首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Bjerkandera sp. strain BOS55 is a white rot fungus that can bleach EDTA-extracted eucalyptus oxygen-delignified kraft pulp (OKP) without any requirement for manganese. Under manganese-free conditions, additions of simple physiological organic acids (e.g., glycolate, glyoxylate, oxalate, and others) at 1 to 5 mM stimulated brightness gains and pulp delignification two- to threefold compared to results for control cultures not receiving acids. The role of the organic acids in improving the manganese-independent biobleaching was shown not to be due to pH-buffering effects. Instead, the stimulation was attributed to enhanced production of manganese peroxidase (MnP) and lignin peroxidase (LiP) as well as increased physiological concentrations of veratryl alcohol and oxalate. These factors contributed to greatly improved production of superoxide anion radicals, which may have accounted for the more extensive biobleaching. Optimum biobleaching corresponded most to the production of MnP. These results suggest that MnP from Bjerkandera is purposefully produced in the absence of manganese and can possibly function independently of manganese in OKP delignification. LiP probably also contributed to OKP delignification when it was present.  相似文献   

2.
The white rot fungus Bjerkandera sp. strain BOS55 extensively delignified and bleached oxygen-delignified eucalyptus kraft pulp handsheets. Biologically mediated brightness gains of up to 14 ISO (International Standards Organization units) were obtained, providing high final brightness values of up to 80% ISO. In nitrogen-limited cultures (2.2 mM N), manganese (Mn) greatly improved manganese-dependent peroxidase (MnP) production. However, the biobleaching was not affected by the Mn nutrient regimen, ranging from 1,000 (mu)M added Mn to below the detection limit of 0.26 (mu)M Mn in EDTA-extracted pulp medium. The lowest Mn concentration tested was at least several orders of magnitude lower than the K(infm) known for MnP. Consequently, it was concluded that Mn is not required for biobleaching in Bjerkandera sp. strain BOS55. Nonetheless, fast protein liquid chromatography profiles indicated that MnP was the predominant oxidative enzyme produced even under culture conditions in the near absence of manganese. High nitrogen (22 mM N) and exogenous veratryl alcohol (2 mM) repressed biobleaching in Mn-deficient but not in Mn-sufficient culture medium. No correlation was observed between the titers of extracellular peroxidases and the biobleaching. However, the decolorization rate of the polyaromatic dye Poly R-478 was moderately correlated to the biobleaching under a wide range of Mn and N nutrient regimens.  相似文献   

3.
Manganese dependent peroxidase (MnP) is the most ubiquitous peroxidase produced by white rot fungi. MnP is known to be involved in lignin degradation, biobleaching and in the oxidation of hazardous organopollutants. Bjerkandera sp. strain BOS55 is a nitrogen-unregulated white rot fungus which produces high amounts of MnP in the excess of N-nutrients due to increased biomass yield. Therefore, the strain is a good candidate for use in large scale production of this enzyme. The objective of this study was to optimize the MnP production in N-sufficient cultures by varying different physiological factors such as Mn concentration, culture pH, incubation temperature and the addition of organic acids. The fungus produced the highest level of MnP (up to 900 U 1−1) when the Mn concentration was 0.2 to 1 mM, the pH value was 5.2, and the incubation temperature was 30°C. A noteworthy finding was that MnP was also produced at lower levels in the complete absence of Mn. The addition of organic acids like glycolate, malonate, glucuronate, gluconate, 2-hydroxybutyrate to the culture medium increased the peak titres of MnP up to 1250 U 1−1. FPLC profiles indicated that the organic acids stimulated the production of all MnP isoenzymes present in the extracellular fluid of the fungus.  相似文献   

4.
Many white rot fungi are able to produce de novo veratryl alcohol, which is known to be a cofactor involved in the degradation of lignin, lignin model compounds, and xenobiotic pollutants by lignin peroxidase (LiP). In this study, Mn nutrition was shown to strongly influence the endogenous veratryl alcohol levels in the culture fluids of N-deregulated and N-regulated white rot fungi Bjerkandera sp. strain BOS55 and Phanerochaete chrysosporium BKM-F-1767, respectively. Endogenous veratryl alcohol levels as high as 0.75 mM in Bjerkandera sp. strain BOS55 and 2.5 mM in P. chrysosporium were observed under Mn-deficient conditions. In contrast, veratryl alcohol production was dramatically decreased in cultures supplemented with 33 or 264 (mu)M Mn. The LiP titers, which were highest in Mn-deficient media, were shown to parallel the endogenous veratryl alcohol levels, indicating that these two parameters are related. When exogenous veratryl alcohol was added to Mn-sufficient media, high LiP titers were obtained. Consequently, we concluded that Mn does not regulate LiP expression directly. Instead, LiP titers are enhanced by the increased production of veratryl alcohol. The well-known role of veratryl alcohol in protecting LiP from inactivation by physiological levels of H(inf2)O(inf2) is postulated to be the major reason why LiP is apparently regulated by Mn. Provided that Mn was absent, LiP titers in Bjerkandera sp. strain BOS55 increased with enhanced fungal growth obtained by increasing the nutrient N concentration while veratryl alcohol levels were similar in both N-limited and N-sufficient conditions.  相似文献   

5.
The N-unregulated white rot fungus Bjerkandera sp. strain BOS55 was cultured in 1 liter of peptone-yeast extract medium to produce lignin peroxidase (LiP). During the LiP assay, the oxidation of veratryl alcohol to veratraldehyde was inhibited due to tyrosine present in the peptone and the yeast extract.  相似文献   

6.
Forty-six pulp-bleaching fungi were screened for production of key enzymes for conversion of polychlorinated dibenzo-p-dioxins—lignin peroxidase (LiP), manganese peroxidase (MnP), and manganese-independent peroxidase (MiP)—under various conditions that would allow their utilization in the environment. Of 38 MnP-producing strains with MiP activity, 22 produced LiP. Three of the new isolates, Bjerkandera sp. strains MS191, MS325, and MS1167, were the best producers of the three different peroxidases, and had reasonable growth rates. The most promising Bjerkandera sp. strain, MS325, exhibited significant levels of LiP and MnP activities under various conditions, e.g., nutrient nitrogen-sufficient or -limited conditions, conditions with or without Mn(II), and changes in temperature (15–37°C). Furthermore, the ability of this strain to degrade 1,3,6,8-tetrachlorodibenzo-p-dioxin was confirmed. The results presented here indicate that utilization of Bjerkandera sp. strain MS325 on a practical scale in the environment has several advantages over many white rot fungi, which produce extracellular peroxidases only under specific conditions such as nutrient limitation.  相似文献   

7.
The ability of several white-rot fungal strains to remove and detoxify acetone extractives (pitch or resin) in Scots pine sapwood was investigated in stationary laboratory batch assays. Fungal pretreatment provided up to 62% total pitch reduction and significant decreases in pitch toxicity. The best strains were Bjerkandera sp. strain BOS55, Stereum hirsutum and Trametes versicolor that eliminated over 93% of the problematic triglyceride fraction and 58–87% of other lipophilic extractive classes in only 2 weeks. Fungal removal of the wood extractives was accompanied by a 7.4–16.9-fold decrease in their inhibitory effect, as determined in the Microtox bioassay. Wood pretreatment by Bjerkandera sp. and T. versicolor caused limited losses of woody mass (less than 4% in 4 weeks); whereas S. hirsutum led to somewhat higher mass losses (7% in 4 weeks). These results indicate the potential of white rot fungi to control pitch deposition problems in pulping and to reduce the aquatic toxicity caused by naturally-occurring lipophilic extractives in forest industry effluents.  相似文献   

8.
A technique was developed for studying the biodegradative ability of white rot fungi in different solid media. This technique enables the gravimetric determination of fungal growth (increase of biomass) and the spectrometric measurement of fungal decolourization ability (both by the determination of the production of the extracellular enzyme manganese-dependent peroxidase (MnP) and by the rate of decolourization of dyes). Bjerkandera sp., strain BOS55, was grown in different solid media. Its growth rate, decolourization of solophenil blue 2BL (azoic dye), neutral red (eurhodin dye), methyl green and crystal violet (triphenylmethane dyes) and the production of MnP were determined. Application of this technique enabled a spectrometric quantification of enzymatic activity. Assays indicate that greater amounts of MnP were present in agar plate cultures of Bjerkandera sp. than in liquid cultures.  相似文献   

9.
Bjerkandera sp. strain BOS55, a newly isolated wild-type white rot fungus, produced lignin peroxidase (LiP) in nitrogen (N)-sufficient glucose-peptone medium, whereas no LiP was detectable in N-limited medium. The production of LiP was induced by the peptide-containing components of this medium and also by soy bean protein. Furthermore, the production of manganese-dependent peroxidase was stimulated by organic N sources, although lower production was also evident in N-limited medium. Further research showed that the induction of LiP depended on the combination of pH and the type of N source. An amino acid mixture and ammonium induced LiP only at either pH 6 or 7.3, respectively. Peptone induced LiP activity at all pH values tested; however, the highest activity was observed at pH 7.3. The results presented here indicate that Bjerkandera spp. are distinct from the model white rot fungus, Phanerochaete chrysosporium, which produces ligninolytic peroxidases in response to N limitation.  相似文献   

10.
Protoplasts of the monokaryotic strain 52J of Trametes versicolor were treated with UV light and screened for the inability to produce a colored precipitate on guaiacol-containing agar plates. Mutants unable to oxidize guaiacol had absent or very low secretion of laccase and manganese peroxidase (MnP) proteins. All isolates unable to secrete MnP were also unable to bleach or delignify kraft pulp. One mutant strain, M49, which grew normally but did not oxidize guaiacol, was tested further with a number of other substrates whose degradation has been associated with delignification by white rot fungi. Compared with the parent, 52J, mutant M49, secreting no MnP and low laccase, could not brighten or delignify kraft pulp, produced less ethylene from 2-keto methiolbutyric acid, released much less (sup14)CO(inf2) from [(sup14)C]DHP (a synthetic lignin-like polymerizate), and produced much less methanol from pulp. This mutant also displayed decreased abilities to oxidize the dyes poly B-411, poly R-478, and phenol red compared with the wild-type strain and was also unable to decolorize kraft bleachery effluent or mineralize its organochlorine. Addition of purified MnP in conjunction with H(inf2)O(inf2), MnSO(inf4), and an Mn(III) chelator to M49 cultures partially restored methanol production, pulp delignification, and biobleaching in some cases.  相似文献   

11.
Two families of peroxidases—lignin peroxidase (LiP) and manganese-dependent lignin peroxidase (MnP)—are formed by the lignin-degrading white rot basidiomycete Phanerochaete chrysosporium and other white rot fungi. Isoenzymes of these enzyme families carry out reactions important to the biodegradation of lignin. This research investigated the regulation of LiP and MnP production by Mn(II). In liquid culture, LiP titers varied as an inverse function of and MnP titers varied as a direct function of the Mn(II) concentration. The extracellular isoenzyme profiles differed radically at low and high Mn(II) levels, whereas other fermentation parameters, including extracellular protein concentrations, the glucose consumption rate, and the accumulation of cell dry weight, did not change significantly with the Mn(II) concentration. In the absence of Mn(II), extracellular LiP isoenzymes predominated, whereas in the presence of Mn(II), MnP isoenzymes were dominant. The release of 14CO2 from 14C-labeled dehydrogenative polymerizate lignin was likewise affected by Mn(II). The rate of 14CO2 release increased at low Mn(II) and decreased at high Mn(II) concentrations. This regulatory effect of Mn(II) occurred with five strains of P. chrysosporium, two other species of Phanerochaete, three species of Phlebia, Lentinula edodes, and Phellinus pini.  相似文献   

12.
Biobleaching of hardwood unbleached kraft pulp (UKP) by Phanerochaete chrysosporium and Trametes versicolor was studied in the solid-state fermentation system with different culture media. In this fermentation system with low-nitrogen and high-carbon culture medium, pulp brightness increased by 15 and 30 points after 5 days of treatment with T. versicolor and P. chrysosporium, respectively, and the pulp kappa number decreased with increasing brightness. A comparison of manganese peroxidase (MnP), lignin peroxidase (LiP), and laccase activities assayed by using fungus-treated pulp and the filtrate after homogenizing the fungus-treated pulp in buffer solution indicated that enzymes secreted from fungi were adsorbed onto the UKP and that assays of these enzyme activities should be carried out with the treated pulp. Time course studies of brightness increase and MnP activity during treatment with P. chrysosporium suggested that it was difficult to correlate them on the basis of data obtained on a certain day of incubation, because the MnP activity fluctuated dramatically during the treatment time. When brightness increase and cumulative MnP, LiP, and laccase activities were determined, a linear relationship between brightness increase and cumulative MnP activity was found in the solid-state fermentation system with both P. chrysosporium and T. versicolor. This result suggests that MnP is involved in brightening of UKP by white rot fungi.  相似文献   

13.
The white rot fungus Trametes trogii strain BAFC 463 produced laccase, manganese peroxidase, lignin peroxidase and cellobiose dehydrogenase, as well as two hydrogen peroxide‐producing activities: glucose oxidizing activity and glyoxal oxidase. In high‐N (40 mM N) cultures, the titres of laccase, MnP and GLOX were 27 (6.55 U/ml), 45 (403.00 mU/ml)and 8 (32,14 mU/ml) fold higher, respectively, than those measured in an N‐limited medium. This is consistent with the fact that the ligninolytic system of T. trogii is expressed constitutively. Lower activities of all the enzymes tested were recorded upon decreasing the initial pH of the medium from 6.5 to 4.5. Adding veratryl alcohol improved GLOX production, while laccase activity was stimulated by tryptophan. Supplying Tween 80 strongly reduced the activity of both MnP and GLOX, but increased laccase production. The titre of MnP was affected by the concentration of Mn in the culture medium, the highest levels were obtained with 90 μM Mn (II). LiP activity, as CDH activity, were detected only in the mediumsupplemented with sawdust. In this medium, laccase production reached a maximum of 4.75 U/ml, MnP 747.60 mU/ml and GLOX 117.11 mU/ml. LiP, MnP and GLOX activities were co‐induced, attaining their highest levels at the beginning of secondary metabolism, but while MnP, laccase, GLOX and CDH activities were also present in the primary growth phase, LiP activity appears to beidiophasic. The simultaneous presence of high ligninolytic and hydrogen peroxide producing activities in this fungus makes it an attractive microorganism for future biotechnological applications.  相似文献   

14.
Of seven fungal strains tested for their ability to decolourise three structurally diverse synthetic dyes, Phanerochaete sordida, Bjerkandera sp. BOS55, Phlebia radiata, and Phanerochaete chrysosporium had average values of maximum decolourisation rates higher than 0.2 [Absorbance] d–1. All seven fungi produced manganese peroxidase (MnP) but laccase activity was detected only in Phlebia radiata. No lignin peroxidase (LiP) activity was observed.  相似文献   

15.
Manganese peroxidases (MnP) from Phanerochaete chrysosporium and Bjerkandera sp. BOS55 were immobilised in glutaraldehyde–agarose gels. Four different strategies were considered concerning the activation of the support (low or high density) and the ionic strength (low or high). In terms of immobilisation rate and yield, better results were obtained when low ionic strength conditions and high density activated support (75 μEq/ml) were used. Immobilisation proceeds initially with an ionic adsorption which facilitates the further covalent attachment of the enzyme to the support. An almost complete immobilisation has been attained in a very short period (0.5–2 h). Immobilisation maintained a high percentage of MnP activity for long periods of time (activity levels of 50–60% after more than 1 year at room temperature storage). Other desirable effects such as increased thermostability at 50–60 °C for MnP from Bjerkandera and higher resistance to high H2O2 concentrations for MnP for P. chrysosporium were also obtained. This latter is quite an interesting feature because it avoids the inactivation of the enzyme in the presence of an unbalanced concentration of H2O2. The improved characteristics of the immobilised MnP make its application in several fields such as the enzymatic oxidation of hardly degradable compounds more feasible.  相似文献   

16.
A visual method for the selective screening of lignin degrading enzymes, produced by white rot fungi (WRF), was investigated by the addition of coloring additives to solid media. Of the additives used in the enzyme production media, guaiacol and RBBR could be used for the detection of lignin peroxidase (LiP), manganese peroxidase (MnP) and laccase. Syringaldazine and Acid Red 264 were able for the detection of both the MnP and laccase, and the LiP and laccase, respectively, and a combination of these two additives was able to detect each of the ligninases produced by the WRF on solid media.  相似文献   

17.
Lignin peroxidase (LiP) and manganese peroxidase (MnP) are structurally similar heme-containing enzymes secreted by white-rot fungi. Unlike MnP, which is only specific for Mn(2+), LiP has broad substrate specificity, but it is not known if this versatility is due to multiple substrate-binding sites. We report here that a S168W variant of MnP from Phanerochaete chrysosporium not only retained full Mn(2+) oxidase activity, but also, unlike native or recombinant MnP, oxidized a multitude of LiP substrates, including small molecule and polymeric substrates. The kinetics of oxidation of most nonpolymeric substrates by the MnP variant and LiP were similar. The stoichiometries for veratryl alcohol oxidation by these two enzymes were identical. Some readily oxidizable substrates, such as guaiacol and ferrocyanide, were oxidized by MnP S168W and LiP both specifically and nonspecifically while recombinant MnP oxidized these substrates only nonspecifically. The functional similarities between this MnP variant and LiP provide evidence for the broad substrate specificity of a single oxidation site near the surface tryptophan.  相似文献   

18.
Lignin-modifying enzymes of the white rot basidiomycete Ganoderma lucidum   总被引:2,自引:0,他引:2  
Ganoderma lucidum, a white rot basidiomycete widely distributed worldwide, was studied for the production of the lignin-modifying enzymes laccase, manganese-dependent peroxidase (MnP), and lignin peroxidase (LiP). Laccase levels observed in high-nitrogen (HN; 24 mM N) shaken cultures were much greater than those seen in low-nitrogen (2.4 mM N), malt extract, or wood-grown cultures and those reported for most other white rot fungi to date. Laccase production was readily seen in cultures grown with pine or poplar (100-mesh-size ground wood) as the sole carbon and energy source. Cultures containing both pine and poplar showed 5- to 10-fold-higher levels of laccase than cultures containing pine or poplar alone. Since syringyl units are structural components important in poplar lignin and other hardwoods but much less so in pine lignin and other softwoods, pine cultures were supplemented with syringic acid, and this resulted in laccase levels comparable to those seen in pine-plus-poplar cultures. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of concentrated extracellular culture fluid from HN cultures showed two laccase activity bands (M(r) of 40,000 and 66, 000), whereas isoelectric focusing revealed five major laccase activity bands with estimated pIs of 3.0, 4.25, 4.5, 4.8, and 5.1. Low levels of MnP activity ( approximately 100 U/liter) were detected in poplar-grown cultures but not in cultures grown with pine, with pine plus syringic acid, or in HN medium. No LiP activity was seen in any of the media tested; however, probing the genomic DNA with the LiP cDNA (CLG4) from the white rot fungus Phanerochaete chrysosporium showed distinct hybridization bands suggesting the presence of lip-like sequences in G. lucidum.  相似文献   

19.
The overproduction of ligninolytic peroxidase by the N-deregulated white rot fungus Bjerkandera sp. strain BOS55 under nitrogen-sufficient conditions had no noteworthy effect on the oxidation of anthracene or the decolorization of the polymeric aromatic dye Poly R-478 in 6-day-old cultures. Only when the endogenous production of H(inf2)O(inf2) was increased by the addition of extra oxygen and glucose could a 2.5-fold increase in the anthracene oxidation rate and a 6-fold increase in the Poly R-478 decolorization rate be observed in high-N cultures with 10- to 35-fold higher peroxidase activities than N-limited cultures. Further increase of the H(inf2)O(inf2) generation rate in high-N cultures with glucose oxidase led to an additional 3.5-fold increase in the anthracene oxidation rate (350 mg liter(sup-1) day(sup-1)) and a 10-fold increase in the Poly R-478 decolorization rate. These results indicate that xenobiotic compound oxidation by white rot fungi cannot be improved by overproducing peroxidases without increasing the endogenous production of H(inf2)O(inf2). The absence of Mn, which decreased the manganese peroxidase titers and increased the lignin peroxidase titers, was associated with up to 95% improvements in the anthracene oxidation rate. The simultaneous presence of Mn and veratryl alcohol was observed to have a synergistic negative effect on the oxidation of anthracene and the decolorization of Poly R-478.  相似文献   

20.
To clarify the role of excreted extracellular enzymes during long-term incubation in a pulp biobleaching system with white rot fungi, we developed a cultivation system in which a membrane filter is used; this membrane filter can prevent direct contact between hyphae and kraft pulp, but allows extracellular enzymes to attack the kraft pulp. Phanerochaete sordida YK-624 brightened the pulp 21.4 points to 54.0% brightness after a 5-day in vitro treatment; this value was significantly higher than the values obtained with Phanerochaete chrysosporium and Coriolus versicolor after a 7-day treatment. Our results indicate that cell-free, membrane-filtered components from the in vitro bleaching system are capable of delignifying unbleached kraft pulp. Obvious candidates for filterable reagents capable of delignifying and bleaching kraft pulp are peroxidase and phenoloxidase proteins. The level of secreted manganese peroxidase activity in the filterable components was substantial during strain YK-624 in vitro bleaching. A positive correlation between the level of manganese peroxidase and brightening of the pulp was observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号