共查询到20条相似文献,搜索用时 15 毫秒
1.
Sitompul Afrida Yutaka Tamai Toshihiro Watanabe Mitsuru Osaki 《World journal of microbiology & biotechnology》2009,25(4):639-647
To reduce the levels of chlorine-based chemicals in Acacia kraft pulp, we sought to isolate white rot fungus strains that could be used for biobleaching. For this purpose, we collected
600 fungal sources from Indonesia and subjected them to a three-step screening method. The first step involved culturing the
strains on Acacia mangium wood powder, guaiacol and agar (WGA) medium. Of the 600 sources, 258 strains grew on WGA medium and generated a red color.
The second step revealed that 31 of the 258 strains could degrade extractive-free A. mangium wood powder. The third step examined the ability of the strains to bleach A. mangium oxygen-delignified kraft pulp (A-OKP) under various pH conditions and showed that five strains could biobleach A-OKP at pH
5, 6, and 8. In contrast, the biobleaching abilities of Trametes versicolor and Phanerochaete chrysosporium, which served as standards, were much lower than those of the five new strains, particularly at pH 8. These five strains
may be useful for biobleaching of A-OKP. 相似文献
2.
Effect of culture conditions on manganese peroxidase production and activity by some white rot fungi 总被引:4,自引:0,他引:4
The ligninolytic system of white rot fungi is primarily composed of lignin peroxidase, manganese peroxidase (MnP) and laccase.
The present work was carried out to determine the best culture conditions for production of MnP and its activity in the relatively
little-explored cultures of Dichomitus squalens, Irpex flavus and Polyporus sanguineus, as compared with conditions for Phanerochaete chrysosporium and Coriolus versicolor. Studies on enzyme production under different nutritional conditions revealed veratryl alcohol, guaiacol, Reax 80 and Polyfon
H to be excellent MnP inducers.
Electronic Publication 相似文献
3.
Biobleaching of manganese-less oxygen-delignified hardwood kraft pulp (E-OKP) by the white-rot fungi Phanerochaete sordida YK-624 and P. chrysosporium was examined in the solid-state fermentation system. P. sordida YK-624 possessed a higher brightening activity than P. chrysosporium, increasing pulp brightness by 13.4 points after seven days of treatment. In these fermentation systems, lignin peroxidase (LiP) activity was detected as the principle ligninolytic enzyme, and manganese peroxidase and laccase activities were scarcely detected over the course of treatment of E-OKP by either fungus. Moreover, a linear relationship between brightness increase and cumulative LiP activity was observed under all tested culture conditions with P. sordida YK-624 and P. chrysosporium. These results indicated that LiP is involved in the brightening of E-OKP by both white-rot fungi. 相似文献
4.
Degradation of anthracene by selected white rot fungi 总被引:5,自引:0,他引:5
Abstract Approximately 60% of the originally supplied anthracene (AC) was degraded in ligninolytic stationary cultures of selected white rot fungi within 21 days. All the white rot fungi tested oxidized AC to anthraquinone (AQ). Unlike Phanerochaete chrysosporium and strain Px, with Pleurotus ostreatus, Coriolopsis polyzona and Trametes versicolor , AQ did not accumulate in the cultures, indicating that AQ was degraded further and its degradation did not appear to be a rate-limiting step. However, P. ostreatus and C. polyzona failed to degrade AQ in the absence of AC. P. ostreatus, T. versicolor and strain Px did not produce lignin peroxidase (ligninase) (LIP) under the test conditions but oxidized AC to AQ suggesting that white rot fungi produce enzyme(s) other than LIP capable of oxidizing compounds with high ionization potential like AC. Moreover, in the case of Ph. chrysosporium and C. polyzona , AC degradation started earlier than the production of LIP. Veratryl alcohol (VA) seemed to be playing a role in AC oxidation catalyzed by LIP in Ph. chrysosporium . 相似文献
5.
Raghukumar C Muraleedharan U Gaud VR Mishra R 《Journal of industrial microbiology & biotechnology》2004,31(9):433-441
Microbial xylanases that are thermostable, active at alkaline pH and cellulase-free are generally preferred for biobleaching of paper pulp. We screened obligate and facultative marine fungi for xylanase activity with these desirable traits. Several fungal isolates obtained from marine habitats showed alkaline xylanase activity. The crude enzyme from NIOCC isolate 3 (Aspergillus niger), with high xylanase activity, cellulase-free and unique properties containing 580 U l–1 xylanase, could bring about bleaching of sugarcane bagasse pulp by a 60 min treatment at 55°C, resulting in a decrease of ten kappa numbers and a 30% reduction in consumption of chlorine during bleaching. The culture filtrate showed peaks of xylanase activity at pH 3.5 and pH 8.5. When assayed at pH 3.5, optimum activity was detected at 50°C, with a second peak of activity at 90°C. When assayed at pH 8.5, optimum activity was seen at 80°C. The crude enzyme was thermostable at 55°C for at least 4 h and retained about 60% activity. Gel filtration of the 50–80% ammonium sulphate-precipitated fraction of the crude culture filtrate separated into two peaks of xylanase with specific activities of 393 and 2,457 U (mg protein)–1. The two peaks showing xylanase activity had molecular masses of 13 and 18 kDa. Zymogram analysis of xylanase of crude culture filtrate as well as the 50–80% ammonium sulphate-precipitated fraction showed two distinct xylanase activity bands on native PAGE. The crude culture filtrate also showed moderate activities of -xylosidase and -l-arabinofuranosidase, which could act synergistically with xylanase in attacking xylan. This is the first report showing the potential application of crude culture filtrate of a marine fungal isolate possessing thermostable, cellulase-free alkaline xylanase activity in biobleaching of paper pulp. 相似文献
6.
7.
Recent developments in biodegradation of industrial pollutants by white rot fungi and their enzyme system 总被引:3,自引:2,他引:3
Increasing discharge and improper management of liquid and solid industrial wastes have created a great concern among industrialists
and the scientific community over their economic treatment and safe disposal. White rot fungi (WRF) are versatile and robust
organisms having enormous potential for oxidative bioremediation of a variety of toxic chemical pollutants due to high tolerance
to toxic substances in the environment. WRF are capable of mineralizing a wide variety of toxic xenobiotics due to non-specific
nature of their extracellular lignin mineralizing enzymes (LMEs). In recent years, a lot of work has been done on the development
and optimization of bioremediation processes using WRF, with emphasis on the study of their enzyme systems involved in biodegradation
of industrial pollutants. Many new strains have been identified and their LMEs isolated, purified and characterized. In this
review, we have tried to cover the latest developments on enzyme systems of WRF, their low molecular mass mediators and their
potential use for bioremediation of industrial pollutants. 相似文献
8.
Karin Fackler Cornelia Gradinger Barbara Hinterstoisser Kurt Messner Manfred Schwanninger 《Enzyme and microbial technology》2006,39(7):1476-1483
Due to their outstanding capability of degrading the recalcitrant biomacromolecule lignin, white rot fungi have been attracting interest for several technological applications in mechanical pulping and wood surface modification. However, little is known about the time course of delignification in early stages of colonisation of wood by these fungi. Using a Fourier transform near infrared (FT-NIR) spectroscopic technique, lignin loss of sterilised spruce wood shavings (0.4–2.0 mm particle size) that had been degraded by various species of white rot fungi could be monitored already during the first 2 weeks. The delignification kinetics of Dichomitus squalens, three Phlebia species (Phlebia brevispora, Phlebia radiata and Phlebia tremellosa), three strains of Ceriporiopsis subvermispora as well as the white rot ascomycete Hypoxylon fragiforme and the basidiomycete Oxyporus latemarginatus were determined. Each of the fungi tested was able to reduce the lignin content of spruce wood significantly during the first week. The amount of delignification achieved by the selected white rot fungi after 2 weeks ranged from 7.2% for C. subvermispora (FPL 105.752) to 2.5% for P. radiata. Delignification was significant (P = 95%) already after 3 days treatment with C. subvermispora and P. tremellosa. Activities of extracellular ligninolytic enzymes (laccase, manganese peroxidase and/or lignin peroxidase), expressed by each of the tested fungi, were determined. Lignin was degraded when peroxidase activity was detected in the fungal cultures, but only a low level of correlation between enzyme activities and the extent of delignification was found. 相似文献
9.
Won Ryul Ryu Seong Hoon Shim Moon Yup Jang Yeong Joong Jeon Kwang Keun Oh Moo Hwan Cho 《Biotechnology and Bioprocess Engineering》2000,5(3):211-214
The roles of lignin peroxidase, manganese peroxidase, and laccase were investigated in the biodegradation of pentachlorophenol
(PCP) by several white rot fungi. The disappearance of pentachlorophenol from cultures of wild type strains,P. chrysosporium, Trametes sp. andPleurotus sp., was observed. The activities of manganese peroxidase and laccase were detected inTiametes sp. andPleurotus sp. cultures. However, the activities of ligninolytic enzymes were not detected inP. chrysosporium cultures. Therefore, our results showed that PCP was degraded under ligninolytic as well as nonligninolytic conditions. Indicating
that lignin peroxidase, manganese peroxidase, and laccase are not essential in the biodegradation of PCP by white rot fungi. 相似文献
10.
Different types of feedstocks, including corn stover, wheat straw, soybean straw, switchgrass, and hardwood, were tested to evaluate the effectiveness of fungal pretreatment by Ceriporiopsis subvermispora. After 18-d pretreatment, corn stover, switchgrass, and hardwood were effectively delignified by the fungus through manganese peroxidase and laccase. Correspondingly, glucose yields during enzymatic hydrolysis reached 56.50%, 37.15%, and 24.21%, respectively, which were a 2 to 3-fold increase over those of the raw materials. A further 10-30% increase in glucose yields was observed when pretreatment time extended to 35 d. In contrast, cellulose digestibility of wheat straw and soybean straw was not significantly improved by fungal pretreatment. When external carbon sources and enzyme inducers were added during fungal pretreatment of wheat straw and soybean straw, only glucose and malt extract addition improved cellulose digestibility of wheat straw. The cellulose digestibility of soybean straw was not improved. 相似文献
11.
Correlation of brightening with cumulative enzyme activity related to lignin biodegradation during biobleaching of kraft pulp by white rot fungi in the solid-state fermentation system. 总被引:3,自引:1,他引:3
下载免费PDF全文

Biobleaching of hardwood unbleached kraft pulp (UKP) by Phanerochaete chrysosporium and Trametes versicolor was studied in the solid-state fermentation system with different culture media. In this fermentation system with low-nitrogen and high-carbon culture medium, pulp brightness increased by 15 and 30 points after 5 days of treatment with T. versicolor and P. chrysosporium, respectively, and the pulp kappa number decreased with increasing brightness. A comparison of manganese peroxidase (MnP), lignin peroxidase (LiP), and laccase activities assayed by using fungus-treated pulp and the filtrate after homogenizing the fungus-treated pulp in buffer solution indicated that enzymes secreted from fungi were adsorbed onto the UKP and that assays of these enzyme activities should be carried out with the treated pulp. Time course studies of brightness increase and MnP activity during treatment with P. chrysosporium suggested that it was difficult to correlate them on the basis of data obtained on a certain day of incubation, because the MnP activity fluctuated dramatically during the treatment time. When brightness increase and cumulative MnP, LiP, and laccase activities were determined, a linear relationship between brightness increase and cumulative MnP activity was found in the solid-state fermentation system with both P. chrysosporium and T. versicolor. This result suggests that MnP is involved in brightening of UKP by white rot fungi. 相似文献
12.
Abstract. The wood-degrading white-rot fungus Phanerochaete chrysosporium , has been the subject of intensive research in recent years and, based upon isolation of the extracellular enzyme ligninase, major advances have now been made toward elucidating the mechanism by which this fungus degrades lignin. From these developments, a model emerges which could explain the process by which wood-degrading fungi in general, attack lignin. 相似文献
13.
Transformation of 2,4,6-trichlorophenol by the white rot fungi Panus tigrinus and Coriolus versicolor 总被引:7,自引:0,他引:7
The toxicity of thirteen isomers of mono-, di-, tri- and pentachlorophenols was tested in potato-dextrose agar cultures of the white rot fungi Panus tigrinus and Coriolus versicolor. 2,4,6-Trichlorophenol (2,4,6-TCP) was chosen for further study of its toxicity and transformation in liquid cultures of these fungi. Two schemes of 2,4,6-TCP addition were tested to minimize its toxic effect to fungal cultures: stepwise addition from the moment of inoculation and single addition after five days of growth. In both cases the ligninolytic enzyme systems of both fungi were found to be responsible for 2,4,6-TCP transformation. 2,6-Dichloro-1,4-hydroquinol and 2,6-dichloro-1,4-benzoquinone were found as products of primary oxidation of 2,4,6-TCP by intact fungal cultures and purified ligninolytic enzymes, Mn-peroxidases and laccases of both fungi. However, primary attack of 2,4,6-TCP in P. tigrinus culture was conducted mainly by Mn-peroxidase, while in C. versicolor it was catalyzed predominantly by laccase, suggesting a different mode of regulation of these enzymes in the two fungi. 相似文献
14.
Aims: The present study was conducted to evaluate the possibility of using cyanobacterial bloom materials as a medium for white rot fungi and the capability of white rot fungi, Trichaptum abietinum 1302BG and Lopharia spadicea to biodegrade dried cyanobacterial bloom material taken from Taihu Lake. Methods and Results: The results showed T. abietinum 1302BG and L. spadicea could use the cyanobacterial bloom materials taken from Taihu Lake for growth to measure the mycelial plaque and dry‐weight mycelial pellicles of fungi. The removal rate of dried cyanobacterial bloom materials incubated with white rot fungi is approximately 100%. Conclusions: The cyanobacterial bloom material can be used as a glucose substitute in white rot fungi medium. The white rot fungi, T. abietinum 1302BG and L. spadicea, can also directly decrease the biomass of cyanobacterial bloom material taken from Taihu Lake. Significance and Impact of the Study: Cyanobacterial bloom thrives in eutrophic fresh waters all over the world. Micro‐organisms, particularly fungi, have attracted attention as possible agents for the degradation of phytoplankton species. Dealing with cyanobacterial bloom material as a medium for fungi instead of directly discharging them as organic fertilizers is a new, safe and environmentally friendly approach. 相似文献
15.
Xylanase and Mannanase enzymes from Streptomyces galbus NR and their use in biobleaching of softwood kraft pulp 总被引:2,自引:0,他引:2
Enzymatic pretreatment of softwood kraft pulp was investigated using xylanase and mannanase, singly or in combination, either sequentially or simultaneously. Enzymes were obtained from Streptomyces galbus NR that had been cultivated in a medium, containing either xylan of sugar cane bagasse or galactomannan of palm-seeds, when they were used as sole carbon sources from local wastes in fermentation media. No cellulase activity was detected. Incubation period, temperature, initial pH values and nature of nutritive constituents were investigated. Optimum production of both enzymes was achieved after 5 days incubation on a rotary shaker (200 rpm) at 35 degrees C and initial pH 7.0. Partial purification of xylanase and mannanase in the cultures supernatant were achieved by salting out at 40-60 and 60-80% ammonium sulphate saturation with a purification of 9.63- and 8.71-fold and 68.80 and 62.79% recovery, respectively. The xylanase and mannanase from S. galbus NR have optimal activity at 50 and 40 degrees C, respectively. Both enzymes were stable at a temperature up to 50 degrees C. Xylanase and mannanase showed highest activity at pH 6.5 and were stable from 5.0 to 8.0 and from 5.5 to 7.5, respectively. The partial purified enzymes preparations of xylanase and mannanase enzymes showed high bleaching activity, which is an important consideration for industry. Xylanase was found to be more effective for paper-bleaching than mannanase. When xylanase and mannanase were dosed together (simultaneously), both enzymes were able to enhance the liberation of reducing sugars and improve pulp bleachability, possibly as a result of nearly additive interactions. The simultaneous addition of both enzymes was more effective in pulp treatment than their sequential addition. 相似文献
16.
Textile industry discharges a vast amount of unused synthetic dyes in effluents. The discharge of these effluents into rivers and lakes leads to a reduction in sunlight penetration in natural water bodies, which, in turn, decreases both photosynthetic activity and dissolved oxygen concentration rendering it toxic to living beings. This paper describes the decolorization potential of a local white rot fungus, Coriolus versicolor IBL-04 for practical industrial effluents collected from five different textile industries of Faisalabad, Pakistan. Screening of C. versicolor IBL-04 on five effluents showed best decolorization results (36.3%) for Arzoo Textile Industry (ART) effluent in 6 days followed by Crescent Textile Industry (CRT), Itmad Textile Industry (ITT), Megna Textile Industry (MGT) and Ayesha Textile Industry (AST) effluents. Optimization of different process parameters for ART effluent decolorization by C. versicolor IBL-04 showed that manganese peroxidase (MnP) (486 U/mL) was the lignolytic enzyme present in the culture filtrates with undetectable lignin peroxidase (LiP) and laccase. The MnP synthesis and effluent decolorization could be enhanced to 725 U/mL and 84.4%, respectively, with a significant time reduction to 3 days by optimizing pH and temperature and using 1% starch as a supplementary carbon source. 相似文献
17.
Peixoto-Nogueira Sde C Michelin M Betini JH Jorge JA Terenzi HF Polizeli Mde L 《Journal of industrial microbiology & biotechnology》2009,36(1):149-155
The ability of xylanolytic enzymes produced by Aspergillus fumigatus RP04 and Aspergillus niveus RP05 to promote the biobleaching of cellulose pulp was investigated. Both fungi grew for 4–5 days in liquid medium at 40°C,
under static conditions. Xylanase production was tested using different carbon sources, including some types of xylans. A. fumigatus produced high levels of xylanase on agricultural residues (corncob or wheat bran), whereas A. niveus produced more xylanase on birchwood xylan. The optimum temperature of the xylanases from A. fumigatus and A. niveus was around 60–70°C. The enzymes were stable for 30 min at 60°C, maintaining 95–98% of the initial activity. After 1 h at
this temperature, the xylanase from A. niveus still retained 85% of initial activity, while the xylanase from A. fumigatus was only 40% active. The pH optimum of the xylanases was acidic (4.5–5.5). The pH stability for the xylanase from A. fumigatus was higher at pH 6.0–8.0, while the enzyme from A. niveus was more stable at pH 4.5–6.5. Crude enzymatic extracts were used to clarify cellulose pulp and the best result was obtained
with the A. niveus preparation, showing kappa efficiency around 39.6% as compared to only 11.7% for that of A. fumigatus. 相似文献
18.
Yürekli F. Yesilada O. Yürekli M. Topcuoglu S.F. 《World journal of microbiology & biotechnology》1999,15(4):503-505
In this study, olive oil mill and alcohol factory wastewaters have been tested as growth media for the production of plant growth hormones. Funalia trogii ATCC 200800 and Trametes versicolor ATCC 200801 have been tested. Gibberellic acid (GA3), abscisic acid (ABA), indole acetic acid (IAA), and cytokinin were determined in the culture media of these fungi. Both organisms produced enhanced levels of all three hormones in the presence of either of the wastewaters. 相似文献
19.
Sasaki C Takada R Watanabe T Honda Y Karita S Nakamura Y Watanabe T 《Bioresource technology》2011,102(21):9942-9946
Effects of pretreatments with a white rot fungus, Ceriporiopsis subvermispora, and microwave hydrothermolysis of bagasse on enzymatic saccharification and fermentation were evaluated. The best sugar yield, 44.9 g per 100 g of bagasse was obtained by fungal treatments followed by microwave hydrothermolysis at 180 °C for 20 min. Fluorescent-labeled carbohydrate-binding modules which recognize crystalline cellulose (CjCBM3-GFP), non-crystalline cellulose (CjCBM28-GFP) and xylan (CtCBM22-GFP) were applied to characterize the exposed polysaccharides. The microwave pretreatments with and without the fungal cultivation resulted in similar levels of cellulose exposure, but the combined treatment caused more defibration and thinning of the plant tissues. Simultaneous saccharification and fermentation of the pulp fractions obtained by microwave hydrothermolysis with and without fungal treatment, gave ethanol yields of 35.8% and 27.0%, respectively, based on the holocellulose content in the pulp. These results suggest that C. subvermispora pretreatment could be beneficial part of the process to produce ethanol from bagasse. 相似文献
20.
Yueh Feng Loh Tahir Md. ParidahYeoh Beng Hoong Edi Suhaimi BakarMokhtar Anis Husain Hamdan 《International biodeterioration & biodegradation》2011,65(1):14-17
The objectives of the study were to evaluate the effectiveness of phenolic resin in protecting oil palm stem (OPS) plywood against both subterranean termites (Coptotermes curvignathus) and white rot fungi (Pycnoporous sanguineus). Specially cooked, Low molecular weight phenol formaldehyde (LMW PF) resin was used to treat the OPS veneer whilst commercial urea formaldehyde (UF) resin was used to bond the phenolic-treated veneer. OPS plywood were produced using two types of lay-up (100% outer veneer type and 100% inner veneer type) with adhesive spread rate of 200 g/m2. The results show that treatment of OPS veneer with LMW PF has significantly enhanced the resistance of OPS plywood against both termites and white rot fungi. In the termites resistance test, the percentage of weight loss for untreated samples were 19.2% (outer veneer) and 23.9% (inner veneer), while for phenolic treated samples were only 10.7% and 15.8%, respectively. The phenolic treatment was able to enhance the resistance towards termites by 38% and towards white rot fungi by 62%. The study has shown LMW PF resin can be used to protect OPS plywood from termites and white rot fungi. 相似文献