首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To proliferate in vitro, normal melanocytes, unlike normal fibroblasts, require specific growth factors in addition to those supplied in serum. The substances that promote melanocyte proliferation, such as 12-O-tetradecanoyl-phorbol-13-acetate (TPA) and stimulators of cyclic adenosine monophosphate (cAMP), also promote pigmentation. Consequently, cell division and expression of at least some differentiated functions are not mutually exclusive for melanocytes. At present, the only known natural growth factor that can replace TPA in normal human melanocyte cultures is basic fibroblast growth factor (bFGF). Like TPA, bFGF is effective, most of the time, only in the presence of added cAMP. Some preparations of bFGF, however, may have a highly labile, intrinsinc cAMP stimulatory activity. It is thus possible that bFGF can assume two forms, dependent on and independent of cAMP stimulatory activity. Alternatively, a second factor may exist in pituitary glands that co-purifies with bFGF but deteriorates with storage. Abnormal melanocytes in culture, such as those derived from dysplastic nevi and primary melanomas, depend on the specific factors (bFGF and cAMP), whereas melanocytes from metastatic melanomas do not  相似文献   

2.
Dendrite formation and extension, which comprise a characteristic morphology of human normal melanocytes in the skin, represent one of the functional activities of melanocytes, the ability to transfer melanosomes into neighboring keratinocytes. However, the morphology of the melanocyte in vitro is usually quite different from that observed in vivo. it is probably due to the hyperproliferative condition of the melanocytes in culture. No studies have ever compared the effects of a single factor on both dendricity and proliferation at the same time. Therefore, we have compared the effects of six growth-promoting agents commonly used for melanocyte cultures on dendrite formation and proliferation. The addition of agents that increase the intracellular levels of cyclic adenosine monophosphate (cAMP)—dibutyryl cyclic adenosine monophosphate (db cAMP; 1 mM) or isobutylmethyl xanthine (IBMX; 0.1 mM)—had a strong effect on dendrite formation and a negative effect on proliferation. This was especially true with db cAMP. In the presence of 2% or 5% of heat-inactivated fetal bovine serum (FBS), dendrite formation was significantly increased as was proliferation. The number of dendrites was decreased in the culture with 12-o-tetradecanoylphorbol-13-acetate (TPA), but cell growth was slightly increased. With human recombinant basic fibroblast growth factor (bFGF) (0.5, 1.0 ng/ml) in the presence of bovine pituitary extract (BPE) (60 μg/ml), cell growth was increased. With 2 ng/ml of bFGF, however, a strong inhibitory effect on proliferation was observed. However, dendrite formation was constant at all concentrations of bFGF tested (0.5, 1.0 or 2.0 ng/ml) with BPE (30 or 60 μg/ml). In this study, we have demonstrated that dendrite formation was suppressed by the reagents that stimulate melanocyte proliferation, and vice versa, with the only exception being heat-inactivated FBS. Both dendrite formation and proliferation were induced by the heat-inactivated FBS. This approach is crucial to the development of an adequate culture system for proliferation and/or dendrite formation of normal human melanocytes. It is necessary to keep these aspects in mind as we further investigate the biology of melanocytes, especially the cell-to-cell interactions between melanocytes and keratinocytes, involved in melanogenesis and melanin pigmentation in vivo. This study also provides practical and important information for a future reconstitutive skin system composed of melanocytes, keratinocytes, and fibroblasts in a single culture medium.  相似文献   

3.
4.
Mouse epidermal melanoblasts and melanocytes preferentially proliferated from disaggregated epidermal cell suspensions derived from newborn mouse skin in a serum-free melanocyte-proliferation medium (MDMD) and melanoblast-proliferation medium (MDMDF) supplemented with dibutyryl adenosine 3':5'-cyclic monophosphate (DBcAMP) and/or basic fibroblast growth factor (bFGF). Pure cultured primary melanoblasts and melanocytes were further cultured with MDMD/MDMDF supplemented with hepatocyte growth factor (HGF) from 14 days (keratinocyte depletion). The HGF increased the number of melanoblasts and melanocytes, but not the percentage of differentiated melanocytes in the melanoblast-melanocyte population in the absence of keratinocytes. Flow cytometry analysis showed that melanoblasts and melanocytes in the S and/or G2/M phases of the cell cycle were increased by the treatment with HGF. Moreover, an anti-HGF antibody supplemented to MDMD/MDMDF from the initiation of the primary culture (in the presence of keratinocytes) inhibited the proliferation of melanoblasts and melanocytes, but not the differentiation of melanocytes. These results suggest that HGF is a keratinocyte-derived factor involved in regulating the proliferation of epidermal melanoblasts and melanocytes from newborn mice in cooperation with cAMP elevators and/or bFGF.  相似文献   

5.
Cell culture conditions for the selective growth and serial propagation of normal human melanocytes from epidermal tissue are described. In addition to the presence of 2% fetal bovine serum, the human melanocyte cell culture environment contains the following growth factor supplements: epidermal growth factor (10 ng/ml), triiodothyronine (10(-9) M), hydrocortisone, (5 X 10(-5) M), insulin (10 micrograms/ml), transferrin (10 micrograms/ml), 7S nerve growth factor (100 ng/ml) cholera toxin (10(-10) M), and bovine brain extract (150 micrograms/ml). The ability to establish selectively the human melanocyte in vitro has been attributed to the contrast between human epidermal keratinocytes and melanocytes for attachment to fibronectin, while the growth of the human melanocyte has been attributed to the mitogenic activity of the growth factor-supplemented medium. Human melanocytes can be cultivated for at least 15 cumulative population doublings and are capable of [3H]-Dopa incorporation. The growth factor-supplemented medium contains a neutral extract from bovine brain that is a potent source of a human melanocyte mitogen. The biological activity of melanocyte growth factor is described as a heat and alkaline-labile mitogen with an estimated molecular weight of 30,000 by gel exclusion chromatography and a weakly cationic isoelectric point. The mitogen is capable of stimulating the growth of quiescent populations of human melanocytes in vitro. The ability to isolate and propagate normal human melanocytes in vitro permitted an examination of the expression of fibronectin and tissue plasminogen activator. Human epidermal melanocytes established in culture do not contain either tissue plasminogen activator or fibronectin. In contrast, human melanoma cell lines contain immunologically detectable fibronectin and tissue plasminogen activator. The absence of tissue plasminogen activator and fibronectin in normal human melanocytes also occurs under conditions of co-cultivation with human melanoma cells. These contrasts between normal human melanocytes and human melanoma cells may be relevant to the metastatic capabilities of human melanoma.  相似文献   

6.
Mouse epidermal melanoblasts and melanocytes preferentially proliferated from disaggregated epidermal cell suspensions derived from newborn mouse skin in a serum-free melanocyte-proliferation medium (MDMD) and melanoblast-proliferation medium (MDMDF) supplemented with dibutyryl adenosine 3':5'-cyclic monophosphate (DBcAMP) and/or basic fibroblast growth factor (bFGF). Pure cultured primary melanoblasts and melanocytes were then further cultured with MDMD/MDMDF supplemented with steel factor (SLF) (keratinocyte depletion). SLF increased the number of melanoblasts and melanocytes as well as the proportion of differentiated melanocytes in the absence of keratinocytes. Flow cytometric analysis showed that melanoblasts and melanocytes in the S and G2/M phases of the cell cycle were increased by treatment with SLF. Moreover, an anti-SLF antibody added to MDMD/MDMDF from the initiation of the primary culture (in the presence of keratinocytes) inhibited the proliferation of melanoblasts and melanocytes as well as the differentiation of melanocytes. These results suggest that SLF is one of the keratinocyte-derived factors involved in regulating the proliferation and differentiation of neonatal mouse epidermal melanocytes in culture in cooperation with cAMP elevator and bFGF.  相似文献   

7.
Serum-free culture of epidermal cell suspensions from neonatal skin of mice of strain C57BL/10JHir (B10) showed that α-melanocyte-stimulating hormone (α-MSH) was involved in regulating the differentiation of melanocytes by inducing tyrosinase activity, melanosome formation, and dendritogenesis. Dibutyryl adenosine 3′:5′-cyclic monophosphate (DB-cAMP) similarly induced the differentiation of melanocytes. On the other hand, DBcAMP induced the proliferation of epidermal melanocytes in culture in the presence of keratinocytes. Basic fibroblast growth factor (bFGF) was also shown to stimulate the sustained proliferation of undifferentiated melanoblasts in the presence of DBcAMP and keratinocytes. These results suggest that the proliferation and differentiation of mouse epidermal melanoblasts and melanocytes in culture are regulated by the three factors; namely, cAMP, bFGF, and keratinocyte-derived factors. Moreover, serum-free primary culture of mouse epidermal melanocytes derived from B10 congenic mice, which carry various coat color genes, showed that the coat color genes were involved in regulating the proliferation and differentiation of mouse epidermal melanocytes by controlling the proliferative rate, melanosome formation and maturation, and melanosome distribution.  相似文献   

8.
Mouse epidermal melanoblasts and melanocytes preferentially proliferated from disaggregated epidermal cell suspensions derived from newborn mouse skin in a serum-free melanocyte-proliferation medium (MDMD) and a melanoblast-proliferation medium (MDMDF) supplemented with dibutyryl adenosine 3':5'-cyclic monophosphate (DBcAMP) and/or basic fibroblast growth factor (bFGF). Pure cultured primary melanoblasts and melanocytes were further cultured with MDMD/MDMDF supplemented with granulocyte-macrophage colony-stimulating factor (GMCSF) from 14 days (keratinocyte depletion). GMCSF stimulated the number of melanoblasts/melanocytes as well as the percentage of differentiated melanocytes in keratinocyte-depleted cultures. Flow cytometry analysis showed that melanoblasts and melanocytes in the S and G(2)/M phases of the cell cycle were increased by the treatment with GMCSF. Moreover, anti-GMCSF antibody added to MDMD/MDMDF from the initiation of the primary culture (in the presence of keratinocytes) inhibited the proliferation of melanoblasts/melanocytes as well as the differentiation of melanocytes. Enzyme-linked immunosorbent assay of culture media revealed that GMCSF was secreted from keratinocytes, but not from melanocytes. These results suggest that GMCSF is one of the keratinocyte-derived factors involved in regulating the proliferation and differentiation of neonatal mouse epidermal melanoblasts/melanocytes in culture in cooperation with cAMP elevator and bFGF.  相似文献   

9.
Serum-free culture of epidermal cell suspensions from neonatal skin of mice of strain C57BL/10JHir (B10) showed that alpha-melanocyte-stimulating hormone (alpha-MSH) was involved in regulating the differentiation of melanocytes by inducing tyrosinase activity, melanosome formation, and dendritogenesis. Dibutyryl adenosine 3':5'-cyclic monophosphate (DBcAMP) similarly induced the differentiation of melanocytes. On the other hand, DBcAMP induced the proliferation of epidermal melanocytes in culture in the presence of keratinocytes. Basic fibroblast growth factor (bFGF) was also shown to stimulate the sustained proliferation of undifferentiated melanoblasts in the presence of DBcAMP and keratinocytes. These results suggest that the proliferation and differentiation of mouse epidermal melanoblasts and melanocytes in culture are regulated by the three factors; namely, cAMP, bFGF, and keratinocyte-derived factors. Moreover, serum-free primary culture of mouse epidermal melanocytes derived from B10 congenic mice, which carry various coat color genes, showed that the coat color genes were involved in regulating the proliferation and differentiation of mouse epidermal melanocytes by controlling the proliferative rate, melanosome formation and maturation, and melanosome distribution.  相似文献   

10.
11.
Normal human melanocytes, unlike malignant melanoma cells, required at least three growth-promoting agents, i.e., phorbol ester for protein kinase C activation and the growth factors basic fibroblast growth factor (bFGF) and insulin, for growth in chemically defined W489 medium. Cell growth was further stimulated by addition of agents that increase intracellular levels of cyclic adenosine 3',5'-monophosphate (cAMP) to the medium. Among these agents, the pituitary hormones alpha-melanocyte-stimulating hormone (alpha-MSH) and follicle-stimulating hormone were the most potent, whereas bacterial toxins, including cholera, tetanus, and pertussis toxin and their subunits either were less mitogenic or gave variable results depending on the culture tested. Medium containing phorbol ester PMA, growth factors bFGF and insulin (or insulin-like growth factor-I), and synthetic alpha-MSH supported melanocyte growth for more than 5 months with doubling times between 5 and 8 days. Two copper-binding proteins, ceruloplasmin and tyrosinase, were mitogenic when added to medium and ceruloplasmic induced a long bi- to tripolar-shape of cells. Addition of 1 mM dibutyryl cAMP to the medium led to the formation of dendrites in all cells, with an average of 28 extensions per cell. Although cell growth was inhibited by dibutyryl cAMP, cells were not terminally differentiated and continued to proliferate. Dendritic melanocytes showed a 2.2-fold increase in activity of the tyrosine kinase pp60c-src. The induction of dendritic processes in melanocytes by dibutyryl cAMP or sodium butyrate was reversible and appears to reflect the expression of the mature melanocytic phenotype in situ.  相似文献   

12.
13.
Active roles of cell-cell interaction between melanocytes and neighboring keratinocytes for the regulation of melanocyte functions in the skin have been suggested. We examined substantial regulatory mechanisms of keratinocyte extracellular matrix (kECMs) for normal human melanocyte functions without direct cell-cell contact. We specially devised kECMs from proliferating or differentiating keratinocytes and further treated them with environmental stimulus ultraviolet B (UVB) for skin pigmentary system. Normal human melanocytes (NHM) were cultured on the various keratinocyte ECMs and initially the effects of the kECMs upon melanocyte morphology (dendrite formation and extension), growth, melanin production and expressions of pigmentation-associated protein (MEL-5) and proliferation-associated protein (proliferating cell nuclear antigen; PCNA/cyclin) were studied. Then we compared the effects of these cell-matrix interactions with those of direct melanocyte-keratinocyte, cell-cell contact in co-culture on melanocyte functions. Melanocytes cultured on any types of the kECMs that were tested significantly extended dendrites more than that on plastic cell culture dish without kECM (control). Melanocytes cultured on the kECM prepared from UVB irradiated differentiating keratinocytes resulted in 219% increase in the number of dendrites. The growth of melanocytes on kECMs was also stimulated up to 280% of control. The kECM produced by proliferating keratinocytes had a more significant effect on the growth than kECM from differentiating keratinocytes. This melanocyte growth stimulating effect was decreased with kECM from UVB treated differentiating keratinocytes. The melanin content per melanocyte was constant on any of the kECMs. Expression of pigmentation-associated protein detected by monoclonal antibody, MEL-5, was not changed on the kECM, while it was increased in melanocytes in co-culture with keratinocytes. Expression of PCNA/cyclin in melanocytes cultured on kECMs was generally downregulated on kECM and in co-culture compared to that in a control culture. We demonstrated that the kECMs play important roles in the melanocyte morphology and proliferation. These observations suggest that environmental (UVB) and physiological (Ca++) stimuli can regulate melanocyte functions through the keratinocyte extracellular matrix in vivo.  相似文献   

14.
Summary In the search for environmental compounds responsible for contact or occupational vitiligo, it was found that the most potent was 4-tertiary butylphenol (4-TBP). Exposure to 4-TBP is widespread both in industry and in consumer items including synthetic leather, plastic, glues, and germicidal phenolic detergents. How 4-TBP causes depigmentation and the death of melanocytes is currently unclear. Growth mitogens for human melanocytes include α-melanocyte stimulating hormone (α-MSH), basic fibroblast growth factor (bFGF) and 12-o-tetradecanoylphorbol-13-acetate (TPA). The former two mitogens are physiological growth factors for melanocytes. We have studied the effects of these mitogens on the cytotoxicity of 4-TBP in human melanocytes. Our results demonstrated that deprivation of α-MSH or bFGF from melanocyte cultures resulted in reduced cytotoxicity to 4-TBP. Similar results were obtained upon treatment of melanocytes with an inhibitor of cAMP-dependent protein kinase A (PKA), that is known to be activated by α-MSH, or with an inhibitor of the tyrosine kinase bFGF receptor. In contrast, removal of fetal bovine serum or TPA from the culture medium did not influence the susceptibility of melanocytes to 4-TBP. These results suggest that activation of the cAMP and tyrosine kinase signaling pathways, both of which are involved in the mitogenic response of melanocytes, increase the susceptibility of these cells to the cytotoxic effects of 4-TBP. This work was presented in part at the seventh meeting of Pan-American Society for Pigment Cell Research, June 15–18, 1997, Providence, Rhode Island, USA.  相似文献   

15.
Mouse epidermal melanoblasts/melanocytes preferentially proliferated from disaggregated epidermal cell suspensions derived from newborn mouse skin in a serum-free melanoblast/melanocyte-proliferation medium supplemented with dibutyryl adenosine 3':5'-cyclic monophosphate (DBcAMP) and/or basic fibroblast growth factor (bFGF). Leukemia inhibitory factor (LIF) supplemented to the medium from initiation of primary culture increased the proliferation of melanoblasts or melanocytes as well as the differentiation of melanocytes. Pure cultured primary melanoblasts or melanocytes were further cultured with the medium supplemented with LIF from 14 days (keratinocyte depletion). LIF stimulated the proliferation of melanoblasts or melanocytes as well as the differentiation of melanocytes in the absence of keratinocytes. Moreover, anti-LIF antibody supplemented to the medium from initiation of primary culture inhibited the proliferation of melanoblasts or melanocytes as well as the differentiation of melanocytes. These results suggest that LIF is one of the keratinocyte-derived factors involved in regulating the proliferation and differentiation of neonatal mouse epidermal melanocytes in culture in cooperation with cAMP elevator and bFGF.  相似文献   

16.
17.
Normal human skin is shown to contain melanocyte growth factor (MeGF). We found MeGF activity in extracts of both the epidermal portion of skin and the dermal portion. This activity was completely adsorbed onto heparin beads and eluted by 2.5 M NaCl. In addition, the activity of both extracts was completely blocked by antibodies directed against basic fibroblast growth factor (bFGF). It is suggested that melanocytes in epidermis are supported by bFGF-like MeGF in normal human skin.  相似文献   

18.
Normal human melanocytes, which rarely undergo mitosis in vivo, require many growth factors and growth-stimulating agents in vitro, such as basic fibroblast growth factor (bFGF) and cyclic adenosine monophosphate-stimulating agents or 12-0-tetrade-canoylphorbol 13-acetate (TPA), to proliferate. TPA, known as a protein kinase C (PKC)-activator, supports normal human melanocyte growth and influences on melanocyte dendrite formation. We have further confirmed the role of the PKC-mediated pathway in the TPA-dependent melanocyte functions—i.e., proliferation, morphology, and adhesion—using Calphostin C (CPC), a highly specific PKC inhibitor. Melanocytes require the continual presence of TPA for growth in culture. Addition of 8 nM TPA to the medium increased melanocyte growth by 198.4 ± 2.3% of that without TPA. The growth induction by TPA was suppressed by the addition of 10 nM CPC at the level comparable to that without TPA without any morphological alterations. Significant levels of PKC were detected in melanocytes chronically exposed to TPA as determined by Western blotting. A long-term exposure to TPA (more than 5 days) resulted in marked reduction of melanocyte adhesion to plastic cell culture dishes, both uncoated and coated with type IV collagen. By the addition of 10 nM CPC in the adhesion assay, the melanocyte adhesion was further inhibited in both conditions. These results indicated the critical involvement of PKC activation in the TPA-dependent melanocyte functions. Continuous activation of PKC by TPA is implicated in melanocyte growth stimulation. TPA also has effects on melanocyte morphology, causing the formation of long extended dendrites with little cytoplasm. However, inhibition of PKC activation by CPC does not affect the melanocyte morphology, and CPC reduces melanocyte adhesion to uncoated or type IV collagen coated plastic cell culture dishes.  相似文献   

19.
Human keratinocytes isolated from a skin biopsy and cultured in vitro reconstitute a stratified squamous epithelium suitable for grafting on burned patients. Melanocytes coisolated from the same skin biopsy also proliferate under these culture conditions and maintain differentiated functions (i.e., synthesize melanin granules, regularly intersperse in the basal layer of the cultured epidermis, and transfer melanosomes in the cytoplasm of contiguous keratinocytes) (De Luca, M., A. T. Franzi, F. D'Anna, A. Zicca, E. Albanese, S. Bondanza, and R. Cancedda. 1988. Eur. J. Cell Biol. 46:176-180). Isolated melanocytes in culture grow in the presence of specific growth factors with a mean population doubling time of 4-10 d. In this paper we show that (a) human keratinocytes and oral epithelial cells possess strong and specific melanocyte growth stimulating activity (doubling time, 24 h); (b) melanocyte growth is not autonomous but requires close keratinocyte contact and is regulated to maintain a physiological melanocytes/keratinocytes ratiol and (c) pure skin keratinocytes, but not oral epithelial cells, have all the information required for the proper physiological location and differentiation of melanocytes in the epidermis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号