首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
There are two common forms of prion protein (PrP) in humans, with either methionine or valine at position 129. This polymorphism is a powerful determinant of the genetic susceptibility of humans toward both sporadic and acquired forms of prion disease and restricts propagation of particular prion strains. Despite its key role, we have no information on the effect of this mutation on the structure, stability, folding, and dynamics of the cellular form of PrP (PrP(C)). Here, we show that the mutation has no measurable effect on the folding, dynamics, and stability of PrP(C). Our data indicate that the 129M/V polymorphism does not affect prion propagation through its effect on PrP(C); rather, its influence is likely to be downstream in the disease mechanism. We infer that the M/V effect is mediated through the conformation or stability of disease-related PrP (PrP(Sc)) or intermediates or on the kinetics of their formation.  相似文献   

2.
The polymorphism at residue 129 of the human PRNP gene modulates disease susceptibility and the clinico-pathological phenotypes in human transmissible spongiform encephalopathies. The molecular mechanisms by which the effect of this polymorphism are mediated remain unclear. It has been shown that the folding, dynamics and stability of the physiological, alpha-helix-rich form of recombinant PrP are not affected by codon 129 polymorphism. Consistent with this, we have recently shown that the kinetics of amyloid formation do not differ between protein containing methionine at codon 129 and valine at codon 129 when the reaction is initiated from the alpha-monomeric PrP(C)-like state. In contrast, we have shown that the misfolding pathway leading to the formation of beta-sheet-rich, soluble oligomer was favoured by the presence of methionine, compared with valine, at position 129. In the present work, we examine the effect of this polymorphism on the kinetics of an alternative misfolding pathway, that of amyloid formation using partially folded PrP allelomorphs. We show that the valine 129 allelomorph forms amyloids with a considerably shorter lag phase than the methionine 129 allelomorph both under spontaneous conditions and when seeded with pre-formed amyloid fibres. Taken together, our studies demonstrate that the effect of the codon 129 polymorphism depends on the specific misfolding pathway and on the initial conformation of the protein. The inverse propensities of the two allelomorphs to misfold in vitro through the alternative oligomeric and amyloidogenic pathways could explain some aspects of prion diseases linked to this polymorphism such as age at onset and disease incubation time.  相似文献   

3.
The human PrP gene (PRNP) has two common alleles that encode either methionine or valine at codon 129. This polymorphism modulates disease susceptibility and phenotype of human transmissible spongiform encyphalopathies, but the molecular mechanism by which these effects are mediated remains unclear. Here, we compared the misfolding pathway that leads to the formation of beta-sheet-rich oligomeric isoforms of the methionine 129 variant of PrP to that of the valine 129 variant. We provide evidence for differences in the folding behavior between the two variants at the early stages of oligomer formation. We show that Met(129) has a higher propensity to form beta-sheet-rich oligomers, whereas Val(129) has a higher tendency to fold into alpha-helical-rich monomers. An equimolar mixture of both variants displayed an intermidate folding behavior. We show that the oligomers of both variants are initially a mixture of alpha- and beta-rich conformers that evolve with time to an increasingly homogeneous beta-rich form. This maturation process, which involves no further change in proteinase K resistance, occurs more rapidly in the Met(129) form than the Val(129) form. Although the involvement of such beta-rich oligomers in prion pathogenesis is speculative, the misfolding behavior could, in part, explain the higher susceptibility of individuals that are methionine homozygote to both sporadic and variant Creutzfeldt-Jakob disease.  相似文献   

4.
Shamsir MS  Dalby AR 《Proteins》2005,59(2):275-290
Fatal familial insomnia (FFI) and Creutzfeldt-Jakob disease (CJD) are associated to the same mutation at codon 178 but differentiate into clinicopathologically distinct diseases determined by this mutation and a naturally occurring methionine-valine polymorphism at codon 129 of the prion protein gene. It has been suggested that the clinical and pathological difference between FFI and CJD is caused by different conformations of the prion protein. Using molecular dynamics (MD), we investigated the effect of the mutation at codon 178 and the polymorphism at codon 129 on prion protein dynamics and conformation at normal and elevated temperatures. Four model structures were examined with a focus on their dynamics and conformational changes. The results showed differences in stability and dynamics between polymorphic variants. Methionine variants demonstrated a higher stability than valine variants. Elongation of existing beta-sheets and formation of new beta-sheets was found to occur more readily in valine polymorphic variants. We also discovered the inhibitory effect of proline residue on existing beta-sheet elongation.  相似文献   

5.
A single nucleotide polymorphism (SNP) in codon 129 of the human prion gene, leading to a change from methionine to valine at residue 129 of prion protein (PrP), has been shown to be a determinant in the susceptibility to prion disease. However, the molecular basis of this effect remains unexplained. In the current study, we determined crystal structures of prion segments having either Met or Val at residue 129. These 6-residue segments of PrP centered on residue 129 are “steric zippers,” pairs of interacting β-sheets. Both structures of these “homozygous steric zippers” reveal direct intermolecular interactions between Met or Val in one sheet and the identical residue in the mating sheet. These two structures, plus a structure-based model of the heterozygous Met-Val steric zipper, suggest an explanation for the previously observed effects of this locus on prion disease susceptibility and progression.  相似文献   

6.
A conformational transition of normal cellular prion protein (PrPC) to its pathogenic form (PrPSc) is believed to be a central event in the transmission of the devastating neurological diseases known as spongiform encephalopathies. The common methionine/valine polymorphism at residue 129 in the PrP influences disease susceptibility and phenotype. We report here seven crystal structures of human PrP variants: three of wild‐type (WT) PrP containing V129, and four of the familial variants D178N and F198S, containing either M129 or V129. Comparison of these structures with each other and with previously published WT PrP structures containing M129 revealed that only WT PrPs were found to crystallize as domain‐swapped dimers or closed monomers; the four mutant PrPs crystallized as non‐swapped dimers. Three of the four mutant PrPs aligned to form intermolecular β‐sheets. Several regions of structural variability were identified, and analysis of their conformations provides an explanation for the structural features, which can influence the formation and conformation of intermolecular β‐sheets involving the M/V129 polymorphic residue.  相似文献   

7.
《Journal of molecular biology》2019,431(14):2599-2611
Prion diseases are neurodegenerative disorders caused by the misfolding of the cellular prion protein (PrPC). Gerstmann–Sträussler–Scheinker syndrome is an inherited prion disease with one early-onset allele (HRdup) containing an eight-amino-acid insertion; this LGGLGGYV insert is positioned after valine 129 (human PrPC sequence) in a hydrophobic tract in the natively disordered region. Here we have characterized the structure and explored the molecular motions and dynamics of HRdup PrP and a control allele. High-resolution NMR data suggest that the core of HRdup has a canonical PrPC structure, yet a nascent β-structure is observed in the flexible elongated hydrophobic region of HRdup. In addition, using mouse PrPC sequence, we observed that a methionine/valine polymorphism at codon 128 (equivalent of methionine/valine 129 in human sequence) and oligomerization caused by high protein concentration affects conformational exchange dynamics at residue G130. We hypothesize that with the β-structure at the N-terminus, the hydrophobic region of HRdup can adopt a fully extended configuration and fold back to form an extended β-sheet with the existing β-sheet. We propose that these structures are early chemical events in disease pathogenesis.  相似文献   

8.
The common polymorphism at codon 129 in the human prion protein (PrP) has been shown in many studies to influence not only the pathology of prion disease but also the misfolding propensity of PrP. Here we used NMR, CD and atomic force microscopy in solution to investigate differences in β-oligomer (βO) formation and inter-oligomer interaction depending on the polymorphism at codon 129. NMR investigations assigned the observable amide resonances to the βO N-terminal segments, showing that it is the core region of PrP (residues 127-228) that is involved in βO formation. Atomic force microscopy revealed distinctive 1.8 × 15 × 15-nm disk-like structures that form stacks through inter-oligomer interactions. The propensity to form stacks and the number of oligomers involved depended on the polymorphism at codon 129, with a significantly lower degree of stacking for βO with valine at position 129. This result provides evidence for conformational differences between the βO allelic forms, showing that the core region of the protein including position 129 is actively involved in inter-oligomer interactions, consistent with NMR observations.  相似文献   

9.
Apetri AC  Vanik DL  Surewicz WK 《Biochemistry》2005,44(48):15880-15888
One of the arguments in favor of the protein-only hypothesis of transmissible spongiform encephalopathies is the link between inherited prion diseases and specific mutations in the PRNP gene. One such mutation (Asp178 --> Asn) is associated with two distinct disorders: fatal familial insomnia or familial Creutzfeldt-Jakob disease, depending upon the presence of Met or Val at position 129, respectively. In this study, we have characterized the biophysical properties of recombinant human prion proteins (huPrP90-231) corresponding to the polymorphic variants D178N/M129 and D178N/V129. In comparison to the wild-type protein, both polymorphic forms of D178N huPrP show a greatly increased propensity for a conversion to beta-sheet-rich oligomers (at acidic pH) and thioflavine T-positive amyloid fibrils (at neutral pH). Importantly, the conversion propensity for the D178N variant is strongly dependent upon the M/V polymorphism at position 129, whereas under identical experimental conditions, no such dependence is observed for the wild-type protein. Amyloid fibrils formed by wild-type huPrP90-231 and the D178N variant are characterized by different secondary structures, and these structures are further modulated by residue 129 polymorphism. Although on the basis of only in vitro data, this study strongly suggests that polymorphism-dependent phenotypic variability of familial prion diseases may be linked to differences in biophysical properties of prion protein variants.  相似文献   

10.
Intermediate states are key to understanding the molecular mechanisms governing protein misfolding. The human prion protein (PrP) can follow various misfolding pathways, and forms a soluble beta-sheet-rich oligomer under acidic, mildly denaturing, high salt conditions. Here we describe a fast conformational switch from the native alpha-monomer to monomeric intermediate states under oligomer-forming conditions, followed by a slower oligomerization process. We observe a pH dependence of the secondary structure of these intermediate forms, with almost native-like alpha-helical secondary structure at pH 4.1 and predominantly beta-sheet characteristics at pH 3.6. NMR spectroscopy differentiates these intermediate states from the native protein and indicates dynamic rearrangements of secondary structure elements characteristic of a molten globule. The alpha-helical intermediate formed at pH 4.1 can convert to the beta-sheet conformation at pH 3.6 but not vice versa, and neither state can be reconverted to an alpha-monomer. The presence of methionine rather than valine at codon 129 accelerates the rate of oligomer formation from the intermediate state.  相似文献   

11.
Misfolding of the natively α-helical prion protein into a β-sheet rich isoform is related to various human diseases such as Creutzfeldt-Jakob disease and Gerstmann-Sträussler-Scheinker syndrome. In humans, the disease phenotype is modified by a methionine/valine polymorphism at codon 129 of the prion protein gene. Using a combination of hydrogen/deuterium exchange coupled to NMR spectroscopy, hydroxyl radical probing detected by mass spectrometry, and site-directed mutagenesis, we demonstrate that stop mutants of the human prion protein have a conserved amyloid core. The 129 residue is deeply buried in the amyloid core structure, and its mutation strongly impacts aggregation. Taken together the data support a critical role of the polymorphic residue 129 of the human prion protein in aggregation and disease.  相似文献   

12.
Reaction of H(2)O(2) with the recombinant SHa(29-231) prion protein resulted in rapid oxidation of multiple methionine residues. Susceptibility to oxidation of individual residues, assessed by mass spectrometry after digestion with CNBr and lysC, was in general a function of solvent exposure. Met 109 and Met 112, situated in the highly flexible amino terminus, and key residues of the toxic peptide PrP (106-126), showed the greatest susceptibility. Met 129, a residue located in a polymorphic position in human PrP and modulating risk of prion disease, was also easily oxidized, as was Met 134. The structural effect of H(2)O(2)-induced methionine oxidation on PrP was studied by CD spectroscopy. As opposed to copper catalyzed oxidation, which results in extensive aggregation of PrP, this reaction led only to a modest increase in beta-sheet structure. The high number of solvent exposed methionine residues in PrP suggests their possible role as protective endogenous antioxidants.  相似文献   

13.
Gerstmann-Str?ussler-Scheinker disease (GSS) is an adult onset, rare, genetically determined autosomal dominant prion disease. Clinically, it is characterized predominantly by slowly progressive spino-cerebellar dysfunction with ataxia, absent reflexes in the legs and cognitive impairment. Onset is usually in the fifth decade and in the early phase, ataxia is predominant. Mutations in the prion protein gene (PRNP) had been identified and the most important of these is at codon 129. A genotype-phenotype relationship with genetic polymorphism at residue 129 between methionine and valine has been supposed. We describe a patient with GSS and P102L-V129 mutation in which the onset with prominent psychiatric features characterized by apathy and depression and not with cerebellar sign and the clinical course with seizures, nor observed in P102L-V129 cases, allow us to confirm observations that the GSS caused by the 102 mutation is influenced by the codon 129 polymorphism with a specific genotype-phenotype influence, but probably other additional factors might be considered as background for phenotypic variability.  相似文献   

14.
The pathology of human prion diseases is affected by polymorphism at amino acid residue 129 of the prion protein gene. Recombinant mouse prion proteins mimicking either form of the polymorphism were prepared to examine their effect on the conformation and the level of superoxide dismutase (SOD) activity of the prion protein. Following the binding of copper atoms to prion protein, antibody mapping and CD analysis detected conformational differences between the two forms of protein. However, neither the level of copper binding nor the level of SOD activity associated with this form of prion protein altered with the identity of codon 129. These results suggest that in the holo-metal binding form of the protein, prion structure but not its SOD activity is affected by polymorphism at codon 129.  相似文献   

15.
The suggested role of cellular prion protein (PrPC) in mediating the toxic effects of oligomeric amyloid β peptide (Aβ) in Alzheimer disease (AD) is controversial. To address the hypothesis that variable PrPC expression is involved in AD pathogenesis, we analyzed PrPC expression in the frontal and temporal cortices and hippocampus of individuals with no cognitive impairment (NCI), amnestic mild cognitive impairment (aMCI), mild AD (mAD) and AD. We found that PrPC expression in all brain regions was not significantly altered among the various patient groups. In addition, PrPC levels in all groups did not correlate with expression of methionine (M) or valine (V) at codon 129 of the PrP gene, a polymorphism that has been linked in some studies to increased risk for AD, and which occurs in close proximity to the proposed binding region for the oligomeric Aβ peptide. Our results indicate that, if PrPC is involved in mediating the toxic effects of the oligomeric Aβ peptide, these effects occur independently of steady state levels of PrP or the codon 129 polymorphism.Key words: prion protein, PrP codon 129 polymorphism, Alzheimer disease, oligomeric Aβ, Alzheimer precursor protein  相似文献   

16.
Human prion diseases have inherited, sporadic, and acquired etiologies. The appearance of the novel acquired prion disease, variant Creutzfeldt-Jakob disease (vCJD), and the demonstration that it is caused by the same prion strain as that causing bovine spongiform encephalopathy, has led to fears of a major human epidemic. The etiology of classical (sporadic) CJD, which has a worldwide incidence, remains obscure. A common human prion-protein-gene (PRNP) polymorphism (encoding either methionine or valine at codon 129) is a strong susceptibility factor for sporadic and acquired prion disease. However, a quantitative-trait-locus study of prion incubation periods in mice has demonstrated an important factor that is close to Prnp but is independent of its coding sequence or that of the nearby prion-like doppel gene (Prnd). We have analyzed the PRNP locus for such tightly linked susceptibility factors. Fifty-six polymorphic sites have been identified within 25 kb of the PRNP open reading frame, including sites within the PRNP promoter and the PRNP 3' untranslated region. These have been characterized in 61 Centre d'Etude du Polymorphisme Humain (CEPH) families, demonstrating extensive linkage disequilibrium around PRNP and the existence of 11 major European PRNP haplotypes. Haplotype frequencies estimated in healthy U.K. control individuals were very similar to those deduced in the CEPH families. A common haplotype was overrepresented in patients with sporadic CJD (sCJD). Through use of a log-linear modeling approach to simultaneously model Hardy-Weinberg and linkage disequilibria, a significant independent association was found between sCJD and a polymorphism upstream of PRNP exon 1 (P=.005), in addition to the strong susceptibility conferred by codon 129 (P=2x10(-8)). However, although our sample size was necessarily small, no association was found between these polymorphisms and vCJD or iatrogenic CJD, in keeping with their having distinct disease mechanisms. In addition, there was no evidence of a PRNP founder effect in the first reported geographical cluster of vCJD.  相似文献   

17.
Conformational transitions are thought to be the prime mechanism of amyloid formation in prion diseases. The prion proteins are known to exhibit polymorphic behavior that explains their ability of "conformation switching" facilitated by structured "seeds" consisting of transformed proteins. Oligopeptides containing prion sequences showing the polymorphism are not known even though amyloid formation is observed in these fragments. In this work, we have observed polymorphism in a 15-residue peptide PrP (113-127) that is known to form amyloid fibrils on aging. To see the polymorphic behavior of this peptide in different solvent environments, circular dichroism (CD) spectroscopic studies on an aqueous solution of PrP (113-127) in different trifluoroethanol (TFE) concentrations were carried out. The results show that PrP (113-127) have sheet preference in lower TFE concentration whereas it has more helical conformation in higher TFE content (>40%). The structural transitions involved in TFE solvent were studied using interval-scan CD and FT-IR studies. It is interesting to note that the alpha-helical structure persists throughout the structural transition process involved in amyloid fibril formation implicating the involvement of both N- and C-terminal sequences. To unravel the role of the N-terminal region in the polymorphism of the PrP (113-127), CD studies on another synthetic peptide, PrP (113-120) were carried out. PrP(113-120) exhibits random coil conformation in 100% water and helical conformation in 100% TFE, indicating the importance of full-length sequence for beta-sheet formation. Besides, the influence of different chemico-physical conditions such as concentration, pH, ionic strength, and membrane like environment on the secondary structure of the peptide PrP (113-127) has been investigated. At higher concentration, PrP (113-127) shows features of sheet conformation even in 100% TFE suggesting aggregation. In the presence of 5% solution of sodium dodecyl sulfate, PrP (113-127) takes high alpha-helical propensity. The environment-dependent conformational polymorphism of PrP (113-127) and its marked tendency to form stable beta-sheet structure at acidic pH could account for its conformation switching behavior from alpha-helix to beta-sheet. This work emphasizes the coordinative involvement of N-terminal and C-terminal sequences in the self-assembly of PrP (113-127).  相似文献   

18.
Bovine spongiform encephalopathy has been epizootic in cows for the last two decades, and most probably causes variant Creutzfeldt-Jakob disease in humans. A thorough understanding of prion pathogenesis relies on suitable animal models. Modeling the transmission of BSE to primates is a crucial public health priority, necessary for determining the tissue distribution of the agent and for devising therapies. Susceptibility of humans to BSE is partly determined by polymorphism within the gene encoding the cellular prion protein, Prnp, a fact that must be taken into account in primate studies. However, no information is available on Prnp polymorphisms in primates. We have sequenced the Prnp open reading frames of 30 non-consanguineous Rhesus macaques. All macaques were homozygous for methionine at codon 129, which is polymorphic in humans and seems to modulate prion susceptibility. However, we identified a novel polymorphism in macaque Prnp, localized on codon 226 (Y226F). A modulatory effect of this polymorphism on the development of prion disease is possible because codon 226 is close to the suggested binding side of the factor X, which has been invoked as a determinant of the prion species barrier.  相似文献   

19.
According to the "protein only" hypothesis, a conformational conversion of the non-pathogenic "cellular" prion isoform into a pathogenic "scrapie" isoform is the fundamental event in the onset of prion diseases. During this pathogenic conversion, helix H1 and two adjacent surface loops L2 and L3 of the normal prion protein are thought to undergo a conformational transition into an extended beta-like structure, which is prompted by interactions with the pre-existing beta-sheet. To get more insight into the interaction between the helix and one of the beta-strands in the partially unfolded prion protein, the solution structure of a synthetic linear peptide spanning helix H1 and beta-strand S2 (residues 142-166 in human numbering) was studied by circular dichroism and nuclear magnetic resonance spectroscopies. We found that, in contrast to many prion fragments studied earlier, this peptide (i) is highly soluble and does not aggregate up to a millimolar concentration range in aqueous medium and (ii) exhibits an intrinsic propensity to a beta-hairpin like conformation at neutral pH. This beta-propensity can be one of the internal driving forces of the molecular rearrangement responsible for the pathogenic conversion of the prion protein.  相似文献   

20.
A comparison of the pathological profiles of two spongiform encephalopathies with a similar presumptive route of infection was performed. Archival kuru and recent variant Creutzfeldt-Jakob disease (vCJD) cases reveal distinct lesional differences, particularly with respect to prion protein, suggesting that the strain of agent is important in determining the phenotype. Genotype analysis of the polymorphism on codon 129 reveals (in conjunction with updated information from more kuru cases) that all three genotypes (VV, MV and MM (where M is methionine and V is valine)) are detected in kuru with some preference for MM homozygosity. The presence of valine does not therefore appear to determine peripheral selection of PrPCJD. vCJD remains restricted to date to MM homozygosity on codon 129. It remains to be determined whether this genotype is dictating a shorter incubation period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号