首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Growth hormone (GH) is a key metabolic regulator mediating glucose and lipid metabolism. Ataxia telangiectasia mutated (ATM) is a member of the phosphatidylinositol 3-kinase superfamily and regulates cell cycle progression. The orphan nuclear receptor small heterodimer partner (SHP: NR0B2) plays a pivotal role in regulating metabolic processes. Here, we studied the role of ATM on GH-dependent regulation of hepatic gluconeogenesis in the liver. GH induced phosphoenolpyruvate carboxykinase (PEPCK) and glucose 6-phosphatase gene expression in primary hepatocytes. GH treatment and adenovirus-mediated STAT5 overexpression in hepatocytes increased glucose production, which was blocked by a JAK2 inhibitor, AG490, dominant negative STAT5, and STAT5 knockdown. We identified a STAT5 binding site on the PEPCK gene promoter using reporter assays and point mutation analysis. Up-regulation of SHP by metformin-mediated activation of the ATM-AMP-activated protein kinase pathway led to inhibition of GH-mediated induction of hepatic gluconeogenesis, which was abolished by an ATM inhibitor, KU-55933. Immunoprecipitation studies showed that SHP physically interacted with STAT5 and inhibited STAT5 recruitment on the PEPCK gene promoter. GH-induced hepatic gluconeogenesis was decreased by either metformin or Ad-SHP, whereas the inhibition by metformin was abolished by SHP knockdown. Finally, the increase of hepatic gluconeogenesis following GH treatment was significantly higher in the liver of SHP null mice compared with that of wild-type mice. Overall, our results suggest that the ATM-AMP-activated protein kinase-SHP network, as a novel mechanism for regulating hepatic glucose homeostasis via a GH-dependent pathway, may be a potential therapeutic target for insulin resistance.  相似文献   

3.
乙肝病毒X蛋白结合蛋白(hepatitis B X-interacting protein,HBXIP)可以调节乳腺癌中糖代谢重编程. 为了研究HBXIP在生理条件下对糖代谢的调节作用及机制,本研究利用Cre/loxP重组酶系统成功构建了肝脏组织中HBXIP特异敲除小鼠. 当小鼠接受刺激后,与正常组小鼠相比,肝脏HBXIP敲除小鼠表现基础糖代谢功能异常,如葡萄糖、丙酮酸;相对于对照小鼠,肝脏HBXIP敲除小鼠对糖异生和胰岛素耐受性减弱. RT-PCR、Western blot实验和免疫组化实验结果表明,HBXIP敲除小鼠肝脏组织中糖异生关键酶磷酸烯醇式丙酮酸羧化酶(phosphoenolpyruvate carboxykinase,PEPCK)表达显著增加. QRT-PCR 分析30例临床肝组织中HBXIP mRNA和PEPCK mRNA表达水平发现,HBXIP与PEPCK表达水平呈负相关. 荧光素酶报告基因实验和ChIP实验结果表明HBXIP可以在基因转录水平调节PEPCK表达. 以上结果表明,HBXIP通过调节糖异生关键酶PEPCK的表达参与调控小鼠肝脏糖异生.  相似文献   

4.
5.
The present study was designed to explore the mechanism of action of walnut (the seed of Juglans regia) leaf and ridge on hepatic glucose metabolism in diabetic mice. Experimental diabetes was induced by intravenous administration of streptozotocin (60 mg/kg)and confirmed with an increase of blood glucose, 90–100% of the control, 72 hours later. Isolated extracts from walnut leaf and ridges were administered in a single effective dose of 400 mg/kg orally. Firstly, blood glucose was determined every 1 hour until 5 hours post administration of extracts. In the second experiment, the liver was surgically removed, 2 hours post treatment of diabetic animals with extracts, homogenized and used for measurement of key enzymes of glycogenolysis (glycogen phosphorylase, GP) and gluconeogenesis (phosphoenolpyruvate carboxykinase, PEPCK). Treatment by both leaf and ridge extracts decreased blood glucose and liver PEPCK activity and increased blood insulin and liver GP activity. It is concluded that walnut is able to lower blood glucose through inhibition of hepatic gluconeogenesis and secretion of pancreatic insulin.  相似文献   

6.
The purpose of this study was to investigate the effect of interleukin 1 (IL 1) on glucocorticoid-regulated hepatic metabolism. Steroid binding in liver cytosol, plasma glucose, plasma corticosterone, and phosphoenolpyruvate carboxykinase (PEPCK) activity were assayed in C3H/HeJ mice after IL 1 administration. Mice received 5 pyrogenic U (PU) of rabbit IL 1 i.p. and were sacrificed 4 hr later. In adrenal-intact mice, steroid binding and plasma glucose were significantly decreased (63 and 64% of control) and plasma corticosterone was significantly elevated threefold. In adrenalectomized mice, IL 1 (5 PU) treatment produced similar results in steroid binding (66% of control) and plasma glucose (71% of control). PEPCK was measured in intact mice fasted overnight and treated with 5 PU of IL 1. PEPCK was induced in fasted control animals (23.1 +/- 1.4 U/mg) vs fed control animals (15.9 +/- 0.7 U/mg). IL 1 treatment inhibited the induction of PEPCK in fasted animals (13.4 +/- 2.0 U/mg) and caused a significant decrease in steroid binding (78% of fasted control) and plasma glucose (82% of fasted control). No difference in plasma corticosterone was seen in IL 1-treated mice and fasted control mice. These data indicate that IL 1 decreases intracellular steroid receptors, resulting in decreased induction of PEPCK and subsequent reduced gluconeogenesis and plasma glucose. We propose that IL 1 plays a regulatory role in glucocorticoid-regulated hepatic metabolism.  相似文献   

7.
8.
Liver gluconeogenesis is essential to provide energy to glycolytic tissues during fasting periods. However, aberrant up-regulation of this metabolic pathway contributes to the progression of glucose intolerance in individuals with diabetes. Phosphoenolpyruvate carboxykinase (PEPCK) expression plays a critical role in the modulation of gluconeogenesis. Several pathways contribute to the regulation of PEPCK, including the nuclear receptor Rev-erbα and the histone deacetylase SIRT1. Deleted in breast cancer 1 (DBC1) is a nuclear protein that binds to and regulates both Rev-erbα and SIRT1 and, therefore, is a candidate to participate in the regulation of PEPCK. In this work, we provide evidence that DBC1 regulates glucose metabolism and the expression of PEPCK. We show that DBC1 levels decrease early in the fasting state. Also, DBC1 KO mice display higher gluconeogenesis in a normal and a high-fat diet. DBC1 absence leads to an increase in PEPCK mRNA and protein expression. Conversely, overexpression of DBC1 results in a decrease in PEPCK mRNA and protein levels. DBC1 regulates the levels of Rev-erbα, and manipulation of Rev-erbα activity or levels prevents the effect of DBC1 on PEPCK. In addition, Rev-erbα levels decrease in the first hours of fasting. Finally, knockdown of the deacetylase SIRT1 eliminates the effect of DBC1 knockdown on Rev-erbα levels and PEPCK expression, suggesting that the mechanism of PEPCK regulation is, at least in part, dependent on the activity of this enzyme. Our results point to DBC1 as a novel regulator of gluconeogenesis.  相似文献   

9.
The ability of insulin to suppress gluconeogenesis in type II diabetes mellitus is impaired; however, the cellular mechanisms for this insulin resistance remain poorly understood. To address this question, we generated transgenic (TG) mice overexpressing the phosphoenolpyruvate carboxykinase (PEPCK) gene under control of its own promoter. TG mice had increased basal hepatic glucose production (HGP), but normal levels of plasma free fatty acids (FFAs) and whole-body glucose disposal during a hyperinsulinemic-euglycemic clamp compared with wild-type controls. The steady-state levels of PEPCK and glucose-6-phosphatase mRNAs were elevated in livers of TG mice and were resistant to down-regulation by insulin. Conversely, GLUT2 and glucokinase mRNA levels were appropriately regulated by insulin, suggesting that insulin resistance is selective to gluconeogenic gene expression. Insulin-stimulated phosphorylation of the insulin receptor, insulin receptor substrate (IRS)-1, and associated phosphatidylinositol 3-kinase were normal in TG mice, whereas IRS-2 protein and phosphorylation were down-regulated compared with control mice. These results establish that a modest (2-fold) increase in PEPCK gene expression in vivo is sufficient to increase HGP without affecting FFA concentrations. Furthermore, these results demonstrate that PEPCK overexpression results in a metabolic pattern that increases glucose-6-phosphatase mRNA and results in a selective decrease in IRS-2 protein, decreased phosphatidylinositol 3-kinase activity, and reduced ability of insulin to suppress gluconeogenic gene expression. However, acute suppression of HGP and glycolytic gene expression remained intact, suggesting that FFA and/or IRS-1 signaling, in addition to reduced IRS-2, plays an important role in downstream insulin signal transduction pathways involved in control of gluconeogenesis and progression to type II diabetes mellitus.  相似文献   

10.
Coordinated recovery of hepatic glucose metabolism is prerequisite for normal liver regeneration. To examine roles of hypoxia inducible factor-1α (HIF-1α) for hepatic glucose homeostasis during the reparative process, we inactivated the gene in hepatocytes in vivo. Following partial hepatectomy (PH), recovery of residual liver weight was initially retarded in the mutant mice by down-regulation of hepatocyte proliferation, but occurred comparably between the mutant and control mice at 72 h after PH. At this time point, the mutant mice showed lowered blood glucose levels with enhanced accumulation of glycogen in the liver. The mutant mice exhibited impairment of hepatic gluconeogenesis as assessed by alanine tolerance test. This appeared to result from reduced expression of PGK-1 and PEPCK since 3-PG, PEP and malate were accumulated to greater extents in the regenerated liver. In conclusion, these findings provide evidence for roles of HIF-1α in the regulation of gluconeogenesis under liver regeneration.  相似文献   

11.
12.
We used an allelogenic Cre/loxP gene targeting strategy in mice to determine the role of cytosolic phosphoenolpyruvate carboxykinase (PEPCK) in hepatic energy metabolism. Mice that lack this enzyme die within 3 days of birth, while mice with at least a 90% global reduction of PEPCK, or a liver-specific knockout of PEPCK, are viable. Surprisingly, in both cases these animals remain euglycemic after a 24-h fast. However, mice without hepatic PEPCK develop hepatic steatosis after fasting despite up-regulation of a variety of genes encoding free fatty acid-oxidizing enzymes. Also, marked alterations in the expression of hepatic genes involved in energy metabolism occur in the absence of any changes in plasma hormone concentrations. Given that a ninefold elevation of the hepatic malate concentration occurs in the liver-specific PEPCK knockout mice, we suggest that one or more intermediary metabolites may directly regulate expression of the affected genes. Thus, hepatic PEPCK may function more as an integrator of hepatic energy metabolism than as a determinant of gluconeogenesis.  相似文献   

13.
Liver-specific phosphoenolpyruvate carboxykinase (PEPCK) null mice, when fasted, maintain normal whole body glucose kinetics but develop dramatic hepatic steatosis. To identify the abnormalities of hepatic energy generation that lead to steatosis during fasting, we studied metabolic fluxes in livers lacking hepatic cytosolic PEPCK by NMR using 2H and 13C tracers. After a 4-h fast, glucose production from glycogenolysis and conversion of glycerol to glucose remains normal, whereas gluconeogenesis from tricarboxylic acid (TCA) cycle intermediates was nearly absent. Upon an extended 24-h fast, livers that lack PEPCK exhibit both 2-fold lower glucose production and oxygen consumption, compared with the controls, with all glucose production being derived only from glycerol. The mitochondrial reduction-oxidation (red-ox) state, as indicated by the NADH/NAD+ ratio, is 5-fold higher, and hepatic TCA cycle intermediate concentrations are dramatically increased in the PEPCK null livers. Consistent with this, flux through the TCA cycle and pyruvate cycling pathways is 10- and 40-fold lower, respectively. Disruption of hepatic cataplerosis due to loss of PEPCK leads to the accumulation of TCA cycle intermediates and a nearly complete blockage of gluconeogenesis from amino acids and lactate (an energy demanding process) but intact gluconeogenesis from glycerol (which contributes to net NADH production). Inhibition of the TCA cycle and fatty acid oxidation due to increased TCA cycle intermediate concentrations and reduced mitochondrial red-ox state lead to the development of steatosis.  相似文献   

14.
Fifty percent of the mice homozygous for a deletion in the gene for CCAAT/enhancer-binding protein beta (C/EBP beta-/- mice; B phenotype) die within 1 to 2 h after birth of hypoglycemia. They do not mobilize their hepatic glycogen or induce the cytosolic form of phosphoenolpyruvate carboxykinase (PEPCK). Administration of cAMP resulted in mobilization of glycogen, induction of PEPCK mRNA, and a normal blood glucose; these mice survived beyond 2 h postpartum. Adult C/EBP beta-/- mice (A phenotype) also had difficulty in maintaining blood glucose levels during starvation. Fasting these mice for 16 or 30 h resulted in lower levels of hepatic PEPCK mRNA, blood glucose, beta-hydroxybutyrate, blood urea nitrogen, and gluconeogenesis when compared with control mice. The concentration of hepatic cAMP in these mice was 50% of controls, but injection of theophylline, together with glucagon, resulted in a normal cAMP levels. Agonists (glucagon, epinephrine, and isoproterenol) and other effectors of activation of adenylyl cyclase were the same in liver membranes isolated from C/EBP beta-/- mice and littermates. The hepatic activity of cAMP-dependent protein kinase was 80% of wild type mice. There was a 79% increase in the concentration of RI alpha and 27% increase in RII alpha in the particulate fraction of the livers of C/EBP beta-/- mice relative to wild type mice, with no change in the catalytic subunit (C alpha). Thus, a 45% increase in hepatic cAMP (relative to the wild type) would be required in C/EBP beta-/- mice to activate protein kinase A by 50%. In addition, the total activity of phosphodiesterase in the livers of C/EBP beta-/- mice, as well as the concentration of mRNA for phosphodiesterase 3A (PDE3A) and PDE3B was approximately 25% higher than in control animals, suggesting accelerated degradation of cAMP. C/EBP beta influences the regulation of carbohydrate metabolism by altering the level of hepatic cAMP and the activity of protein kinase A.  相似文献   

15.
16.
Novel concepts in insulin regulation of hepatic gluconeogenesis   总被引:1,自引:0,他引:1  
The regulation of hepatic gluconeogenesis is an important process in the adjustment of the blood glucose level, and pathological changes in the glucose production of the liver are a central characteristic in type 2 diabetes. The pharmacological intervention in signaling events that regulate the expression of the key gluconeogenic enzymes phosphoenolpyruvate carboxykinase (PEPCK) and the catalytic subunit glucose-6-phosphatase (G-6-Pase) is regarded as a potential strategy for the treatment of metabolic aberrations associated with this disease. However, such intervention requires a detailed understanding of the molecular mechanisms involved in the regulation of this process. Glucagon and glucocorticoids are known to increase hepatic gluconeogenesis by inducing the expression of PEPCK and G-6-Pase. The coactivator protein PGC-1 has been identified as an important mediator of this regulation. In contrast, insulin is known to suppress both PEPCK and G-6-Pase gene expression by the activation of PI 3-kinase. However, PI 3-kinase-independent pathways can also lead to the inhibition of gluconeogenic enzymes. This review focuses on signaling mechanisms and nuclear events that transduce the regulation of gluconeogenic enzymes.  相似文献   

17.
Jiang W  Wang S  Xiao M  Lin Y  Zhou L  Lei Q  Xiong Y  Guan KL  Zhao S 《Molecular cell》2011,43(1):33-44
Protein acetylation has emerged as a major mechanism in regulating cellular metabolism. Whereas most glycolytic steps are reversible, the reaction catalyzed by pyruvate kinase is irreversible, and the reverse reaction requires phosphoenolpyruvate carboxykinase (PEPCK1) to commit for gluconeogenesis. Here, we show that acetylation regulates the stability of the gluconeogenic rate-limiting enzyme PEPCK1, thereby modulating cellular response to glucose. High glucose destabilizes PEPCK1 by stimulating its acetylation. PEPCK1 is acetylated by the P300 acetyltransferase, and this acetylation stimulates the interaction between PEPCK1 and UBR5, a HECT domain containing E3 ubiquitin ligase, therefore promoting PEPCK1 ubiquitinylation and degradation. Conversely, SIRT2 deacetylates and stabilizes PEPCK1. These observations represent an example that acetylation targets a metabolic enzyme to a specific E3 ligase in response to metabolic condition changes. Given that increased levels of PEPCK are linked with type II diabetes, this study also identifies potential therapeutic targets for diabetes.  相似文献   

18.
Gut microbiota dysbiosis has been implicated in a variety of systemic disorders, notably metabolic diseases including obesity and impaired liver function, but the underlying mechanisms are uncertain. To investigate this question, we transferred caecal microbiota from either obese or lean mice to antibiotic‐free, conventional wild‐type mice. We found that transferring obese‐mouse gut microbiota to mice on normal chow (NC) acutely reduces markers of hepatic gluconeogenesis with decreased hepatic PEPCK activity, compared to non‐inoculated mice, a phenotypic trait blunted in conventional NOD2 KO mice. Furthermore, transferring of obese‐mouse microbiota changes both the gut microbiota and the microbiome of recipient mice. We also found that transferring obese gut microbiota to NC‐fed mice then fed with a high‐fat diet (HFD) acutely impacts hepatic metabolism and prevents HFD‐increased hepatic gluconeogenesis compared to non‐inoculated mice. Moreover, the recipient mice exhibit reduced hepatic PEPCK and G6Pase activity, fed glycaemia and adiposity. Conversely, transfer of lean‐mouse microbiota does not affect markers of hepatic gluconeogenesis. Our findings provide a new perspective on gut microbiota dysbiosis, potentially useful to better understand the aetiology of metabolic diseases.  相似文献   

19.
α-Melanocyte-stimulating hormone (α-MSH) is a critical regulator of energy metabolism. Prolyl carboxypeptidase (PRCP) is an enzyme responsible for its degradation and inactivation. PRCP-null mice (PRCP(gt/gt)) showed elevated levels of brain α-MSH, reduced food intake, and a leaner phenotype compared with wild-type controls. In addition, they were protected against diet-induced obesity. Here, we show that PRCP(gt/gt) animals have improved metabolic parameters compared with wild-type controls under a standard chow diet (SD) as well as on a high-fat diet (HFD). Similarly to when they are exposed to SD, PRCP(gt/gt) mice exposed to HFD for 13 wk showed a leaner phenotype due to decreased fat mass, increased energy expenditure, and locomotor activity. They also showed improved insulin sensitivity and glucose tolerance compared with WT controls and a significant reduction in fasting glucose levels. These improvements occured before changes in body weight and composition were evident, suggesting that the beneficial effect of PRCP ablation is independent of the adiposity levels. In support of a reduced gluconeogenesis, liver PEPCK and G-6-Pase mRNA levels were reduced significantly in PRCP(gt/gt) compared with WT mice. A significant decrease in liver weight and hepatic triglycerides were also observed in PRCP(gt/gt) compared with WT mice. Altogether, our data suggest that PRCP is an important regulator of energy and glucose homeostasis since its deletion significantly improves metabolic parameters in mice exposed to both SD and HFD.  相似文献   

20.
Animals that endure prolonged periods of food deprivation preserve vital organ function by sparing protein from catabolism. Much of this protein sparing is achieved by reducing metabolic rate and suppressing gluconeogenesis while fasting. Northern elephant seals (Mirounga angustirostris) endure prolonged fasts of up to 3 mo at multiple life stages. During these fasts, elephant seals maintain high levels of activity and energy expenditure associated with breeding, reproduction, lactation, and development while maintaining rates of glucose production typical of a postabsorptive mammal. Therefore, we investigated how fasting elephant seals meet the requirements of glucose-dependent tissues while suppressing protein catabolism by measuring the contribution of glycogenolysis, glycerol, and phosphoenolpyruvate (PEP) to endogenous glucose production (EGP) during their natural 2-mo postweaning fast. Additionally, pathway flux rates associated with the tricarboxylic acid (TCA) cycle were measured specifically, flux through phosphoenolpyruvate carboxykinase (PEPCK) and pyruvate cycling. The rate of glucose production decreased during the fast (F(1,13) = 5.7, P = 0.04) but remained similar to that of postabsorptive mammals. The fractional contributions of glycogen, glycerol, and PEP did not change with fasting; PEP was the primary gluconeogenic precursor and accounted for ~95% of EGP. This large contribution of PEP to glucose production occurred without substantial protein loss. Fluxes through the TCA cycle, PEPCK, and pyruvate cycling were higher than reported in other species and were the most energetically costly component of hepatic carbohydrate metabolism. The active pyruvate recycling fluxes detected in elephant seals may serve to rectify gluconeogeneic PEP production during restricted anaplerotic inflow in these fasting-adapted animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号