首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Visceral movement due to impact loading is believed to play a role in the locomotor-respiratory coupling (LRC) that has been detected in a number of mammalian species. In the bird and bat species in which LRC has been described, the effect of the wing muscles on the timing of respiration appears to be a dominant influence. To test the hypothesis that LRC occurs in humans propelling wheelchairs (where there is no impact loading and the arms are used for locomotion), we studied 10 wheelchair athletes on a motorized treadmill at three speeds. Each subject's data were analyzed by spectral analysis (based on the fast Fourier transform), which detected apparent LRC (rates within 1% of a single-digit integer ratio) in 12 (40%) of the 30 test settings. However, a control analysis, in which each subject's arm-thrust rates were compared with another subject's breathing rates, revealed apparent (but false) coupling in 8 (27%), not significantly less often (using the chi 2 test). These findings appear to refute the hypothesis that LRC occurs during wheelchair propulsion. These data are consistent with the theory that the visceral piston is important to LRC and suggest that rhythmic arm movements are insufficient to induce the phenomenon in this setting.  相似文献   

2.
Previous investigations have shown that, when they run, wallabies and various quadrupedal mammals take exactly one breath per stride. It has been suggested that their breathing movements may be driven by the movements of running, and three mechanisms have been proposed: the lungs may be compressed and expanded by vibrations of a 'visceral piston', by bending and extension of the back or by the forces imposed on the rib cage by the forelegs.
The three mechanisms are tested against published observations on wallabies and horses. Simple mathematical models are used to predict the phase relationship between running and breathing for each mechanism, and the amplitudes of breathing that they could cause. The observed breathing movements of hopping wallabies are consistent with a visceral piston mechanism tuned to the stride frequency, but cannot be explained by either of the other mechanisms. Those of cantering and galloping horses are not consistent with a tuned visceral piston mechanism, but could be driven by the bending and extension of the back.  相似文献   

3.
The purpose of this study was to determine the accuracy of the pedometer when walking, skipping, galloping, sliding, and hopping. One hundred-two college students were fitted with a pedometer (Walk4Life LS-7010) at mid-thigh on the right and left of the hip. Participants then performed the randomly assigned movements for the length (26 m) of a hardwood court playing surface, during which time the investigator tallied the steps with a hand counter. Each step with the lead foot elicited a tally on the counter. Participants were instructed to perform the movement at a brisk pace, to jump-stop at the end of the court, and to remain still until after the pedometer reading was recorded. Repeated measure ANOVAs using the Bonferroni technique were used to compare differences between pedometer counts and hand counts. Significant differences were evident between the hand tally counts and readings from the right and left pedometers during all five locomotor movements (P < .01). Mean error was lowest between the hand tally and the average of the right and left pedometers while walking (-1.35 +/- 1.60) and hopping (-2.94 +/- 2.33), and increased while sliding (-6.42 +/- 4.78), galloping (-8.22 +/- 4.63), and skipping (-8.30 +/- 4.45). Results indicate the pedometer may not consistently register the vertical force produced by the trail foot contact, the lead foot contact, or a combination of the two while skipping, galloping, and sliding. Though the pedometer is a valid instrument when estimating physical activity levels, caution is urged when interpreting movements other than walking.  相似文献   

4.
The aim of this paper was to compare the effect of different optimisation methods and different knee joint degrees of freedom (DOF) on muscle force predictions during a single legged hop. Nineteen subjects performed single-legged hopping manoeuvres and subject-specific musculoskeletal models were developed to predict muscle forces during the movement. Muscle forces were predicted using static optimisation (SO) and computed muscle control (CMC) methods using either 1 or 3 DOF knee joint models. All sagittal and transverse plane joint angles calculated using inverse kinematics or CMC in a 1 DOF or 3 DOF knee were well-matched (RMS error<3°). Biarticular muscles (hamstrings, rectus femoris and gastrocnemius) showed more differences in muscle force profiles when comparing between the different muscle prediction approaches where these muscles showed larger time delays for many of the comparisons. The muscle force magnitudes of vasti, gluteus maximus and gluteus medius were not greatly influenced by the choice of muscle force prediction method with low normalised root mean squared errors (<48%) observed in most comparisons. We conclude that SO and CMC can be used to predict lower-limb muscle co-contraction during hopping movements. However, care must be taken in interpreting the magnitude of force predicted in the biarticular muscles and the soleus, especially when using a 1 DOF knee. Despite this limitation, given that SO is a more robust and computationally efficient method for predicting muscle forces than CMC, we suggest that SO can be used in conjunction with musculoskeletal models that have a 1 or 3 DOF knee joint to study the relative differences and the role of muscles during hopping activities in future studies.  相似文献   

5.
ZENGMIBAI  YINGWANG 《Cell research》1993,3(2):141-145
Intercellular communication of notochord cells during their differentiation was studied by microinjection of a fluorescent dye.Lucifer Yellow,Close correlation existed between the incidences of dye coupling and quantitative evaluation of gap junctions.high incidences of dye coupling and of gap junctions occurred at a stage when notochord cells were active in the change of cell shape and cell arrangement.With the subsidence of cell movements,both dye coupling and gap junctions were reduced to lower levels.It was,therefore,Suggested that intercellular communication via gap junctions played an important role in the coordination of notochord cell movements.Gap Junctions of altered configuration occurred in notochord cells in late taibud stage.The comparison of incidences of dye coupling at this stage with those at other stages strongly suggested that the gap junctions of altered configuration functioned just as those of generalized type.  相似文献   

6.
Based on the analysis of fat distribution by computed tomography (CT) scans, the classification scheme for obesity should include visceral fat obesity in which fat accumulation is predominant in the intra-abdominal cavity. Obese subjects with visceral fat accumulation more frequently demonstrate impairment of glucose and lipid metabolism than those with subcutaneous fat accumulation. We have shown that visceral fat obesity is present in almost 90% of obese patients with ischemic heart disease. Even in non-obese subjects, visceral fat accumulation is correlated with glucose intolerance, hyperlipidemia and hypertension. Forty percent of non-obese subjects with coronary artery disease (CAD) had increased visceral fat. In non-obese subjects, visceral fat area assessed by abdominal CT at the level of the umbilicus correlates with metabolic risk factors, whereas in obese subjects the visceral fat area to subcutaneous fat area ratio provides a more significant correlation. From clinical and basic investigations, aging, sex hormones, excess intake of sucrose and lack of physical exercise have been suggested to be determinants for visceral fat accumulation. Since intra-abdominal fat (mesenteric and omentum fat) has been shown to have high activities of both lipogenesis and lipolysis, its accumulation can induce high levels of free fatty acids, a product of lipolysis, in portal circulation which go into the liver. Excess free fatty acids may cause the enhancement of lipid synthesis and gluconeo genesis as well as insulin resistance, resulting in hyperlipidemia, glucose intolerance and hypertension and finally atherosclerosis. Thus we propose a disease entity, visceral fat syndrome, which may increase susceptibility to atherosclerosis due to multiple risk factors induced by visceral fat accumulation.  相似文献   

7.
Biophysical features of 0.1-Hz oscillations of heart rate variability (HRV) and distal blood flow (DBF) variability were compared in healthy subjects and patients after acute myocardial infarction (MI). Patients with acute MI (72 men and 53 women; 125 in total) and healthy subjects (23 men and 10 women; 33 in total) aged 30?C83 and 20?C46 years, respectively, participated in the study. The patients were involved in the study for a year after acute MI. The delay in coupling 0.1-Hz oscillations of HRV and DBF variability was estimated. In healthy subjects, the delay in the heart ?? DBF coupling proved to be less than the delay in the DBF ?? heart coupling. Acute MI results mainly in disruption of the heart ?? DBF coupling, which is partially restored by the end of the first year after acute MI, though it remains lower than in healthy subjects. The DBF ?? heart coupling is rapidly restored to the level of healthy subjects within three weeks after acute MI.  相似文献   

8.
K Kurkij?rvi  T Korpela 《Biochimie》1989,71(4):439-448
Various methods for immobilization of aspartate aminotransferase (AspAT; from cytosolic fraction of pig heart) on agarose were tested. Aldehyde-, thiol-, and CNBr-activated agaroses were studied in detail. The capacity of the aldehyde support to firmly bind protein was less than 0.2 mg/ml, whereas the apparent remaining specific activity of the bound AspAT was high (50-63% of soluble AspAT). The maximum capacity of SH-agarose to bind enzymatic protein was 3 mg/ml; the apparent remaining activity was 30-40%, and the specific activity determined by Vmax was 51%. Chemical coupling on to thiol-agarose did not denature the enzyme, as 93% of protein and 83% of the activity were recovered after release of the enzyme from the support. Enzyme protein was quantitatively bound to CNBr-activated agarose (up to 10 mg/ml of the gel). The apparent specific activities were 27-35%, while the value calculated from Vmax was 46%. Active site-protecting agents within the CNBr-coupling were tested. Bromphenol blue increased the apparent specific activity to 60% and Vmax to 80% at 3-fold molar concentration at the active sites. Kinetic constants for immobilized preparations were determined.  相似文献   

9.
The purpose of this study was to understand how humans regulate their 'leg stiffness' in hopping, and to determine whether this regulation is intended to minimize energy expenditure. 'Leg stiffness' is the slope of the relationship between ground reaction force and displacement of the centre of mass (CM). Variations in leg stiffness were achieved in six subjects by having them hop at maximum and submaximum heights at a frequency of 1.7 Hz. Kinematics, ground reaction forces and electromyograms were measured. Leg stiffness decreased with hopping height, from 350 N m(-1) kg(-1) at 26 cm to 150 N m(-1) kg(-1) at 14 cm. Subjects reduced hopping height primarily by reducing the amplitude of muscle activation. Experimental results were reproduced with a model of the musculoskeletal system comprising four body segments and nine Hill-type muscles, with muscle stimulation STIM(t) as only input. Correspondence between simulated hops and experimental hops was poor when STIM(t) was optimized to minimize mechanical energy expenditure, but good when an objective function was used that penalized jerk of CM motion, suggesting that hopping subjects are not minimizing energy expenditure. Instead, we speculated, subjects are using a simple control strategy that results in smooth movements and a decrease in leg stiffness with hopping height.  相似文献   

10.
We studied biophysical features of interaction between 0.1 Hz oscillations in heart rate variability (HRV) and distal blood flow (DBF) variability in healthy subjects and patients after acute myocardial infarction (MI). 125 patients after acute MI (72 male and 53 female) aged between 30 and 83 years and 33 healthy subjects (23 male and 10 female) aged between 20 and 46 years were included in the study. The duration of prospective study of MI patients was one year. We estimated the delay in coupling between 0.1 Hz oscillations in H RV and DBF variability. It is found out that in healthy subjects the delay in coupling from heart rate to DBF is less than delay in coupling from DBF to heart rate. Acute MI results mainly in disruption of coupling from heart rate to DBF. This coupling is partially restored in one year after acute MI, but the delay in coupling remains significantly smaller than in healthy subjects. The features of coupling from DBF to heart rate are restored in MI patients within three weeks after infarction. After this period the delay in this coupling in MI patients is approximately the same as it is in healthy subjects.  相似文献   

11.
The kinetic coupling of mitochondrial creatine kinase (MiMi-CK) to ADP/ATP translocase in chicken heart mitochondrial preparations is demonstrated. Measuring the MiMi-CK apparent Km value for MgATP2- (at saturating creatine) gives a value of 36 microM when MiMi-CK is coupled to oxidative phosphorylation. This Km value is threefold lower than the Km for enzyme bound to mitoplasts or free in solution. The nucleotide translocase Km value for ADP decreases from 20 to 10 microM in the presence of 50 mM creatine only with intact mitochondria. Similar experiments with mitoplasts do not give decreased Km values. The observed Km differences can be used to calculate the concentration of ATP and ADP under steady-state conditions showing that the observed differences in the kinetic constants accurately reflect the enzyme activities of MiMi-CK under the different conditions. The behavior of the Km values provides evidence for what we term compartmented coupling. Therefore, like the rabbit heart system (S. Erickson-Viitanen, P. Viitanen, P. J. Geiger, W. C. T. Yang, and S. P. Bessman (1982) J. Biol. Chem. 257, 14395-14404) compartmented coupling requires an intact outer mitochondrial membrane. The apparent Km values for normal or compartmentally coupled systems can be used to calculate steady-state values of ATP and ADP by coupling enzyme theory. Hence, the overall kinetic parameters accurately reflect the behavior of the enzymes whether free in solution or in the intermembrane space.  相似文献   

12.
The fertility of goat sperm is highly variable and new methods for improving sperm cryosurvival are needed. Cholesterol plays important roles in membrane fluidity, cold shock sensitivity and cryodamage, and treating sperm from cold-shock sensitive species with cholesterol-loaded cyclodextrins (CLC) prior to cryopreservation enhances sperm cryosurvival. The aim of this study was to develop a CLC-treatment to optimize goat sperm cryopreservation. A total of 45 ejaculates coming from eleven adult Murciano-Granadina bucks were used and three experiments were conducted to determine: (1) the optimal CLC concentration to treat goat sperm; (2) the optimal time to treat the sperm (before or after seminal plasma removal); and (3) optimal freezing diluent (either of two Tris-citrate diluents containing 2% or 20% egg yolk and 4% glycerol or a skim milk diluent with 7% glycerol) to cryopreserve goat sperm. Goat sperm cryosurvival rates were greatest when they were treated with 1 mg CLC/120 × 106 sperm prior to freezing. The benefit was also greatest if the sperm were treated with CLC after seminal plasma removal. Finally, CLC treatment improved sperm cryosurvival rates for sperm frozen in all three diluents, however, CLC treatment was most effective for sperm frozen in egg-yolk diluents. In conclusion, treating goat sperm, with CLC prior to cryopreservation, improved sperm cryosurvival rates. In addition, CLC treatment was effective for all freezing diluents tested, making this technology practical for the industry using current cryopreservation techniques. Nevertheless, additional studies should be conducted to determine how CLC might affect sperm functionality and fertilizing ability.  相似文献   

13.
Respiratory sinus arrhythmia in the denervated human heart   总被引:8,自引:0,他引:8  
We performed this study to test whether the denervated human heart has the ability to manifest respiratory sinus arrhythmia (RSA). With the use of a highly sensitive spectral analysis technique (cross correlation) to define beat-to-beat coupling between respiratory frequency and heart rate period (R-R) and hence RSA, we compared the effects of patterned breathing at defined respiratory frequency and tidal volumes (VT), Valsalva and Mueller maneuvers, single deep breaths, and unpatterned spontaneous breathing on RSA in 12 normal volunteers and 8 cardiac allograft transplant recipients. In normal subjects R-R changes closely followed changes in respiratory frequency (P less than 0.001) but were little affected by changes in VT. On the R-R spectrum, an oscillation peak synchronous with respiration was found in heart transplant patients. However, the average magnitude of the respiration-related oscillations was 1.7-7.9% that seen in normal subjects and was proportionally more influenced by changes in VT. Changes in R-R induced by Valsalva and Mueller maneuvers were 3.8 and 4.9% of those seen in normal subjects, respectively, whereas changes in R-R induced by single deep breaths were 14.3% of those seen in normal subjects. The magnitude of RSA was not related to time since the heart transplantation, neither was it related to patient age or sex. Thus the heart has the intrinsic ability to vary heart rate in synchrony with ventilation, consistent with the hypothesis that changes, or rate of changes, in myocardial wall stretch might alter intrinsic heart rate independent of autonomic tone.  相似文献   

14.
Primary coenzyme Q10 deficiency and the brain   总被引:3,自引:0,他引:3  
Our findings in 19 new patients with cerebellar ataxia establish the existence of an ataxic syndrome due to primary CoQ10 deficiency and responsive to CoQ10 therapy. As all patients presented cerebellar ataxia and cerebellar atrophy, this suggests a selective vulnerability of the cerebellum to CoQ10 deficiency. We investigated the regional distribution of coenzyme Q10 in the brain of adult rats and in the brain of one human subject. We also evaluated the levels of coenzyme Q9 (CoQ9) and CoQ10 in different brain regions and in visceral tissues of rats before and after oral administration of CoQ10. Our results show that in rats, amongst the seven brain regions studied, cerebellum contains the lowest level of CoQ. However, the relative proportion of CoQ10 was the same (about 30% of total CoQ) in all regions studied. The level of CoQ10 is much higher in brain than in blood or visceral tissue, such as liver, heart, or kidney. Daily oral administration of CoQ10 led to substantial increases of CoQ10 concentrations only in blood and liver. Of the four regions of one human brain studied, cerebellum again had the lowest CoQ10y concentration.  相似文献   

15.
Leg stiffness primarily depends on ankle stiffness during human hopping   总被引:1,自引:0,他引:1  
When humans hop in place or run forward, they adjust leg stiffness to accommodate changes in stride frequency or surface stiffness. The goal of the present study was to determine the mechanisms by which humans adjust leg stiffness during hopping in place. Five subjects hopped in place at 2.2 Hz while we collected force platform and kinematic data. Each subject completed trials in which they hopped to whatever height they chose ("preferred height hopping") and trials in which they hopped as high as possible ("maximum height hopping"). Leg stiffness was approximately twice as great for maximum height hopping as for preferred height hopping. Ankle torsional stiffness was 1.9-times greater while knee torsional stiffness was 1.7-times greater in maximum height hopping than in preferred height hopping. We used a computer simulation to examine the sensitivity of leg stiffness to the observed changes in ankle and knee stiffness. Our model consisted of four segments (foot, shank, thigh, head-arms-trunk) interconnected by three torsional springs (ankle, knee, hip). In the model, increasing ankle stiffness by 1.9-fold, as observed in the subjects, caused leg stiffness to increase by 2.0-fold. Increasing knee stiffness by 1.7-fold had virtually no effect on leg stiffness. Thus, we conclude that the primary mechanism for leg stiffness adjustment is the adjustment of ankle stiffness.  相似文献   

16.
Eyes play an important role in communication amongst humans and animals. However, relatively little is known about specific differences in eye morphology amongst primates and how these features might be associated with social structure and direction of gaze. We present a detailed study of gazing and eye morphology—exposed sclera and surrounding features—in orangutans. We measured gazing in rehabilitating orangutans in two contexts: interspecific viewing of the experimenter (with video camera) and intraspecific gazing (between subjects). Our findings show that direct staring is avoided and social looking is limited to certain age/social categories: juveniles engage in more looking at other orangutans than do adults or infants. While orangutans use eye movements in social communication, they avoid the more prolonged mutual gaze that is characteristic of humans, and also apparent in chimpanzees and gorillas. Detailed frame-by-frame analysis of videotapes from field and zoo studies of orangutans revealed that they pay visual attention to both human observers and conspecifics by glancing sideways, with the head turned at an angle away from the subject being observed. Mutual gaze was extremely rare, and we have observed only two incidences of gaze following. Orangutans in captivity appear to use a more restricted pattern of gazes compared to free-living, rehabilitating ones, possibly suggesting the presence of a pathological condition (such as depression) in the captive subjects. Our findings have implications for further investigations of social communication and cognition in orangutans.  相似文献   

17.
The proprioceptive cues in the control of movement is recognized as playing a major role in postural control. However, little is known about its possible increased contribution to postural control consecutive to repetitive muscular activations. To test this, the short-term effects induced by a 1-legged exercise on 2-legged postural control with the eyes closed were assessed in healthy subjects. The center-of-pressure (CP) displacements obtained using a force platform were split into 2 elementary movements: center-of-gravity vertical projection (CGv) and the difference (CP - CGv). These movements assessed the net postural performance and the level of neuromuscular activity, respectively, and were processed afterward (a) through variances, mean velocity, and the average surface covered by the trajectories and (b) a fractional Brownian motion (fBm) modeling. The latter provides further information about how much the subject controls the movements and the spatiotemporal relation between the successive control mechanisms. No difference was found using the classical parameters. In contrast, fBm parameters showed statistically significant changes in postural control after 1-legged exercises: The spatial and temporal coordinates of the transition points for the CG movements along the anteroposterior axis are decreased. Because the body movement control does not rely on visual or vestibular cues, this ability to trigger the corrective process of the CG movements more quickly in the postexercise condition and once a more reduced distance has been covered emphasizes how prior muscular activation improves body movement detection. As a general rule, these data show that the motor systems control body motions better after repetitive stimulation of the sensory cues. These insights should be of interest in physical activities based on a precise muscular length control.  相似文献   

18.
1. Leucomyosuppressin (LMS) did not inhibit the spontaneous contractions of visceral muscles of the cockroach Leucophaea maderae uniformly as a group but rather showed a selective suppression of activity in the foregut and hindgut. The threshold of LMS inhibition for these organs was 10(-11) M for the foregut and 3 x 10(-11) M for the hindgut. The maximum response for each organ was generally recorded at 2.4 x 10(-8) M. 2. Both the heart and the oviduct were 100-1000 times less sensitive to LMS than either the foregut or the hindgut. Although the responses of the heart to LMS (10(-9) to 10(-8) M) were somewhat inconsistent, the myocardium showed a reduction in either the amplitude or frequency of contractions in 75% of the preparations tested. The oviduct showed the lowest level of responsiveness of all the muscles tested. Even at a concentration of 10(-7) M LMS, the amplitude and frequency of contractions showed no more than a 58% inhibition. 3. Desensitization to LMS was observed in three of the four muscle types tested. The phenomenon occurred in 37% of the foreguts, 34% of the hindguts and 54% of the heart preparations tested. The results of this study show that each visceral muscle type has its own unique response profile to LMS and support the idea that peptides may be multifunctional regulators.  相似文献   

19.
Capillary liquid chromatography (CLC) was applied for quantification and impurity profile determination of ten newly synthesized acridine thioderivatives. A reversed-phase CLC system employing two different stationary phases, Nucleosil C18 and LiChrosorb RP-select B, was used. The mobile phase composition was optimized to get a satisfactory separation of impurities from the main acridine component in a reasonable analysis time. Significant differences in the chromatographic behavior between acridine derivatives containing and lacking amino groups were observed. Optimized separation conditions were used in CLC to measure the calibration curves of the acridine derivatives in a concentration range from 1.0 x 10(-6) to 1.0 x 10(-3) M at two different detector wavelengths (214 and 230 nm). Limits of detection and quantification of all the substances were determined. The detection limits went down to units of microM for most of the derivatives. CLC was also demonstrated to be a suitable method for the purity determination of test batches of the acridine thioderivatives.  相似文献   

20.
Electromyography (EMG) was used to examine muscle activity of the major hip, knee, and ankle extensors during both hopping and swimming in leopard frogs. Chronic EMG electrodes were implanted for periods of 7–10 days. This permitted us to record EMG activities during both hopping and swimming from the same electrode, allowing a direct comparison of the timing and amplitudes of muscle activity between the two behaviors. We could then relate these activities to the kinematics of locomotion. In both behaviors, all three extensors were synchronously activated 30–50 ms before limb extension began. However, the hip extensor turned on relatively earlier in hopping than in swimming when on time was expressed as percent of stride. The hip and knee extensors were activated relatively longer in hopping and the ankle extensor relatively longer in swimming. The amplitudes of the rectified, integrated EMG signals were roughly twice as large in hopping as in swimming for all three muscles, supporting the notion that propulsion in hopping requires more force than in swimming. The EMG burst durations differed little between the muscles or, in relative duration, between the behaviors. As has been found in other quadrupeds, the EMG bursts began before visible movement and ceased at or before hindlimb extension was completed. In our animals, however, we found a consistent, low level (10–30% of maximum amplitude) of EMG activity that continued 60–200 ms past the end of the burst and into the suspension periods in both hopping and swimming. We hypothesize that this unusual activity may be present in frogs so that the hind limb remains aero(hydro)dynamically stable as the frog arches through its leap or glides in swimming following completed limb extension. Thus, the timing and pattern of the EMG bursts are consistent with those present in other tetrapods and support conservatism of neural control. However, the prolonged low-level activity suggests flexibility in the control pattern and variation according to specific behaviors. © 1996 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号