首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A goat antibody produced against homogeneous bovine adrenal ferrodoxin has been employed to study the involvement of this iron-sulfur protein in the side-chain cleavage of 20α-hydroxycholesterol catalyzed by a soluble fraction, supernatant S1, prepared from sonicated bovine adrenocortical mitochondria. When added to this supernatant, the antibody inhibited the side-chain cleavage of 20α-hydroxycholesterol as well as the side-chain cleavage of cholesterol, the 11β-hydroxylation of deoxycorticosterone, and the NADPH-dependent reduction of cytochrome c. These results demonstrate that, similar to the NADPH-cytochrome c reductase and both the cholesterol side-chain cleavage and steroid 11β-hydroxylase reactions, adrenal ferredoxin is also required for the side-chain cleavage of 20α-hydroxycholesterol.  相似文献   

2.
The effect of 3,3'-dimethoxybenzidine (o-dianisidine) on the conversion of cholesterol to pregnenolone was investigated in a reconstituted side chain cleavage system using enzymes purified from bovine adrenal cortex; d-p-aminoglutethimide was also assayed under similar conditions for comparison. 3,3'-Dimethoxybenzidine was found to be a potent inhibitor of pregnenolone formation, causing 50% inhibition at a concentration of 1.5 μM when using 70 μM cholesterol — this dose is approximately one fourth that required of 3-methoxybenzidine and one twentieth that required of benzidine for equal inhibition. In the same system, d-p-aminoglutethimide exhibited an I50 value of about 55 μM. No effects of 3,3'-dimetoxybenzidine on adrenodoxin reductase or adrenodoxin activities could be detected, and inhibition of side chain cleavage could be relieved by dilution suggesting that the inhibitor acts by reversibly binding to cytochrome P-450scc.  相似文献   

3.
Adrenodoxin, purified from bovine adrenal cortex, was subjected to trypsin cleavage to yield a trypsin-resistant form, designated TT-adrenodoxin. Sequencing with carboxypeptidase Y identified the trypsin cleavage site as Arg-115, while Edman degradation indicated no NH2-terminal cleavage. Native adrenodoxin and TT-adrenodoxin exhibited similar affinity for adrenodoxin reductase as determined in cytochrome c reductase assays. In side chain cleavage assays using cytochrome P-450scc, however, TT-adrenodoxin demonstrated greater activity than adrenodoxin with cholesterol, (22R)-22-hydroxycholesterol, or (20R,22R)-20,22-dihydroxycholesterol as substrate. This enhanced activity is due to increased affinity of TT-adrenodoxin for cytochrome P-450scc; TT-adrenodoxin exhibits a 3.8-fold lower apparent Km for the conversion of cholesterol to pregnenolone. TT-Adrenodoxin was also more effective in coupling with cytochrome P-450(11) beta, exhibiting a 3.5-fold lower apparent Km for the 11 beta-hydroxylation of deoxycorticosterone. In the presence of partially saturating cholesterol, TT-adrenodoxin elicited a type I spectral shift with cytochrome P-450scc similar to that induced by adrenodoxin, and spectral titrations showed that oxidized TT-adrenodoxin exhibited a 1.5-fold higher affinity for cytochrome P-450scc. These results establish that COOH-terminal residues 116-128 are not essential for the electron transfer activity of bovine adrenodoxin, and the differential effects of truncation at Arg-115 on interactions with adrenodoxin reductase and cytochromes P-450 suggest that the residues involved in the interactions are not identical.  相似文献   

4.
(22S)-[22-3H1]-Cholesterol was incubated with an adrenocortical preparation and the isolated (22R)-[22-3H1]-22-hydroxycholesterol had a small loss of radioactivity, proving that direct replacement of the hydrogen from the now hydroxylated position occurred.In addition [1-3H1]-4-methylpentanol was isolated, which also had incurred a relatively small loss of its specific activity, thereby excluding (20R)-3β,20-dihydroxycholest-5-en-22-one as an important metabolite in the degradation of cholesterol to pregnenolone by adrenal tissue.  相似文献   

5.
A goat antibody produced against bovine adrenal ferredoxin has been employed to establish immunochemically the involvement of adrenal ferredoxin in the cholesterol side-chain cleavage reaction catalyzed by mammalian adrenal mitochondria. When added to preparations of bovine adrenocortical mitochondria, this antibody was found to inhibit the conversion of cholesterol to pregnenolone and progesterone, the 11β-hydroxylation of deoxycorticosterone and the NADPH-dependent reduction of cytochrome c. These observations demonstrate that, similar to the NADPH-cytochrome c reductase and steroid 11β-hydroxylase reactions, adrenal ferredoxin is also required for the oxidative cleavage of the cholesterol side-chain catalyzed by bovine adrenocortical mitochondria.The goat antibody to bovine adrenal ferredoxin was also found to interact with the comparable iron-sulfur proteins present in mitochondria prepared from sheep, rat, mouse, cat, dog, guinea pig, rabbit, and human adrenals. The interaction of the antibody with these iron-sulfur proteins resulted in the inhibition of both the cholesterol side-chain cleavage and NADPH-cytochrome c reductase activities catalyzed by these adrenal mitochondria. The NADH-dependent reduction of cytochrome c catalyzed by mammalian adrenal mitochondria was not inhibited by the goat antibody to adrenal ferredoxin. These results demonstrate the immunochemical similarity existing among mammalian adrenal ferredoxins and their involvement in the adrenal cholesterol side-chain cleavage reaction.  相似文献   

6.
Addition of endozepine in nanomolar concentrations to a system for side-chain cleavage reconstituted from highly purified P-450scc and electron carriers (adrenodoxin reductase and adrenodoxin) stimulates the conversion of cholesterol to pregnenolone (side-chain cleavage). This response is concentration and time-dependent and specific to the extent that a second steroidogenic P-450 located in the inner mitochondrial membrane (ie 11 beta-hydroxylase) was not stimulated by endozepine. Homogeneous endozepine prepared from bovine brain, the corresponding genetically engineered peptide and des(glu-ilu)-endozepine isolated from bovine adrenal cortex are all approximately equipotent in this system. Moreover, endozepine accelerates the rate of reduction of P-450scc by NADPH and the electron carriers. The results suggest that endozepine acts directly on P-450 and hence the rate of side-chain cleavage.  相似文献   

7.
The side-chain cleavage of cholesterol by cytochrome P-450scc in mitochondria from the human placenta was studied using hydroxycholesterol substrates and intermediates of the reaction. 25-Hydroxycholesterol inhibited 3β-hydroxy-5-pregnen-20-one (pregnenolone) production by placental mitochondria. It was converted to pregnenolone at a maximum velocity of only 19% of that for cholesterol. Addition of 20-hydroxycholesterol or 22R-hydroxycholesterol to placental mitochondria caused a lag in pregnenolone synthesis which was concentration dependent. Measurement of the concentration of 20,22R-dihydroxycholesterol during incubation of placental mitochondria with 22R-hydroxycholesterol revealed that the lag in pregnenolone production was caused by accumulation of 20,22R-dihydroxycholesterol. This intermediate of the reaction dissociated from the active site of cytochrome P-450scc. Only after its concentration had increased, presumably to a level where it could compete with 22R-hydroxycholesterol for binding to cytochrome P-450scc, was it converted to pregnenolone. These results indicate a lack of kinetic stabilization of the cytochrome P-450scc-20,22R-dihydroxycholesterol complex with dissociation occurring more rapidly than the final hydroxylation. Similar measurements of side-chain cleavage of 22R-hydroxycholesterol by mitochondria from the bovine adrenal cortex showed that kinetic stabilization of the cytochrome P-450scc-20,22R-dihydroxycholesterol complex does not occur in that tissue either. The relative hydroxylation rates of 20-hydroxycholesterol, 22R-hydroxycholesterol and 20,22R-dihydroxycholesterol indicate that all three hydroxylations catalysed by human cytochrome P-450scc occur at approximately the same rate.  相似文献   

8.
In previous studies cadmium chloride (CdCl2) nonlethally inhibited Y-1 adrenal mouse adrenal tumour cell 20-dihydroxyprogesterone (20DHP) secretion, affecting unstimulated and stimulated steroidogenic pathway sites differently. We studied CdCl2 effects on unstimulated steroidogenesis using Y-1 cells incubated 0.5 h in medium with or without cadmium (using the concentration that inhibited ACTH-stimulated steroid secretion by 50%). Exogenously added 20-hydroxycholesterol (20OHC), 22(R)-hydroxycholesterol (22OHC), 25-hydroxycholesterol (25OHC), pregnenolone (PREG), or progesterone (PROG) were used to bypass any rate-limited steroidogenic pathway sites that CdCl2 might inhibit. 25OHC is a biologically active nonpathway steroid, while 20OHC, 22OHC, PREG, and PROG are pathway steroids; each increased unstimulated 20DHP secretion nearly 10-fold. Although CdCl2 could not reduce dibutyryl cyclic AMP- (dbcAMP)-stimulated 20DHP secretion significantly, it did significantly reduce basal and 25OHC-induced 20DHP secretion 25% below untreated levels. When 20OHC, 22OHC, PREG, or PROG were incubated with unstimulated Y-1 cells, their synthesis into 20DHP was unaffected by cadmium. dbcAMP bypasses the plasma membrane enzyme complex that synthesizes intracellular cAMP during exogenous ACTH stimulation; dbcAMP was not inhibited by CdCl2. The rate-limited step accelerated by cAMP involves plasma membrane and/or cytoplasmic cholesterol transport to and through outer and inner mitochondrial membranes before the cholesterol is synthesized into pregnenolone by side-chain cleavage enzymes on the inner membrane matrix face. Little is known regarding the mechanisms controlling unstimulated steroidogenesis. Under unstimulated conditions the 25-, 20- and 22(R)-monohydroxyls of cholesterol facilitate plasma membrane, cytoplasm and inner and outer mitochondrial solubility, diffusion and/or transport to bypass rate-limited steps and augment unstimulated steroid synthesis. Since conversion of endogenous mitochondrial cholesterol and 25OHC, but not dbcAMP-mobilized cytoplasmic cholesterol, 20OHC or 22OHC conversion, to 20DHP is inhibited by CdCl2, this suggests that (a) control of mitochondrial cholesterol supplies is independent of the cAMP-regulated mitochondrial steps in the 20DHP steroid synthetic pathway, (b) CdCl2 specifically inhibited endogenous mitochondrial cholesterol and 25OHC utilization, (c) CdCl2 toxicity may affect adrenal, testicular, ovarian, and placental basal steroidogenic functions, and (d) 25OHC may be a useful compound to examine unstimulated steroid synthesisAbbreviations ACTH adrenocorticotropin - ANOVA analysis of variance - CdCl2 cadmium chloride - cAMP cyclic 3,5-adenosine monophosphate - DMSO dimethylsulfoxide - DNA deoxyribonucleic acid - FMEM serum-free Eagle's Minimum Essential Medium - Hepes N-2-hydroxyethyl-piperazine-N-1,2-ethanesulfonic acid - 20OHC 20-hydroxycholesterol - 22OHC 22(R)-hydroxycholesterol - 25OHC 25-hydroxycholesterol - IC50' concentration inhibiting stimulated steroid secretion by 50% - IU international unit - MEM Eagle's Minimum Essential Medium - P450scc cytochrome P450 side-chain cleavage enzyme - PREG pregnenolone - PROG progesterone - RNA ribonucleic acid - SEM standard error of the mean - SMEM serum-containing Eagle's Minimum Essential Medium - 20DHP 20-hydroxy-4-pregnen-3-one  相似文献   

9.
Cytoplasmic free and bound polysomes were isolated from bovine adrenal cortex, and used to program invitro protein synthesis in rat liver cell sap and wheat germ lysate systems. Synthesis of adrenodoxin(Ad) and adrenodoxin reductase(AdR) in the cell-free systems was determined by immunoprecipitation using monospecific antibodies, and the sizes of the invitro products were analyzed by SDS-polyacrylamide gel electrophoresis. Ad was synthesized by both free and bound polysomes as a putative large precursor having molecular weight of approximately 20,000 daltons, which was processed to mature size Ad (MW 12,000 daltons) by invitro incubation with adrenal cortex mitochondria. On the other hand, AdR was synthesized only by free polysomes apparently as the mature size product.  相似文献   

10.
An iron-sulfur protein has been isolated from bovine liver mitochondria and purified 140-fold on DEAE-cellulose and Sephadex G-100. During the isolation the protein was detected by its NADPH-cytochrome c reductase activity in the presence of adrenal NADPH-ferredoxin reductase. The molecular weight of the protein (12,400), the optical spectrum (peaks at 414 nm and 455 nm which disappear upon reduction), and the EPR spectrum (gx = gy = 1.935 and gz = 2.02) were typical for a ferredoxin. In the presence of soluble adrenal cytochrome P450, ferredoxin reductase and NADPH, this protein could support the formation of pregnenolone from cholesterol. Under similar conditions, but in the presence of a cytochrome P450 solubilized from rat liver mitochondria, cholesterol was transformed into a more polar compound tentatively identified as 26-hydroxycholesterol.  相似文献   

11.
We previously reported (Lambeth, J. D., Xu, X. X., and Glover, M. (1987) J. Biol. Chem. 262, 9181-9188) that exogenously added cholesterol sulfate inhibits the conversion of cholesterol to pregnenolone in isolated adrenal mitochondria, and does so by affecting intramitochondrial cholesterol movement but not its subsequent metabolism to pregnenolone by cytochrome P-450scc. We now report that a major kinetic component of the inhibition is noncompetitive with respect to cholesterol, consistent with an allosteric effect at a site other than the substrate binding site of cytochrome P-450scc. We now also report that cholesterol sulfate is present as an endogenous compound in preparations of adrenal mitochondria. Its content varied from 0.05 to 0.8 nmol/mg protein. Cholesterol sulfate level correlated inversely with the mitochondrial cholesterol side-chain cleavage activity. Endogenous cholesterol sulfate thus appeared to account for the variable rates of pregnenolone synthesis which were seen in different mitochondrial preparations. Cholesterol sulfate was metabolized to pregnenolone sulfate by a mitochondrial side-chain cleavage system, but proved to be a relatively poor substrate for an extramitochondrial steroid sulfatase activity present in adrenal cortex. Confirming a role as a naturally occurring inhibitor, removal of endogenous mitochondrial cholesterol sulfate by metabolism to pregnenolone sulfate correlated with a 3-fold activation of cholesterol side-chain cleavage. We suggest that cholesterol sulfate functions in steroidogenic tissues to regulate the magnitude of the steroidogenic response.  相似文献   

12.
The ferredoxin from bovine renal mitochondria (renoredoxin) has been obtained in a highly purified state. The A415/A280 ratio of the purified renoredoxin is 0.84. The absorption spectrum of renoredoxin was shown to be identical to that of bovine adrenodoxin. Two forms of renoredoxin (Mr 14200 and 13300) were detected by using polyacrylamide gel electrophoresis. These forms exhibit a very similar immunologic cross-reactivity with polyclonal antibodies to adrenodoxin. The N-terminal amino acid sequence of renal ferredoxin was shown to be identical to that of adrenodoxin; the C-terminal sequences of both ferredoxins undergo a similar post-translational proteolytic modification. The amino acid composition of ferredoxins are also very close. Renal ferredoxin can be replaced by adrenodoxin in reconstituted systems from bovine adrenal cortex mitochondria which catalyze the side chain cleavage of cholesterol to pregnenolone and the 11 beta-hydroxylation of deoxycorticosterone to corticosterone.  相似文献   

13.
The early kinetics of the conversion of cholesterol (A) to (22R)-22-hydroxycholesterol (B), (20R, 22R)-20, 22-dihydroxycholesterol (C) and pregnenolone (D) has been studied with bovine adrenocortical mitochondrial acetone-dried powder preparations. The sequential appearance of B, C, and D was demonstrated. During the lag period of D appearance, B, and C approached steady state levels, at which time the formation of D approximated linearity. The initial rate of B appearance approximated the rate of the linear phase of pregnenolone formation. When cholesterol was initially incubated in an 18O2-enriched atmosphere, the gas phase abruptly changed to air and incubation continued for a relatively short period, there was a drop in the 18O content of the recovered B and C. These results demonstrated for the first time the turnover of these compounds as they formed in the system from cholesterol, without the use of exogenously added tracer B or C. The 18O content of the recovered glycol was lower at position C-20 than at C-22, as would be expected from a consecutive process involving an initial oxygen attack of cholesterol at C-22. These results suggest the sequence A→ B→ C→ D as the basic mechanism for the conversion of cholesterol to pregnenolone.  相似文献   

14.
Previous investigations have demonstrated that cells isolated from the outer zone (zona fasciculata + zona glomerulosa) of the guinea-pig adrenal cortex produce far more cortisol than those from the inner zone (zona reticularis). Studies were carried out to compare mitochondrial steroid metabolism in the two zones. Protein and cytochrome P-450 concentrations were similar in outer and inner zone mitochondria. However, the rate of 11 beta-hydroxylation was significantly greater in the outer zone despite the fact that substrates for 11 beta-hydroxylation (11-deoxycortisol, 11-deoxycorticosterone) produced larger type I spectral changes in inner zone mitochondria. The apparent affinities of 11-deoxycortisol and 11-deoxycorticosterone for mitochondrial cytochrome(s) P-450 were similar in the two zones. In both inner and outer zone mitochondria, 11 beta-hydroxylation was inhibited by metyrapone but unaffected by aminoglutethimide. Cholesterol sidechain cleavage activity, measured as the rate of conversion of endogenous cholesterol to pregnenolone, was far greater in outer than inner zone mitochondria. Addition of exogenous cholesterol or 25-hydroxycholesterol to the mitochondrial preparations did not affect pregnenolone production in either zone. Addition of pregnenolone to outer zone mitochondria produced a reverse type I spectral change (delta A 420-390 nm), suggesting displacement of endogenous cholesterol from cytochrome P-450. In inner zone mitochondria, pregnenolone induced a difference spectrum (delta A 425-410 nm) similar to the reduced vs oxidized cytochrome b5 spectrum. A b5-like cytochrome was found to be present in the mitochondrial preparations. Prior reduction of the cytochrome with NADH eliminated the pregnenolone-induced spectral change in inner zone mitochondria but had no effect in outer zone preparations. The results suggest that differences in mitochondrial steroid metabolism between the inner and outer adrenocortical zones account in part for the differences in cortisol production by cells in each zone.  相似文献   

15.
Cytochrome P-450scc was isolated from mitochondria of bovine adrenal cortex by hydrophobic chromatography on octyl Sepharose followed by affinity chromatography on cholesterol-7-(thiomethyl)carboxy-3 beta-acetate-Sepharose. The partially purified eluate from the octyl Sepharose resin was free of adrenodoxin and adrenodoxin reductase and displayed biphasic binding characteristics for cholesterol, cholesterol sulfate, and cholesterol acetate (CA). Chromatography of the octyl Sepharose eluate on CA-Sepharose removed extraneous proteins and resolved the cytochrome P-450scc into two fractions, each of which displayed monophasic binding with all three substrates. These fractions behaved identically with respect to their ability to bind substrates, their kinetic properties, and their rate of migration during sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The dissociation constants of the cytochrome P-450scc.substrate complexes are 1.1, 2.6, and 1.3 microM for cholesterol, cholesterol sulfate, and cholesterol acetate, respectively. Addition of phospholipids isolated from adrenal cortex mitochondria or adrenodoxin had no effect on the equilibrium binding constants. Addition of Emulgen 913, however, decreased the binding affinities 10-20-fold. Emulgen 913 also inhibited the interaction of adrenodoxin with the cytochrome. An active side chain cleavage system was reconstituted with purified P-450 by addition of saturating amounts of adrenodoxin, adrenodoxin reductase, and NADPH-generating system. The apparent Km values for this reconstituted system of cholesterol, cholesterol sulfate, and cholesterol acetate are 1.8, 1.9, and 0.6 microM, respectively. Since the Km values of substrate oxidation are similar to the Kd values of the cytochrome P-450.substrate complexes, it seems likely that the binding of substrates, particularly when the side chain cleavage system is free of mitochondrial membranes, is not rate-limiting. Based on these results and electrophoretic data, it appears that one cytochrome P-450 present in adrenal mitochondria can oxidize cholesterol, its sulfate, and its acetate. This enzyme represented about 60% of the cytochrome P-450 present in the octyl Sepharose eluate. The factors responsible for the biphasic kinetics of oxidation by intact mitochondria and biphasic binding of sterol substrates by partially purified preparations of cytochrome P-450scc are still unknown.  相似文献   

16.
Purification and characterization of human placental ferredoxin   总被引:1,自引:0,他引:1  
A ferredoxin-type iron-sulfur protein was isolated from human placenta mitochondria. The properties of the purified protein were very similar to those of adrenal ferredoxin (adrenodoxin), and immunological cross-reactivity with polyclonal antibodies to bovine adrenodoxin was observed. The N-terminal amino acid sequence and the visible absorption spectrum were identical to bovine adrenodoxin. The molecular mass as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (Mr approximately 13,500), however, is slightly smaller than that of adrenodoxin, and the C-terminal sequence is different. Human placental ferredoxin can substitute for bovine adrenodoxin in reactions reconstituted with bovine adrenal enzymes which catalyze the side chain cleavage of cholesterol to pregnenolone and the 11 beta-hydroxylation of deoxycorticosterone to corticosterone.  相似文献   

17.
1. Cholesteryl 3β-sulphate is oxidized in vitro by preparations of bovine adrenal-cortex mitochondria to pregnenolone sulphate and isocaproic acid (4-methyl-pentanoic acid) without hydrolysis of the ester linkage. 2. Free cholesterol is the preferred substrate for adrenal-cortex cholesterol oxidase; the apparent Km for cholesteryl sulphate is 500μm and for free cholesterol 50μm under the same conditions. 3. Cholesteryl 3β-acetate is hydrolysed by bovine adrenal-cortex mitochondria in vitro to free cholesterol, which is subsequently oxidized to more polar steroids and isocaproic acid. Evidence was obtained that other cholesterol esters behave similarly. Cholesterol esters may thus act as precursors of steroid hormones. 4. Cholest-4-en-3-one is only poorly oxidized to isocaproic acid and more polar steroids and thus is probably not a significant precursor of steroid hormones. 5. Cholesteryl esters inhibit the oxidation of cholesterol competitively (Ki for cholesteryl phosphate 28μm, for cholesteryl sulphate 110μm, for cholesteryl acetate 65μm) but pregnenolone esters do not inhibit this system. 6. Pregnenolone and 20α-hydroxycholesterol (both metabolites of cholesterol in this system) inhibit the oxidation of cholesterol non-competitively. Ki for pregnenolone is 130μm and Ki for 20α-hydroxycholesterol is 17μm. 7. 25-Oxo-27-norcholesterol inhibits cholesterol oxidation non-competitively (Ki16μm). A number of other Δ5-3β-hydroxy steroids inhibit cholesterol oxidation and evidence was obtained that the 3β-hydroxyl group was necessary for inhibitory activity. 8. Pregnenolone, 20α-hydroxycholesterol and 25-oxo-27-norcholesterol inhibit oxidation of cholesteryl sulphate by this system but their sulphates do not. 9. 3β-Hydroxychol-5-enoic acid, 3α-hydroxy-5β-cholanic acid and 3β-hydroxy-22,23-bisnorchol-5-enoic acid stimulated formation of isocaproic acid from cholesterol. 10. No evidence was obtained that phosphorylation or sulphation are obligatory steps in cholesterol oxidation by adrenal-cortex mitochondria. 11. The cholesteryl 3β-sulphate sulphatase of bovine adrenal cortex was found mostly in the microsomal fraction and was inhibited by inorganic phosphate.  相似文献   

18.
J J Mrotek  P F Hall 《Biochemistry》1977,16(14):3177-3181
The ability of cytochalasin B to inhibit the steroidogenic response of mouse adrenal tumor cells (Y-1) to adrenocorticotropin (ACTH) was examined with two aims: to consider the specificity of the inhibitor and to determine at what point(s) in the steroidogenic pathway it acts. Cytochalasin B did not inhibit protein synthesis or transport of [3H]-cholesterol into the cells nor did it alter total cell concentration of ATP. Together with previous evidence, this suggests that the effects of cytochalasin observed are relatively specific in these cells. Cytochalasin inhibits the increase in conversion of [3H]cholesterol to 20alpha-[3H]dihydroprogesterone (20alpha-hydroxypregn-4-en-3-one: a major product of the steroid pathway in Y-1 cells) produced by ACTH but does not inhibit conversion of cholesterol to pregnenolone by mitochondrial and purified enzyme preparations from Y-1 cells and bovine adrenal, respectively. Cytochalasin does not inhibit the conversion of pregnenolone to 20alpha-dihydroprogesterone but was shown to inhibit increased transport of [3H]cholesterol to mitochondria resulting from the action of ACTH. These findings indicate that cytochalasin acts after cholesterol has entered the cells and before it is subjected to side-chain cleavage in mitochondria. In view of the known action of cytochalasin on microfilaments, it is proposed that these organelles are necessary for the transport of cholesterol to the mitochondrial cleavage enzyme and that at least one effect of ACTH (and cyclic AMP) is exerted upon this transport process. The specificity of the effects of cytochalasin is considered in relation to this conclusion.  相似文献   

19.
The role of cytochrome P-450 in the side chain cleavage of 20S,22R-dihydroxycholesterol was investigated by examining the effect of carbon monoxide on the conversion of this substance to pregnenolone by cytochrome P-450 from bovine adrenocortical mitochondria; the effect of carbon monoxide on the conversion of cholesterol to pregnenolone by the same enzyme also was examined. Fifty per cent inhibition of side chain cleavage was produced by gas mixtures with the following ratios: CO:O2,1.5 for cholesterol and 1.2 for 20S, 22R-dihydroxycholesterol. Photochemical action spectra revealed that light of wavelength 451 nm decreased the inhibition of side chain cleavage of both substrates to a greater extent than light of other wavelenghts. It is concluded that the heme moiety of P-450 is involved in the cleavage of 20S,22R-dihydroxycholesterol.  相似文献   

20.
Trilostane is a competitive inhibitor of 3β-hydroxysteroid dehydrogenase. Invitro, the drug inhibits conversion of pregnenolone to progesterone but does not alter conversion of cholesterol to pregnenolone nor progesterone to corticoid hormones. When given orally to rats, trilostane inhibits corticosterone and aldosterone production and elevates circulating levels of pregnenolone at doses lower than those that produce adrenal hypertrophy or inhibit gonadal steroidogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号