首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Oxidative phosphorylation (OXPHOS) deficiency results in a number of human diseases, affecting at least one in 5000 of the general population. Altering the function of genes by mutations are central to our understanding their function. Prior to the development of gene targeting, this approach was limited to rare spontaneous mutations that resulted in a phenotype. Since its discovery, targeted mutagenesis of the mouse germline has proved to be a powerful approach to understand the in vivo function of genes. Gene targeting has yielded remarkable understanding of the role of several gene products in the OXPHOS system. We provide a “tool box” of mouse models with OXPHOS defects that could be used to answer diverse scientific questions.  相似文献   

2.
The results of clinical, genealogical and molecular investigation of eighteen families with Leber hereditary optic neuropathy (LHON), identified on the territory of Siberia during the period from 1997 to 2005, are presented. Comprehensive analysis of mitochondrial genome variations in probands and their matrilineal relatives revealed the presence of relatively frequent (G11778A, G3460A, and T14484C), as well as rare and new mutations with the established or presumptive pathological effect (T10663C, G363A, C4640T, and A14619G). The G11778A mutation was detected in nine pedigrees (50%), mostly in the families of ethnic Russians. In eight of these families G11778A was found in preferred association with the coding-region substitutions, typical of western Eurasian mtDNA lineage (haplogroup) TJ. On the contrary, the G3460A mutation was detected in the three families belonging to the indigenous Siberian populations (Tuvinians, Altaians, and Buryats). It was associated with clearly different haplotypes of eastern Eurasian haplogroups, C3, D5, and D8. Unexpectedly, the G3460A de novo mutation was found in a large Tuvinian pedigree. At the same time, in eleven out of fourteen families of Caucasoid origin pathogenic mutations in the ND genes were associated with the T4216C and C1542A coding-region mutations, marking the root motif of haplogoup TJ. It is suggested that phylogenetically ancient mutations could have provided their carriers with the adaptive advantages upon the development of Central and Northern Europe at the end of the last glaciation (10 000 to 9 000 years ago), thereby, contributing to the preservation of weekly pathogenic LHON mutations, appearing at specific genetic background.  相似文献   

3.
In order to investigate possible synergistic influences of different mtDNA mutations on penetrance and severity of Leber's hereditary optic neuropathy (LHON), a large German LHON pedigree is characterized with respect to 10 different mutations associated with LHON. All members of the family carry three different mtDNA mutations (at nucleotide 4,216, 11,778 and 13,708) in a homoplasmic form, regardless of whether or not they are clinically affected. Testing for another 7 mutations reveals negative results in all family members. Hence, the variable disease expression of the family members cannot be explained by varying combinations of LHON-associated mtDNA mutations.  相似文献   

4.
A novel mtDNA ND6 gene mutation associated with LHON in a Caucasian family   总被引:3,自引:0,他引:3  
Leber's hereditary optic neuropathy (LHON) is a frequent cause of inherited blindness. A routine screening for common mtDNA mutations constitutes an important first in its diagnosis. However, a substantial number of LHON patients do not harbor known variants, both pointing to the genetic heterogeneity of LHON and bringing into question its genetic diagnosis. We report a familial case that exhibited typical features of LHON but lacked any of the common mutations. Genetic analysis revealed a novel pathogenic defect in the ND6 gene at 14279A that was not detected in any haplogroup-matched controls screened for it, nor has it been previously reported. This mutation causes a substantial conformational change in the secondary structure of the polypeptide matrix coil and may explain the LHON expression. Thus, it expands the spectrum of deleterious changes affecting ND6-encoding subunit and further highlights the functional significance of this gene, providing additional clues to the disease pathogenesis.  相似文献   

5.
Members of the BCL-2-related antiapoptotic family of proteins have been shown previously to regulate ATP/ADP exchange across the mitochondrial membranes and to prevent the loss of coupled mitochondrial respiration during apoptosis. We have found that BCL-2/BCL-x(L) can also improve mitochondrial oxidative phosphorylation in cells harboring pathogenic mutations in mitochondrial tRNA genes. The effect of BCL-2 overexpression in mutated cells was independent from apoptosis and was presumably associated with a modulation of adenine nucleotide exchange between mitochondria and cytosol. These results suggest that BCL-2 can regulate respiratory functions in response to mitochondrial distress by regulating the levels of adenine nucleotides.  相似文献   

6.
For identifying mutation(s) that are potentially pathogenic it is essential to determine the entire mitochondrial DNA (mtDNA) sequences from patients suffering from a particular mitochondrial disease, such as Leber hereditary optic neuropathy (LHON). However, such sequencing efforts can, in the worst case, be riddled with errors by imposing phantom mutations or misreporting variant nucleotides, and moreover, by inadvertently regarding some mutations as novel and pathogenic, which are actually known to define minor haplogroups. Under such circumstances it remains unclear whether the disease-associated mutations would have been determined adequately. Here, we re-analyse four problematic LHON studies and propose guidelines by which some of the pitfalls could be avoided.  相似文献   

7.
《Autophagy》2013,9(4):699-700
Despite the emergence of autophagy as a key process for mitochondrial quality control, the existence and persistence of pathogenic mtDNA mutations in human disease suggests that the degradation of dysfunctional mitochondria does not occur widely in vivo. During macroautophagy, a double-membraned cup-shaped structure engulfs cytosolic content. This autophagic vesicle then fuses with lysosomes, allowing hydrolytic enzymes to degrade the contents. Mitochondrial autophagy, or mitophagy, is thought to degrade damaged or nonfunctioning mitochondria specifically. The Parkinson disease-related proteins PINK1 (a mitochondrially localized kinase) and PARK2 (PARKIN, a cytosolically-localized E3 ubiquitin ligase) are essential for targeting mitochondria for mitophagy. Upon chemical uncoupling of the mitochondrial transmembrane potential (Δψm), PINK1 located in the mitochondrial outer membrane recruits PARK2 from the cytosol to the mitochondria, followed by delivery of the organelle to the autophagic machinery for degradation.  相似文献   

8.
The incidence and prevalence of Alzheimer's disease (AD) and Parkinson's disease (PD) are increasing as the population ages. Both disorders have been associated with oxidative stress and mitochondrial dysfunction, and it has been proposed that mutations in the mitochondrial genome have a key role in neurodegeneration in AD and PD patients. Two recent publications propose that heteroplasmic mtDNA mutations are involved in AD and PD. However, when these new studies are considered in relation to the sum of previous evidence, the role of mtDNA mutations in the development of either AD or PD still remains to be established.  相似文献   

9.
G D Clark-Walker  X J Chen 《Genetics》2001,159(3):929-938
Loss of mtDNA or mitochondrial protein synthesis cannot be tolerated by wild-type Kluyveromyces lactis. The mitochondrial function responsible for rho(0)-lethality has been identified by disruption of nuclear genes encoding electron transport and F(0)-ATP synthase components of oxidative phosphorylation. Sporulation of diploid strains heterozygous for disruptions in genes for the two components of oxidative phosphorylation results in the formation of nonviable spores inferred to contain both disruptions. Lethality of spores is thought to result from absence of a transmembrane potential, Delta Psi, across the mitochondrial inner membrane due to lack of proton pumping by the electron transport chain or reversal of F(1)F(0)-ATP synthase. Synergistic lethality, caused by disruption of nuclear genes, or rho(0)-lethality can be suppressed by the atp2.1 mutation in the beta-subunit of F(1)-ATPase. Suppression is viewed as occurring by an increased hydrolysis of ATP by mutant F(1), allowing sufficient electrogenic exchange by the translocase of ADP in the matrix for ATP in the cytosol to maintain Delta Psi. In addition, lethality of haploid strains with a disruption of AAC encoding the ADP/ATP translocase can be suppressed by atp2.1. In this case suppression is considered to occur by mutant F(1) acting in the forward direction to partially uncouple ATP production, thereby stimulating respiration and relieving detrimental hyperpolarization of the inner membrane. Participation of the ADP/ATP translocase in suppression of rho(0)-lethality is supported by the observation that disruption of AAC abolishes suppressor activity of atp2.1.  相似文献   

10.
To re‐examine the correlation between mtDNA variability and longevity, we examined mtDNAs from samples obtained from over 2200 ultranonagenarians (and an equal number of controls) collected within the framework of the GEHA EU project. The samples were categorized by high‐resolution classification, while about 1300 mtDNA molecules (650 ultranonagenarians and an equal number of controls) were completely sequenced. Sequences, unlike standard haplogroup analysis, made possible to evaluate for the first time the cumulative effects of specific, concomitant mtDNA mutations, including those that per se have a low, or very low, impact. In particular, the analysis of the mutations occurring in different OXPHOS complex showed a complex scenario with a different mutation burden in 90+ subjects with respect to controls. These findings suggested that mutations in subunits of the OXPHOS complex I had a beneficial effect on longevity, while the simultaneous presence of mutations in complex I and III (which also occurs in J subhaplogroups involved in LHON) and in complex I and V seemed to be detrimental, likely explaining previous contradictory results. On the whole, our study, which goes beyond haplogroup analysis, suggests that mitochondrial DNA variation does affect human longevity, but its effect is heavily influenced by the interaction between mutations concomitantly occurring on different mtDNA genes.  相似文献   

11.
A growing body of evidence suggests that impaired mitochondrial energy production and increased oxidative radical damage to the mitochondria could be causally involved in motor neuron death in amyotrophic lateral sclerosis (ALS) and in familial ALS associated with mutations of Cu,Zn superoxide dismutase (SOD1). For example, morphologically abnormal mitochondria and impaired mitochondrial histoenzymatic respiratory chain activities have been described in motor neurons of patients with sporadic ALS. To investigate further the role of mitochondrial alterations in the pathogenesis of ALS, we studied mitochondria from transgenic mice expressing wild type and G93A mutated hSOD1. We found that a significant proportion of enzymatically active SOD1 was localized in the intermembrane space of mitochondria. Mitochondrial respiration, electron transfer chain, and ATP synthesis were severely defective in G93A mice at the time of onset of the disease. We also found evidence of oxidative damage to mitochondrial proteins and lipids. On the other hand, presymptomatic G93A transgenic mice and mice expressing the wild type form of hSOD1 did not show significant mitochondrial abnormalities. Our findings suggest that G93A-mutated hSOD1 in mitochondria may cause mitochondrial defects, which contribute to precipitating the neurodegenerative process in motor neurons.  相似文献   

12.
13.
Barbiturates and oxidative phosphorylation   总被引:2,自引:2,他引:0       下载免费PDF全文
  相似文献   

14.
15.
Since reductions in cardiac high-energy phosphate content and dysfunction of mitochondrial activities have been demonstrated after doxorubicin exposure, one mechanism of doxorubicin cardiotoxicity has been thought to be an interference with mitochondrial energy metabolism. To determine whether mitochondrial dysfunction is induced by acute drug exposure, isolated rat hearts were perfused with 10(-5) M doxorubicin for 70 min followed by mitochondrial isolation. Rates of electron transport, creatine kinase activity, acceptor control, respiratory control, and ADP/O ratios were assayed and correlated to doxorubicin-induced abnormalities in left ventricular function. At doses of doxorubicin sufficient to cause a marked deterioration of left ventricular systolic pressure and a rise in end-diastolic pressure, no decreases were noted in the measured mitochondrial parameters with either glutamate plus malate or succinate as respiratory substrates. In fact, in some cases the rates of electron transport were higher in mitochondria isolated from the treated hearts. In addition, isolated heart mitochondria were directly incubated in doxorubicin at doses as high as 10(-4) M for up to 70 min at 0 and 20 degrees C and 1.5 min at 37 degrees C. Under these conditions functional impairment of mitochondrial respiration was also not detected. Therefore, it appears that acute doxorubicin cardiotoxicity cannot be related to primary mitochondrial defects in high-energy phosphate metabolism. These data lend further support to the notion that doxorubicin cardiotoxicity may be fundamentally related to changes in coronary vascular resistance and resultant damage induced by hypoperfusion.  相似文献   

16.
17.
18.
19.
20.
Leber''s hereditary optic neuropathy (LHON), the most frequent mitochondrial disease, is associated with mitochondrial DNA (mtDNA) point mutations affecting Complex I subunits, usually homoplasmic. This blinding disorder is characterized by incomplete penetrance, possibly related to several genetic modifying factors. We recently reported that increased mitochondrial biogenesis in unaffected mutation carriers is a compensatory mechanism, which reduces penetrance. Also, environmental factors such as cigarette smoking have been implicated as disease triggers. To investigate this issue further, we first assessed the relationship between cigarette smoke and mtDNA copy number in blood cells from large cohorts of LHON families, finding that smoking was significantly associated with the lowest mtDNA content in affected individuals. To unwrap the mechanism of tobacco toxicity in LHON, we exposed fibroblasts from affected individuals, unaffected mutation carriers and controls to cigarette smoke condensate (CSC). CSC decreased mtDNA copy number in all cells; moreover, it caused significant reduction of ATP level only in mutated cells including carriers. This implies that the bioenergetic compensation in carriers is hampered by exposure to smoke derivatives. We also observed that in untreated cells the level of carbonylated proteins was highest in affected individuals, whereas the level of several detoxifying enzymes was highest in carriers. Thus, carriers are particularly successful in reactive oxygen species (ROS) scavenging capacity. After CSC exposure, the amount of detoxifying enzymes increased in all cells, but carbonylated proteins increased only in LHON mutant cells, mostly from affected individuals. All considered, it appears that exposure to smoke derivatives has a more deleterious effect in affected individuals, whereas carriers are the most efficient in mitigating ROS rather than recovering bioenergetics. Therefore, the identification of genetic modifiers that modulate LHON penetrance must take into account also the exposure to environmental triggers such as tobacco smoke.Leber''s hereditary optic neuropathy (LHON) is among the most frequent mitochondrial diseases, affecting about 1 in 35 000–60 000 in Europe.1, 2 LHON is associated in over 90% of cases with one of three common mitochondrial DNA (mtDNA) point mutations affecting the Complex I subunit genes ND4 (m.11778G>A), ND1 (m.3460G>A) and ND6 (m.14484 T>C), usually occurring in homoplasmic fashion3, 4 (100% of mtDNA is mutant). This maternally inherited blinding disorder is caused by selective degeneration of retinal ganglion cells, particularly those originating the small axons composing the papillomacular bundle, which leads to optic atrophy.5, 6, 7 Clinically, a subacute loss of central vision develops in weeks/months, mostly affecting young adult men, with a peculiar pattern of fiber depletion8 and a relatively predictable natural history of visual function decline.9 Exceptions apply to age of onset, with childhood or late cases,10, 11 to propensity in recovering vision, more frequent with the m.14484 T>C mutation,12 and to clinical expression that in a subset of patients may be more widespread.4The mtDNA mutations are necessary but not sufficient to cause LHON,13 with penetrance being on average about 50% for males and 10% for females. The association of specific mtDNA haplotypes of haplogroup J with the m.14484 T>C and m.11778G>A mutations has been consistently documented in patients of European descent, indicating that mtDNA background modulates to a certain extent disease penetrance.14, 15 However, in a prototypical LHON maternal lineage, despite all the individuals carry the homoplasmic mtDNA mutation regardless the haplogroup, only some develop the disease, pointing to further factors that may be genetic and environmental.16 Thus, male prevalence and incomplete penetrance remain the two investigated and problematic issues in LHON. Both issues have been recently mechanistically related to the efficiency of compensatory mitochondrial biogenesis.17, 18 Estrogens ameliorate mitochondrial dysfunction by activating mitochondrial biogenesis, suggesting that females are naturally protected during their fertile period.17, 19 Furthermore, by studying different experimental systems (blood cells, skeletal muscle, skin-derived fibroblasts and ocular tissue) we found that the unaffected mutation carriers had a significantly higher mtDNA copy number and mitochondrial mass compared with their affected relatives,18 indicating that efficiently increasing mitochondrial biogenesis may overcome the pathogenic effect of the mtDNA mutation. Recently, others obtained similar results in different LHON cohorts.20 Notwithstanding, nuclear modifiers remain elusive. In particular, association of LHON with genetic variants was not consistent across different studies.18, 21 Similarly inconsistent was the association with chromosome X-linked loci, hypothesized to explain male prevalence.22, 23, 24Several other factors have been implicated in LHON, including exposure to cigarette smoke, alcohol and chemical toxins, head trauma, acute physical illness, psychological stress, antiretroviral and antituberculosis drugs.4, 25 These and other environmental factors can have a triggering role in LHON pathogenesis. For example, in vitro exposure to 2,5 exanedione had a toxic effect on LHON cybrid cells, with an increased sensitivity if they harbored a haplogroup J background.26 A major environmental trigger of LHON is cigarette smoke; Sadun et al.27 and Kirkman et al.25 showed that LHON penetrance is significantly increased in smokers, independently of gender and alcohol intake.In the current study, we explored further the effect of cigarette smoking in LHON, showing in white blood cells from patients of large LHON cohorts, and in skin-derived fibroblasts, that cigarette derivatives exert their toxicity by depressing mtDNA copy number and oxidative phosphorylation (OXPHOS). However, unaffected mutation carriers displayed the most efficient capacity for reactive oxygen species (ROS) detoxification, which was not hampered by exposure to cigarette derivatives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号