首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zebrafish have the ability to regenerate skeletal structures, including the fin, skull roof, and jaw. Although fin regeneration proceeds by epimorphic regeneration, it remains unclear whether this process is involved in other skeletal regeneration in zebrafish. Initially in epimorphic regeneration, the wound epidermis covers the wound surface. Subsequently, the blastema, an undifferentiated mesenchymal mass, forms beneath the epidermis. In the present study, we re-examined the regeneration of the zebrafish lower jaw in detail, and investigated whether epimorphic regeneration is involved in this process. We performed amputation of the lower jaw at two different positions; the proximal level (presence of Meckel's cartilage) and the distal level (absence of Meckel's cartilage). In both manipulations, a blastema-like cellular mass was initially formed. Subsequently, cartilaginous aggregates were formed in this mass. In the proximal amputation, the cartilaginous aggregates were then fused with Meckel's cartilage and remained as a skeletal component of the regenerated jaw, whereas in the distal amputation, the cartilaginous aggregates disappeared as regeneration progressed. Two molecules that were observed during epimorphic regeneration, Laminin and msxb, were expressed in the regenerating lower jaw, although the domain of msxb expression was out of the main plain of the aggregate formation. Administration of an inhibitor of Wnt/β-catenin signaling, a pathway associated with epimorphic regeneration, showed few effects on lower jaw regeneration. Our finding suggests that skeletal regeneration of the lower jaw mainly progresses through tissue regeneration that is dependent on the position in the jaw, and epimorphic regeneration plays an adjunctive role in this regeneration.  相似文献   

2.
Activin-betaA signaling is required for zebrafish fin regeneration   总被引:1,自引:0,他引:1  
  相似文献   

3.
Double take     
Zebrafish are able to regenerate various organs and tissues after damage or amputation. To understand better the genetic controls of this process, the authors of this study investigated the expression of two genes previously implicated in fin regeneration using semi-quantitative RT-PCR, at three time points after fin amputation (T1, T2, and T3 in Fig. 1, corresponding to the initiation, middle, and end of fin regeneration, respectively). Briefly, the RT-PCR procedure involved isolating messenger RNA (mRNA) from a matched amount of zebrafish cells from the site of fin regeneration at the three time points, and using primers specific to each gene to selectively detect mRNA as an indicator of gene expression levels. The authors used total genomic DNA isolated from zebrafish cells as a positive control, and no RNA or DNA template as a negative control. They found that Gene 1 was only expressed early on in the process, while Gene 2 expression gradually increased during fin regeneration, reaching a peak of expression toward the end of the process. This provides some detailed information that could be useful in elucidating the function of these genes in fin regeneration.  相似文献   

4.
5.
6.
The fact that some organisms are able to regenerate organs of the correct shape and size following amputation is particularly fascinating, but the mechanism by which this occurs remains poorly understood. The zebrafish (Danio rerio) caudal fin has emerged as a model system for the study of bone development and regeneration. The fin comprises 16 to 18 bony rays, each containing multiple joints along its proximodistal axis that give rise to segments. Experimental observations on fin ray growth, regeneration and joint formation have been described, but no unified theory has yet been put forward to explain how growth and joint patterns are controlled. We present a model for the control of fin ray growth during development and regeneration, integrated with a model for joint pattern formation, which is in agreement with published, as well as new, experimental data. We propose that fin ray growth and joint patterning are coordinated through the interaction of three morphogens. When the model is extended to incorporate multiple rays across the fin, it also accounts for how the caudal fin acquires its shape during development, and regains its correct size and shape following amputation.  相似文献   

7.
The zebrafish larval tail fin is ideal for studying tissue regeneration due to the simple architecture of the larval fin-fold, which comprises of two layers of skin that enclose undifferentiated mesenchyme, and because the larval tail fin regenerates rapidly within 2-3 days. Using this system, we demonstrate a method for capturing the repair dynamics of the amputated tail fin with time-lapse video brightfield stereomicroscopy. We demonstrate that fin amputation triggers a contraction of the amputation wound and extrusion of cells around the wound margin, leading to their subsequent clearance. Fin regeneration proceeds from proximal to distal direction after a short delay. In addition, developmental growth of the larva can be observed during all stages. The presented method provides an opportunity for observing and analyzing whole tissue-scale behaviors such as fin development and growth in a simple microscope setting, which is easily adaptable to any stereomicroscope with time-lapse capabilities.  相似文献   

8.
The present work deals with determination of the threshold of nerve fibers per unit of amputation surface necessary for regeneration of the pectoral fins of a teleost, Fundulus. Partial denervation of the amputated pectoral fins, i.e., resection of one or two of the three nerves of the brachial (=pectoral) plexus revealed that the presence of a single one allows the amputated fin to regenerate. From these data and others obtained previously, it is concluded that the nervous requirements for a teleost fin to regenerate are similar or slightly lower than those for tetrapods, for example in the newt, which are capable of appendage regeneration.  相似文献   

9.
Although dedifferentiation, transformation of differentiated cells into progenitor cells, is a critical step in the regeneration of amphibians and fish, the molecular mechanisms underlying this process, including epigenetic changes, remain unclear. Dot blot assays and immunohistochemical analyses revealed that, during regeneration of zebrafish fin, the levels of 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) are transiently reduced in blastema cells and cells adjacent to the amputation plane at 30 h post-amputation (hpa), and the level of 5mC, but not 5hmC, is almost restored by 72 hpa. We observed that the dedifferentiated cells showed reduced levels of 5mC and 5hmC independent of cell proliferation by 24 hpa. Furthermore, expressions of the proposed demethylation- and DNA repair-related genes were detected during fin regeneration. Taken together, our findings illustrate that the transient reduction of 5mC and 5hmC in dedifferentiated cells is associated with active demethylation during regeneration of zebrafish fin.  相似文献   

10.
Wild-type medaka are known to have remarkable capabilities of fin, or epimorphic, regeneration. However, a hypothyroid mutant, kamaitachi (kmi), frequently suffers from injury in fins, suggesting an important role of thyroid hormone in fin regeneration. This led us to examine the relationship between thyroid hormone and fin regeneration using medaka as a model. For this, we first set up a medaka experimental system in which the rate of regeneration was statistically analyzed after caudal fin amputation under normal and hypothyroid conditions. As expected, the regeneration of amputated caudal fins was delayed in hypothyroid kmi -/- mutants. We then examined wild-type medaka with thiourea-induced hypothyroidism to evaluate the requirement of thyroid hormone during epimorphic fin regeneration. The results demonstrate that the growth rate of regenerates was much reduced in severely hypothyroid medaka throughout the regeneration period. This reduction in regenerative rate was recovered by exogenous administration of L-thyroxine. The present study is thus the first to report the direct involvement of thyroid hormone in teleost fin regeneration, and provides a basic framework for future molecular and genetic analyses.  相似文献   

11.
Roles for Fgf signaling during zebrafish fin regeneration   总被引:7,自引:0,他引:7  
  相似文献   

12.
Extracellular matrix plays a dynamic role during the process of wound healing, embryogenesis and tissue regeneration. Caudal fin regeneration in zebrafish is an excellent model to study tissue and skeletal regeneration. We have analyzed the expression pattern of some of the well characterized ECM proteins during the process of caudal fin regeneration in zebrafish. Our results show that a transitional matrix analogous to the one formed during newt skeletal and heart muscle regeneration is synthesized during fin regeneration. Here we demonstrate that a provisional matrix rich in hyaluronic acid, tenascin C, and fibronectin is synthesized following amputation. Additionally, we observed that the link protein Hapln1a dependent ECM, consisting of Hapln1a, hyaluronan and proteoglycan aggrecan, is upregulated during fin regeneration. Laminin, the protein characteristic of differentiated tissues, showed only modest change in the expression pattern. Our findings on zebrafish fin regeneration implicates that changes in the extracellular milieu represent an evolutionarily conserved mechanism that proceeds during tissue regeneration, yet with distinct players depending on the type of tissue that is involved.  相似文献   

13.
ABSTRACT: BACKGROUND: Zebrafish has emerged as a powerful model organism to study the process of regeneration. This teleost fish has the ability to regenerate various tissues and organs like the heart, spinal cord, retina and fins. In this study, we took advantage of the existence of an excellent morphological reference in the zebrafish caudal fin, the bony ray bifurcations, as a model to study positional information upon amputation. We investigated the existence of positional information for bifurcation formation by performing repeated amputations at different proximal-distal places along the fin. RESULTS: We show that, while amputations performed at a long distance from the bifurcation do not change its final proximal-distal position in the regenerated fin, consecutive amputations done at 1 segment proximal to the bifurcation (near the bifurcation) induce a positional reset and progressively shift its position distally. Furthermore, we investigated the potential role of Shh and Fgf signalling pathways in the determination of the bifurcation position and observed that they do not seem to be involved in this process. CONCLUSIONS: Our results reveal that, an amputation near the bifurcation inhibits the formation of the regenerated bifurcation in the pre-amputation position, inducing a distalization of this structure. This shows that the positional memory for bony ray bifurcations depends on the proximal-distal level of the amputation.  相似文献   

14.
The potential to regenerate declines with age in a wide range of organisms. A popular model system to study the mechanisms of regeneration is the fin of teleost fish, which has the ability to fully regrow upon amputation. Here, we used the short‐lived killifish Nothobranchius furzeri to analyse the impact of aging on fin regeneration in more detail. We observed that young fish were able to nearly completely (98%) regenerate their amputated caudal fins within 4 weeks, whereas middle‐aged fish reached 78%, old fish 57% and very old fish 46% of their original fin size. The difference in growth rate between young and old fish was already significant at 3 days post amputation (dpa) and increased with time. We therefore hypothesized that early events are crucial for the age‐related differences in regenerative capacity. Indeed, we could observe a higher percentage of proliferating cells in early regenerating fin tissue of young fish compared with aged fish and larger fractions of apoptotic cells in aged fish. Furthermore, young fish showed peak upregulation of several genes involved in fgf and wnt/β‐catenin signalling at an earlier time point than old fish. Our findings suggest that regenerative processes are initiated earlier and that regeneration overall is more efficient in younger fish.  相似文献   

15.

Background

The zebrafish has the capacity to regenerate many tissues and organs. The caudal fin is one of the most convenient tissues to approach experimentally due to its accessibility, simple structure and fast regeneration. In this work we investigate how the regenerative capacity is affected by recurrent fin amputations and by experimental manipulations that block regeneration.

Methodology/Principal Findings

We show that consecutive repeated amputations of zebrafish caudal fin do not reduce its regeneration capacity and do not compromise any of the successive regeneration steps: wound healing, blastema formation and regenerative outgrowth. Interfering with Wnt/ß-catenin signalling using heat-shock-mediated overexpression of Dickkopf1 completely blocks fin regeneration. Notably, if these fins were re-amputated at the non-inhibitory temperature, the regenerated caudal fin reached the original length, even after several rounds of consecutive Wnt/ß-catenin signalling inhibition and re-amputation.

Conclusions/Significance

We show that the caudal fin has an almost unlimited capacity to regenerate. Even after inhibition of regeneration caused by the loss of Wnt/ß-catenin signalling, a new amputation resets the regeneration capacity within the caudal fin, suggesting that blastema formation does not depend on a pool of stem/progenitor cells that require Wnt/ß-catenin signalling for their survival.  相似文献   

16.
Study of the influence of the amputation level on regeneration length and volume and on the rate of regeneration of the hind limbs of a larval stage of Bufo regularis revealed that, during dedifferentiation and blastema accumulation and growth, the parts regenerating from proximal and distal amputation levels were almost the same length and volume, and grew at the same rate, irrespective of the amputation level. During blastema differentiation and morphogenesis, however, there were significant length, volume and elongation rate differences between parts regenerating from different amputation levels. The results also demonstrated that there was a strong positive correlation between regeneration length and volume, but that the elongation rate was not correlated to regeneration volume.  相似文献   

17.
This paper describes the regeneration of the caudal axial skeleton after amputation of the tail, including about 20 vertebrae, in the gymnotoid fish Eigenmannia virescens. Seven days after amputation, a regeneration blastema developed and soft tissues degenerated. A cylinder of cartilage developed at the end of the notochord. When this cartilage was about 10 mm long (21 days), perichondral ossification began. The cartilage continued to elongate and ossification increased while osteoclasts began to destroy the cartilage ventrally. Finally, a bony rod formed and at its tip the cartilage persisted as a rod, 2 to 3 mm long. The anal fin also regenerated: Endoskeletal cartilage developed first, following by differentiation of the lepidotrichia, and finally ossification of the endoskeleton.  相似文献   

18.
Macrophages and neutrophils are the pivotal immune phagocytes that enter the wound after tissue injury to remove the cell debris and invaded microorganisms, which presumably facilitate the regrowth of injured tissues. Taking advantage of the regeneration abilities of zebrafish and the newly generated leukocyte-specific zebrafish lines with labeling of both leukocyte lineages, we assessed the behaviors and functions of neutrophils and macrophages during tail fin regeneration. Live imaging showed that within 6 hours post amputation, the inflammatory stage, neutrophils were the primary cells scavenging apoptotic bodies and small cell debris, although they had limited phagocytic capacity and quickly underwent apoptosis. From 6 hours post amputation on, the resolution and regeneration stage, macrophages became the dominant scavengers, efficiently resolving inflammation and facilitating tissue remodeling and regrowth. Ablation of macrophages but not neutrophils severely impaired the inflammatory resolution and tissue regeneration, resulting in the formation of large vacuoles in the regenerated fins. In contrast, removal of neutrophils slightly accelerates the regrowth of injured fin. Our study documents the differing behaviors and functions of macrophages and neutrophils during tissue regeneration.  相似文献   

19.
Xenopus laevis larvae at stages 51-57, according to Nieuwkoop and Faber, were subjected to amputation of the right hindlimb or of both limbs at the thigh or the tarsal level, as well as to somatic denervation of the right limb. Larvae at the same stage having undergone amputation of the right limb or of both limbs and sham denervation of the right limb were used as controls. In experimental series I a single denervation of the right limb was performed at the time of amputation. In experimental series II repeated denervations were performed (before, during and after amputation). Results show that in larvae at stages 51-53 subjected to limb amputation at the proximal level (thigh) even repeated denervation of the right limb did not prevent regeneration, although giving rise to various degrees of hypotrophy. In stage-55 larvae partial inhibition of the regenerative process in the right limb was clearly visible only after repeated denervations and amputation at the proximal level. After amputation at the distal level (tarsalia) the regenerative process in the right limb underwent no significant delay with respect to the controls, although the regenerated right limb was hypotrophic. In stage-57 larvae even a single denervation at the time of amputation was enough to inhibit regeneration of the right limb after either proximal or distal amputation. Therefore, in Xenopus laevis larvae, nerve-dependence for hindlimb regeneration takes place proximodistally as the nerve fibers grow in the limb and it gradually undergoes a process of proximodistal differentiation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Appendage regeneration is a complex and fascinating biological process exhibited in vertebrates by urodele amphibians and teleost fish. A current focus in the field is to identify new molecules that control formation and function of the regeneration blastema, a mass of proliferative mesenchyme that emerges after limb or fin amputation and serves as progenitor tissue for lost structures. Two studies published recently have illuminated new molecular regulators of blastemal proliferation. After amputation of a newt limb, the nerve sheath releases nAG, a blastemal mitogen that facilitates regeneration. In amputated zebrafish fins, regeneration is optimized through depletion of the microRNA miR-133, a mechanism that requires Fgf signaling. These discoveries establish research avenues that may impact the regenerative capacity of mammalian tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号