首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mammalian γ-glutamyltranspeptidase (GGT) has been identified as a bone-resorbing factor. Since GGT of Bacillus subtilis exhibits similarity in their primary structure and enzymatic characteristics with mammalian GGTs, the bone-resorbing activity of bacterial GGT was examined in this study. Osteoclastogenesis was performed in a co-culture system of mouse calvaria-derived osteoblasts and bone marrow cells. A conditioned medium from GGT-overproducing B. subtilis culture showed significantly higher activity of osteoclast formation than a conditioned medium from wild-type B. subtilis culture. Recombinant GGT (rGGT) of wild-type B. subtilis and an enzymatic activity-defected rGGT of B. subtilis 2288 mutant were expressed in Escherichia coli and purified using His tag. Both purified rGGTs induced similar levels of osteoclastogenesis, suggesting that B. subtilis GGT possesses virulent bone-resorbing activity and its activity is probably independent of its enzymatic activity. Furthermore, a recombinant protein of B. subtilis GGT heavy subunit (Bs rGGT/H) showed strong activity of osteoclastogenesis while the light subunit failed to show strong activity, suggesting that the bone-resorbing activity is mainly located at the heavy subunit. More importantly, the GGT enzymatic activity may not be required for this virulence activity since the light subunit contains the catalytic pocket. In addition, B. subtilis rGGT stimulated mRNA expressions of receptor activator of nuclear factor kappa-B ligand (RANKL) and cyclooxygenase-2 (COX-2), while an osteoprotegerin inhibited the osteoclast formation induced by Bs rGGT/H. This is the first demonstration that bacterial GGT itself is sufficient to act as a bone-resorbing virulence factor via RANKL-dependent pathway. Therefore, it can be hypothesized that GGT of periodontopathic bacteria may play an important role as a virulence factor in bone destruction.  相似文献   

2.
Osteoclasts are tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells derived from monocyte/macrophage-lineage precursors and are critically responsible for bone resorption. In giant cell tumor of bone (GCT), numerous TRAP-positive multinucleated giant cells emerge and severe osteolytic bone destruction occurs, implying that the emerged giant cells are biologically similar to osteoclasts. To identify novel genes involved in osteoclastogenesis, we searched genes whose expression pattern was significantly different in GCT from normal and other bone tumor tissues. By screening a human gene expression database, we identified sialic acid-binding immunoglobulin-like lectin 15 (Siglec-15) as one of the genes markedly overexpressed in GCT. The mRNA expression level of Siglec-15 increased in association with osteoclast differentiation in cultures of mouse primary unfractionated bone marrow cells (UBMC), RAW264.7 cells of the mouse macrophage cell line and human osteoclast precursors (OCP). Treatment with polyclonal antibody to mouse Siglec-15 markedly inhibited osteoclast differentiation in primary mouse bone marrow monocyte/macrophage (BMM) cells stimulated with receptor activator of nuclear factor κB ligand (RANKL) or tumor necrosis factor (TNF)-α. The antibody also inhibited osteoclast differentiation in cultures of mouse UBMC and RAW264.7 cells stimulated with active vitamin D3 and RANKL, respectively. Finally, treatment with polyclonal antibody to human Siglec-15 inhibited RANKL-induced TRAP-positive multinuclear cell formation in a human OCP culture. These results suggest that Siglec-15 plays an important role in osteoclast differentiation.  相似文献   

3.
4.
We previously identified functional N-methyl-D-aspartate (NMDA) glutamate receptors in mature osteoclasts and demonstrated that they are involved in bone resorption in vitro. In the present work, we studied the expression of NMDA receptors (NMDAR) by osteoclast precursors and their role in osteoclastogenesis using two in vitro models, the murine myelomonocytic RAW 264.7 cell line and mouse bone marrow cells, both of which differentiate into osteoclasts in the presence of macrophage colony-stimulating factor (M-CSF) and Rank ligand (RankL). Using RT-PCR analysis with specific probes, we showed that RAW 264.7 cells and mouse bone marrow cells express mRNA of NMDAR subunits NMDA receptor 1 (NR1) and NMDA receptor 2 (NR2) A, B, and D. These subunits are expressed all along the differentiation sequence from undifferentiated precursors to mature resorbing osteoclasts. Semi-quantitative PCR analysis showed no regulation of the expression of these subunits during the differentiation process. Two specific non competitive antagonists of NMDAR, MK801 and DEP, dose-dependently inhibited osteoclast formation in both models, indicating that osteoclastogenesis requires the activation of NMDAR expressed by osteoclast precursors. MK801 had no effect when added only during the first 2 days of culture, suggesting that NMDAR are rather involved in the late stages of osteoclast formation. Finally, we demonstrated using Western-blotting and immunofluorescence that activation of NMDAR in RAW 264.7 cells by specific agonists induces nuclear translocation of NF-kappa B, a factor required for osteoclast formation. Altogether, our results indicate that osteoclast precursors express NMDAR that are involved in the osteoclast differentiation process through activation of the NF-kappa B pathway.  相似文献   

5.
Glycogen synthase kinase-3β (GSK-3β) is a serine/threonine kinase originally identified as a regulator of glycogen deposition. Although the role of GSK-3β in osteoblasts is well characterized as a negative regulator of β-catenin, its effect on osteoclast formation remains largely unidentified. Here, we show that the GSK-3β inactivation upon receptor activator of NF-κB ligand (RANKL) stimulation is crucial for osteoclast differentiation. Regulation of GSK-3β activity in bone marrow macrophages by retroviral expression of the constitutively active GSK-3β (GSK3β-S9A) mutant inhibits RANKL-induced osteoclastogenesis, whereas expression of the catalytically inactive GSK-3β (GSK3β-K85R) or small interfering RNA (siRNA)-mediated GSK-3β silencing enhances osteoclast formation. Pharmacological inhibition of GSK-3β further confirmed the negative role of GSK-3β in osteoclast formation. We also show that overexpression of the GSK3β-S9A mutant in bone marrow macrophages inhibits RANKL-mediated NFATc1 induction and Ca(2+) oscillations. Remarkably, transgenic mice expressing the GSK3β-S9A mutant show an osteopetrotic phenotype due to impaired osteoclast differentiation. Further, osteoclast precursor cells from the transgenic mice show defects in expression and nuclear localization of NFATc1. These findings demonstrate a novel role for GSK-3β in the regulation of bone remodeling through modulation of NFATc1 in RANKL signaling.  相似文献   

6.

Background

Cholestatic liver diseases exhibit higher levels of serum γ-glutamyl transpeptidase (GGT) and incidence of secondary osteoporosis. GGT has been identified as a novel bone-resorbing factor that stimulates osteoclast formation. The aim of this study was to elucidate the interaction of elevated GGT levels and cholestatic liver disease-induced bone loss.

Methods

Wistar rats were divided into three groups: sham-operated control (SO) rats, bile duct ligation (BDL) rats, and anti-GGT antibody-treated BDL rats (AGT). Serum GGT level was measured. Bone mineral density (BMD) was analyzed by dual-energy X-ray absorptiometry. Bone morphometric parameters and microarchitectural properties were determined by micro-computed tomography and histomorphometry of the distal metaphysis of femurs. Alterations of bone metabolism-related factors were evaluated by cytokine array. Effects of GGT on osteoblasts or stromal cells were evaluated by RT-PCR, enzyme activity, and mineralization ability.

Results

Serum levels of GGT were significantly elevated in the BDL-group. In the BDL group, BMD, bone mass percentage, and osteoblast number were significantly decreased, whereas osteoclast number was significantly increased. These alterations were markedly attenuated in the AGT group. The mRNA levels of vascular endothelial growth factor-A, LPS-induced CXC chemokine, monocyte chemoattractant protein-1, tumor necrosis factor-α interleukin-1β and receptor activator of nuclear factor-kappa B ligand were upregulated, and those of interferon-γ and osteoprotegerin were downregulated in the GGT-treated stromal cells. Furthermore, GGT inhibited mineral nodule formation and expression of alkaline phosphatase and bone sialo-protein in osteoblastic cells.

Conclusion

Our results indicate that elevated GGT level is involved in hepatic osteodystrophy through secretion of bone resorbing factor from GGT-stimulated osteoblasts/bone marrow stromal cells. In addition, GGT also possesses suppressive effects on bone formation. Managing elevated GGT levels by anti-GGT antibody may become a novel therapeutic agent for hepatic osteodystrophy in chronic liver diseases.  相似文献   

7.
Takami M  Cho ES  Lee SY  Kamijo R  Yim M 《FEBS letters》2005,579(3):832-838
Phosphodiesterases (PDEs) are enzymes that degrade intracellular cAMP. In the present study, 3-isobutyl-1-methylxanthine (IBMX) and pentoxifylline, PDE inhibitors, induced osteoclast formation in cocultures of mouse bone marrow cells and calvarial osteoblasts. These inhibitors induced the expression of the osteoclast differentiation factor, TNF-related activation induced cytokine (TRANCE, identical to RANKL, ODF, and OPGL), in calvarial osteoblasts. IBMX induced phosphorylation of extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein kinase (MAPK) in osteoblasts. Induction of TRANCE expression by IBMX was partially suppressed by the inhibitors of protein kinase A (PKA), ERK, and p38 MAPK, suggesting that activation of ERK and p38 MAPK, as well as PKA, is involved in TRANCE expression by IBMX. Osteoblasts expressed PDE4, a PDE subtype, and rolipram, a selective inhibitor of PDE4, induced TRANCE expression. These results suggest that PDE4 is a key regulator of TRANCE expression in osteoblasts, which in turn controls osteoclast formation.  相似文献   

8.
Nitric oxide (NO) is a multifunctional signaling molecule and a key vasculoprotective and potential osteoprotective factor. NO regulates normal bone remodeling and pathological bone loss in part through affecting the recruitment, formation, and activity of bone-resorbing osteoclasts. Using murine RAW 264.7 and primary bone marrow cells or osteoclasts formed from them by receptor activator of NF-kappaB ligand (RANKL) differentiation, we found that inducible nitric-oxide synthase (iNOS) expression and NO generation were stimulated by interferon (IFN)-gamma or lipopolysaccharide, but not by interleukin-1 or tumor necrosis factor-alpha. Surprisingly, iNOS expression and NO release were also triggered by RANKL. This response was time- and dose-dependent, required NF-kappaB activation and new protein synthesis, and was specifically blocked by the RANKL decoy receptor osteoprotegerin. Preventing RANKL-induced NO (via iNOS-selective inhibition or use of marrow cells from iNOS-/- mice) increased osteoclast formation and bone pit resorption, indicating that such NO normally restrains RANKL-mediated osteoclastogenesis. Additional studies suggested that RANKL-induced NO inhibition of osteoclast formation does not occur via NO activation of a cGMP pathway. Because IFN-beta is also a RANKL-induced autocrine negative feedback inhibitor that limits osteoclastogenesis, we investigated whether IFN-beta is involved in this novel RANKL/iNOS/NO autoregulatory pathway. IFN-beta was induced by RANKL and stimulated iNOS expression and NO release, and a neutralizing antibody to IFN-beta inhibited iNOS/NO elevation in response to RANKL, thereby enhancing osteoclast formation. Thus, RANKL-induced IFN-beta triggers iNOS/NO as an important negative feedback signal during osteoclastogenesis. Specifically targeting this novel autoregulatory pathway may provide new therapeutic approaches to combat various osteolytic bone diseases.  相似文献   

9.
Using an expression cloning approach, we identified and cloned a novel intracellular protein produced by osteoclasts that indirectly induces osteoclast formation and bone resorption, termed OSF. Conditioned media from 293 cells transiently transfected with the 0.9 kb OSF cDNA clone stimulated osteoclast-like cell formation in both human and murine marrow cultures in the presence or absence 10(-9) M 1,25-dihydroxyvitamin D3. In addition, conditioned media from 293 cells transfected with the OSF cDNA clone enhanced the stimulatory effects of 1,25-(OH)2D3 on bone resorption in the fetal rat long bone assay. In situ hybridization studies using antisense oligomers showed expression of OSF mRNA in highly purified osteoclast-like cells from human giant cell tumors of the bone. Northern blot analysis demonstrated ubiquitous expression of a 1.3 kb mRNA that encodes OSF in multiple human tissues. Sequence analysis showed the OSF cDNA encoded a 28 kD peptide that contains a c-Src homology 3 domain (SH3) and ankyrin repeats, suggesting that it was not a secreted protein, but that it was potentially involved in cell signaling. Consistent with these data, immunoblot analysis using rabbit antisera against recombinant OSF demonstrated OSF expression in cell lysates but not in the culture media. Furthermore, recombinant OSF had a high affinity for c-Src, an important regulator of osteoclast activity. Taken together, these data suggest that OSF is a novel intracellular protein that indirectly enhances osteoclast formation and osteoclastic bone resorption through the cellular signal transduction cascade, possibly through its interactions with c-Src or other Src-related proteins.  相似文献   

10.
Atp6v0a3 gene encodes for two alternative products, Tirc7 and a3 proteins, which are differentially expressed in activated T cells and resorbing osteoclasts, respectively. Tirc7 plays a central role in T cell activation, while a3 protein is critical for osteoclast-mediated bone matrix resorption. Based on the large body of evidences documenting the relationships between T cells and osteoclasts, we hypothesized that the extracellular C-terminus of Tirc7 protein could directly interact with osteoclast precursor cells. To address this issue, we performed the molecular cloning of a mouse Atp6v0a3 cDNA segment encoding the last 40 amino acids of Tirc7 protein, and we used this peptide as a ligand added to mouse osteoclast precursor cells. We evidenced that Tirc7-Cter peptide induced the differentiation of RAW264.7 cells into osteoclast-like cells, stimulated an autocrine/paracrine regulatory loop potentially involved in osteoclastic differentiation control, and strongly up-regulated F4/80 protein expression within multinucleated osteoclast-like cells. Using a mouse bone marrow-derived CD11b(+) cell line, or total bone marrow primary cells, we observed that similarly to Rankl, Tirc7-Cter peptide induced the formation of TRACP-positive large multinucleated cells. At last, using mouse primary monocytes purified from total bone marrow, we determined that Tirc7-Cter peptide induced the appearance of small multinucleated cells (3-4 nuclei), devoid of resorbing activity, and which displayed modulations of dendritic cell marker genes expression. In conclusion, we report for the first time on biological effects mediated by a peptide corresponding to the C-terminus of Tirc7 protein, which interfere with monocytic differentiation pathways.  相似文献   

11.
LPS is a potent stimulator of bone resorption in inflammatory diseases. The mechanism by which LPS induces osteoclastogenesis was studied in cocultures of mouse osteoblasts and bone marrow cells. LPS stimulated osteoclast formation and PGE(2) production in cocultures of mouse osteoblasts and bone marrow cells, and the stimulation was completely inhibited by NS398, a cyclooxygenase-2 inhibitor. Osteoblasts, but not bone marrow cells, produced PGE(2) in response to LPS. LPS-induced osteoclast formation was also inhibited by osteoprotegerin (OPG), a decoy receptor of receptor activator of NF-kappaB ligand (RANKL), but not by anti-mouse TNFR1 Ab or IL-1 receptor antagonist. LPS induced both stimulation of RANKL mRNA expression and inhibition of OPG mRNA expression in osteoblasts. NS398 blocked LPS-induced down-regulation of OPG mRNA expression, but not LPS-induced up-regulation of RANKL mRNA expression, suggesting that down-regulation of OPG expression by PGE(2) is involved in LPS-induced osteoclast formation in the cocultures. NS398 failed to inhibit LPS-induced osteoclastogenesis in cocultures containing OPG knockout mouse-derived osteoblasts. IL-1 also stimulated PGE(2) production in osteoblasts and osteoclast formation in the cocultures, and the stimulation was inhibited by NS398. As seen with LPS, NS398 failed to inhibit IL-1-induced osteoclast formation in cocultures with OPG-deficient osteoblasts. These results suggest that IL-1 as well as LPS stimulates osteoclastogenesis through two parallel events: direct enhancement of RANKL expression and suppression of OPG expression, which is mediated by PGE(2) production.  相似文献   

12.
Epidermal growth factor (EGF)-like ligands and their receptors constitute one of the most important signaling networks functioning in normal tissue development and cancer biology. Recent in vivo mouse models suggest this signaling network plays an essential role in bone metabolism. Using a coculture system containing bone marrow macrophage and osteoblastic cells, here we report that EGF-like ligands stimulate osteoclastogenesis by acting on osteoblastic cells. This stimulation is not a direct effect because osteoclasts do not express functional EGF receptors (EGFRs). Further studies reveal that EGF-like ligands strongly regulate the expression of two secreted osteoclast regulatory factors in osteoblasts by decreasing osteoprotegerin (OPG) expression and increasing monocyte chemoattractant protein 1 (MCP1) expression in an EGFR-dependent manner and consequently stimulate TRAP-positive osteoclast formation. Addition of exogenous OPG completely inhibited osteoclast formation stimulated by EGF-like ligands, while addition of a neutralizing antibody against MCP-1 exhibited partial inhibition. Coculture with bone metastatic breast cancer MDA-MB-231 cells had similar effects on the expression of OPG and MCP1 in the osteoblastic cells, and those effects could be partially abolished by the EGFR inhibitor PD153035. Because a high percentage of human carcinomas express EGF-like ligands, our findings suggest a novel mechanism for osteolytic lesions caused by cancer cells metastasizing to bone.  相似文献   

13.
14.
Prothrombin is converted to thrombin by factor Xa in the cell-associated prothrombinase complex. Prothrombin is present in calcified bone matrix and thrombin exerts effects on osteoblasts as well as on bone resorption by osteoclasts.We investigated whether (1) osteoclasts display factor Xa-dependent prothrombinase activity and (2) osteoclasts express critical regulatory components upstream of the prothrombinase complex.The osteoclast differentiation factor RANKL induced formation of multinucleated TRAP positive cells concomitant with induction of prothrombinase activity in cultures of RAW 264.7 cells and bone marrow osteoclast progenitors.Expression analysis of extrinsic coagulation factors revealed that RANKL enhanced protein levels of factor Xa as well as of coagulation factor III (tissue factor). Inhibition assays indicated that factor Xa and tissue factor were involved in the control of prothrombinase activity in RANKL-differentiated osteoclasts, presumably at two stages (1) conversion of prothrombin to thrombin and (2) conversion of factor X to factor Xa, respectively.Activation of the extrinsic coagulation pathway during osteoclast differentiation through induction of tissue factor and factor Xa by a RANKL-dependent pathway indicates a novel role for osteoclasts in converting prothrombin to thrombin.  相似文献   

15.
p38 mitogen-activated protein kinase (MAPK) acts downstream in the signaling pathway that includes receptor activator of NF-κB (RANK), a powerful inducer of osteoclast formation and activation. We investigated the role of p38 MAPK in parathyroid hormone related protein (PTHrP)-induced osteoclastogenesis in vitro and PTHrP-induced bone resorption in vivo. The ability of FR167653 to inhibit osteoclast formation was evaluated by counting the number of tartrate-resistant acid phosphatase positive multinucleated cells (TRAP-positive MNCs) in in vitro osteoclastgenesis assays. Its mechanisms were evaluated by detecting the expression level of c-Fos and nuclear factor of activated T cells c1 (NFATc1) in bone marrow macrophages (BMMs) stimulated with sRANKL and M-CSF, and by detecting the expression level of osteoprotegerin (OPG) and RANKL in bone marrow stromal cells stimulated with PTHrP in the presence of FR167653. The function of FR167653 on bone resorption was assessed by measuring the bone resorption area radiographically and by counting osteoclast number per unit bone tissue area in calvaria in a mouse model of bone resorption by injecting PTHrP subcutaneously onto calvaria. Whole blood ionized calcium levels were also recorded. FR167653 inhibited PTHrP-induced osteoclast formation and PTHrP-induced c-Fos and NFATc1 expression in bone marrow macrophages, but not the expression levels of RANKL and OPG in primary bone marrow stromal cells treated by PTHrP. Furthermore, bone resorption area and osteoclast number in vivo were significantly decreased by the treatment of FR167653. Systemic hypercalcemia was also partially inhibited. Inhibition of p38 MAPK by FR167653 blocks PTHrP-induced osteoclastogenesis in vitro and PTHrP-induced bone resorption in vivo, suggesting that the p38 MAPK signaling pathway plays a fundamental role in PTHrP-induced osteoclastic bone resorption.  相似文献   

16.
Dermatan sulfate (DS) is a major component of extracellular matrices in mammalian tissues. In the present study, DS demonstrated a high level of binding activity to receptor activator of NF-kappaB ligand (RANKL) and obstructed the binding of RANK to RANKL, determined using a quartz-crystal microbalance (QCM) technique. Further, when mouse bone marrow cells were cultured with RANKL and macrophage colony-stimulating factor, DS suppressed tartrate-resistant acid phosphatase-positive multinucleated cell formation in a dose-dependent manner. In addition, immunoblot analyses revealed that DS reduced the levels of phosphorylation of p38 mitogen-activated protein kinase and extracellular signal-regulated kinase protein in mouse osteoclast progenitor cells stimulated with RANKL. Together, these results indicate that DS regulates osteoclast formation through binding to RANKL and inhibition of signal transduction in osteoclast progenitor cells, suggesting that it has an important role in bone metabolism in pathological conditions.  相似文献   

17.
We have previously described osteoblast/osteocyte factor 45 (OF45), a novel bone-specific extracellular matrix protein, and demonstrated that its expression is tightly linked to mineralization and bone formation. In this report, we have cloned and characterized the mouse OF45 cDNA and genomic region. Mouse OF45 (also called MEPE) was similar to its rat orthologue in that its expression was increased during mineralization in osteoblast cultures and the protein was highly expressed within the osteocytes that are imbedded within bone. To further determine the role of OF45 in bone metabolism, we generated a targeted mouse line deficient in this protein. Ablation of OF45 resulted in increased bone mass. In fact, disruption of only a single allele of OF45 caused significantly increased bone mass. In addition, knockout mice were resistant to aging-associated trabecular bone loss. Cancellous bone histomorphometry revealed that the increased bone mass was the result of increased osteoblast number and osteoblast activity with unaltered osteoclast number and osteoclast surface in knockout animals. Consistent with the bone histomorphometric results, we also determined that OF45 knockout osteoblasts produced significantly more mineralized nodules in ex vivo cell cultures than did wild type osteoblasts. Osteoclastogenesis and bone resorption in ex vivo cultures was unaffected by OF45 mutation. We conclude that OF45 plays an inhibitory role in bone formation in mouse.  相似文献   

18.
The clinical findings that alendronate blunted the anabolic effect of human parathyroid hormone (PTH) on bone formation suggest that active resorption is involved and enhances the anabolic effect. PTH signals via its receptor on the osteoblast membrane, and osteoclasts are impacted indirectly via the products of osteoblasts. Microarray with RNA from rats injected with human PTH or vehicle showed a strong association between the stimulation of monocyte chemoattractant protein-1 (MCP-1) and the anabolic effects of PTH. PTH rapidly and dramatically stimulated MCP-1 mRNA in the femora of rats receiving daily injections of PTH or in primary osteoblastic and UMR 106-01 cells. The stimulation of MCP-1 mRNA was dose-dependent and a primary response to PTH signaling via the cAMP-dependent protein kinase pathway in vitro. Studies with the mouse monocyte cell line RAW 264.7 and mouse bone marrow proved that osteoblastic MCP-1 can potently recruit osteoclast monocyte precursors and facilitate receptor activator of NF-kappaB ligand-induced osteoclastogenesis and, in particular, enhanced fusion. Our model suggests that PTH-induced osteoblastic expression of MCP-1 is involved in recruitment and differentiation at the stage of multinucleation of osteoclast precursors. This information provides a rationale for increased osteoclast activity in the anabolic effects of PTH in addition to receptor activator of NF-kappaB ligand stimulation to initiate greater bone remodeling.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号