained easily to detect bee-chromatic colours, but not an achromatic one. Chromatic contrast was not the only parameter allowing learning and, therefore, detection: min, the subtended visual angle at which the bees detect a given stimulus with a probability P 0 = 0.6, was 5° for stimuli presenting both chromatic contrast and contrast for the green photoreceptors [i.e. excitation difference in the green photoreceptors, between target and background (green contrast)], and 15° for stimuli presenting chromatic but no green contrast. Our results suggest that green contrast can be utilized for target detection if target recognition has been established by means of the colour vision system. The green-contrast signal would be used as a far-distance signal for flower detection. This signal would always be detected before chromatic contrast during an approach flight and would be learned in compound with chromatic contrast, in a facilitation-like process.  相似文献   

11.
12.
The roles of eidetic imagery and orientational cues, respectively, in the discrimination of visual patterns by honeybees (Apis mellifera) were evaluated by training the bees to discriminate between patterns consisting of periodic, black and white square wave gratings. Training and tests with a number of different pairs of patterns revealed that bees use orientational cues almost exclusively, if such are present, and make use of eidetic images only when orientational cues are not available. On the other hand, if a pattern carries strong orientational cues, bees learn the orientation even if it is irrelevant to the discrimination task on which they are trained.  相似文献   

13.
Heritability and genetic correlations for honey (HP) and propolis production (PP), hygienic behavior (HB), syrup-collection rate (SCR) and percentage of mites on adult bees (PMAB) of a population of Africanized honeybees were estimated. Data from 110 queen bees over three generations were evaluated. Single and multi-trait models were analyzed by Bayesian Inference using MTGSAM. The localization of the hive was significant for SCR and HB and highly significant for PP. Season-year was highly significant only for SCR. The number of frames with bees was significant for HP and PP, including SCR. The heritability estimates were 0.16 for HP, 0.23 for SCR, 0.52 for HB, 0.66 for PP, and 0.13 for PMAB. The genetic correlations were positive among productive traits (PP, HP and SCR) and negative between productive traits and HB, except between PP and HB. Genetic correlations between PMAB and other traits, in general, were negative, except with PP. The study permitted to identify honeybees for improved propolis and honey production. Hygienic behavior may be improved as a consequence of selecting for improved propolis production. The rate of syrup consumption and propolis production may be included in a selection index to enhance honeybee traits.  相似文献   

14.
The spectral properties of the discrimination of pattern orientation in freely flying honeybees (Apis mellifera) were examined. Bees were trained to discriminate between two random black/white gratings oriented perpendicularly to each other, one of which was associated with a reward. Subsequently the bees were tested on two-colour gratings or gratings consisting of grey and coloured stripes, providing a range of different chromatic contrasts, luminance contrasts and specific channel contrasts. The results of these experiments indicate that orientation analysis in the honeybee is mediated almost exclusively by the green receptor channel, although the bee's visual system as a whole is endowed with excellent trichromatic colour vision.  相似文献   

15.
Current high losses of honeybees seriously threaten crop pollination. Whereas parasite exposure is acknowledged as an important cause of these losses, the role of insecticides is controversial. Parasites and neonicotinoid insecticides reduce homing success of foragers (e.g. by reduced orientation), but it is unknown whether they negatively affect flight capacity. We investigated how exposing colonies to the parasitic mite Varroa destructor and the neonicotinoid insecticide imidacloprid affect flight capacity of foragers. Flight distance, time and speed of foragers were measured in flight mills to assess the relative and interactive effects of high V. destructor load and a field-realistic, chronic sub-lethal dose of imidacloprid. Foragers from colonies exposed to high levels of V. destructor flew shorter distances, with a larger effect when also exposed to imidacloprid. Bee body mass partly explained our results as bees were heavier when exposed to these stressors, possibly due to an earlier onset of foraging. Our findings contribute to understanding of interacting stressors that can explain colony losses. Reduced flight capacity decreases the food-collecting ability of honeybees and may hamper the use of precocious foraging as a coping mechanism during colony (nutritional) stress. Ineffective coping mechanisms may lead to destructive cascading effects and subsequent colony collapse.  相似文献   

16.
In recognition, discriminators use sensory information to make decisions. For example, honeybee (Apis mellifera) entrance guards discriminate between nest-mates and intruders by comparing their odours with a template of the colony odour. Comb wax plays a major role in honeybee recognition. We measured the rejection rates of nest-mate and non-nest-mate worker bees by entrance guards before and after a unidirectional transfer of wax comb from a 'comb donor' hive to a 'comb receiver' hive. Our results showed a significant effect that occurred in one direction. Guards in the comb receiver hive became more accepting of non-nest-mates from the comb donor hive (rejection decreased from 70 to 47%); however, guards in the comb donor hive did not become more accepting of bees from the comb receiver hive. These data strongly support the hypothesis that the transfer of wax comb increases the acceptance of non-nest-mates not by changing the odour of the bees, but by changing the template used by guards.  相似文献   

17.
How do flying insects monitor foraging efficiency? Honeybees (Apis mellifera) use optic flow information as an odometer to estimate distance travelled, but here we tested whether optic flow informs estimation of foraging costs also. Bees were trained to feeders in flight tunnels such that bees experienced the greatest optic flow en route to the feeder closest to the hive. Analyses of dance communication showed that, as expected, bees indicated the close feeder as being further, but they also indicated this feeder as the more profitable, and preferentially visited this feeder when given a choice. We show that honeybee estimates of foraging cost are not reliant on optic flow information. Rather, bees can assess distance and profitability independently and signal these aspects as separate elements of their dances. The optic flow signal is sensitive to the nature of the environment travelled by the bee, and is therefore not a good index of flight energetic costs, but it provides a good indication of distance travelled for purpose of navigation and communication, as long as the dancer and recruit travel similar routes. This study suggests an adaptive dual processing system in honeybees for communicating and navigating distance flown and for evaluating its energetic costs.  相似文献   

18.
We have recently identified a tachykinin-related peptide (AmTRP) from the mushroom bodies (MBs) of the brain of the honeybee Apis mellifera L. by using direct matrix-assisted laser desorption/ionization with time-of-flight mass spectometry and have isolated its cDNA. Here, we have examined prepro-AmTRP gene expression in the honeybee brain by using in situ hybridization. The prepro-AmTRP gene is expressed predominantly in the MBs and in some neurons located in the optic and antennal lobes. cDNA microarray studies have revealed that AmTRP expression is enriched in the MBs compared with other brain regions. There is no difference in AmTRP-expressing cells among worker, queen, and drone brains, suggesting that the cell types that express the prepro-AmTRP gene do not change according to division of labor, sex, or caste. The unique expression pattern of the prepro-AmTRP gene suggests that AmTRPs function as neuromodulators in the MBs of the honeybee brain.This work was supported by a Grant-in-Aid from the Bio-oriented Technology Research Advancement Institution (BRAIN)  相似文献   

19.
Numerous studies suggest that honeybees may compete with native pollinators where introduced as non-native insects. Here we examine evidence for competition between honeybees and four bumblebee species in Scotland, a region that may be within the natural range of honeybees, but where domestication greatly increases the honeybee population. We examined mean thorax widths (a reliable measure of body size) of workers of Bombus pascuorum, B. lucorum, B. lapidarius and B. terrestris at sites with and without honeybees. Workers of all four species were significantly smaller in areas with honeybees. We suggest that reduced worker size is likely to have implications for bumblebee colony success. These results imply that, for conservation purposes, some restrictions should be considered with regard to placing honeybee hives in or near areas where populations of rare bumblebee species persist.  相似文献   

20.
In this report, an experimental infection of Apis mellifera by Nosema ceranae, a newly reported microsporidian in this host is described. Nosema free honeybees were inoculated with 125,000 N. ceranae spores, isolated from heavily infected bees. The parasite species was identified by amplification and sequencing the SSUrRNA gene of the administered spores. Three replicate cages of 20 honeybees each were prepared, along with one control cage (n=20) supplied with sugar syrup only. The infection rate was 100% at the dosage administered. The presence of Nosema inside ventricular cells was confirmed in the samples using ultrathin sectioning and transmission electron microscopy. By day 3 p.i. a few cells (4.4%+/-1.2) were observed to be parasitized, whereas by 6 days p.i. more than half of the counted cells (66.4%+/-6) showed different parasite stages, this value increasing on day 7 p.i. (81.5%+/-14.8). Only one control bee died on day 7 p.i. In the infected groups, mortality was not observed until day 6 p.i. (66.7%+/-5.6). Total mortality on day 7 p.i. was 94.1% in the three infected replicates and by day 8 p.i. no infected bee was alive. After the infection, the parasites invaded both the tip of folds and the basal cells of the epithelium and the autoinfective capacity of the spores seemed to spread the infection rapidly between epithelial cells. On day 3 p.i., mature spores could be seen inside host cell tissue implying that the developmental cycle had been completed. The large number of parasitized cells, even the regenerative ones, the presence of autoinfective spores and the high mortality rate demonstrate that N. ceranae is highly pathogenic to Apis mellifera. Possible relation with bee depopulation syndrome is discussed by authors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号