首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ligand binding properties of folate chemotactic receptors on isolated membranes of Dictyostelium discoideum were analyzed. Three out of the four receptor states (BF, BS and BSS) were detected, showing rate constants and Kd values similar to those obtained for intact cells. Guanine nucleotides changed the proportioning of the receptor states as well as the rates of several conversions. (i) The transformation of BF into BS was inhibited by GDP but not by guanylyl imidodiphosphate (GuaPP[NH]P) or GTP. (ii) The number of BS sites was lowered by GTP and GuaPP[NH]P. (iii) The binding to BSS was lowered by GTP and GDP, but increased by GuaPP[NH]P. (iv) The rate of disappearance of BSS was increased by GTP, but not by GuaPP[NH]P. Effects of guanine nucleotides were not observed after treatment of the membrane preparations with 15 mg/ml bovine serum albumin. This treatment caused the detection of a binding type different from the types described previously. The affinity of this binding site was extremely high (Kd ≤ 0.2 nM for N10-methylfolic acid), while the dissociation was relatively slow (k−1 ≤ 3·10−4 s−1). It is proposed that bovine serum albumin uncouples the folate receptor from a guanine nucleotide regulatory (G) protein in an irreversible manner. A model is presented in which the four receptor states correspond to distinct interactions with a G protein and GDP or GTP.  相似文献   

2.
Eukaryotic and archaeal translation initiation factors 2, heterotrimers that consist of α-, β-, and γ-subunits, deliver methionylated initiator tRNA to a small ribosomal subunit in a manner that depends on GTP. To evaluate correlation of the function and association of the subunits, we used isothermal titration calorimetry to analyze the thermodynamics of the interactions between the α- and γ-subunits in the presence or absence of a nonhydrolyzable GTP analog or GDP. The α-subunits bound to the γ-subunit with large heat capacity change (ΔCp) values. The ΔH and ΔCp values for the interaction between the α- and γ-subunits varied in the presence of the GTP analog but not in the presence of GDP. These results suggest that the binding of both the α-subunit and GTP changes the conformation of the switch region of the γ-subunit and increases the affinity of the γ-subunit for tRNA.  相似文献   

3.
We have examined the properties of microtubules formed in the presence of GTP, 5'-guanylyl imidodiphosphate (GMPP(NH)P), and 5'-guanylyl methylenediphosphate (GMPP(CH2)P) to identify features of the assembly or disassembly reactions uniquely related to hydrolysis. The assembly of microtubules with GTP or GMPP(NH)P was similar in terms of rates and extents of assembly, the length distributions, and podophyllotoxin-induced depolymerization. The greater rapidity of GMPP(CH2)P-supported assembly, however, resulted in shorter, more numerous microtubules and the rate of podophyllotoxin-induced depolymerization was consistent with an increased number of concentration of microtubules. Experiments with GTP or analogue incorporation and release indicated that GTP-tubule turnover corresponded to a rate of about 8% of the microtubule protein taken up or released per h. With GMPP(NH)P- and GMPP(CH2)P-tubules, the rates of label uptake by unlabeled microtubules were considerably lower than observed with guanosine triphosphate. We suggest that exchange experiments can reflect contributions from head-to-tail polymerization and polymer length redistribution, but it is not as yet possible to evaluate the relative contributions of each process.  相似文献   

4.
Human neutrophils can be permeabilized with the cholesterol complexing agent digitonin and then induced to secrete lysosomal constituents by increases in free Ca2+ alone. In order of increasing requirements for Ca2+, vitamin B-12 binding protein, lysozyme and β-glucuronidase were released. A variety of guanine nucleotides were examined with respect to their abilities to modulate this response. GTP, along with its analogues 5′-guanylylimidodiphosphate (Gpp[NH]p) and guanosine-5′-O-[3-thio]-triphosphate (GTP[γS]) decreased the Ca2+ requirements for secretion of all three granule constituents by one third to one order of magnitude. This synergy was dependent upon the concentration of guanine nucleotides employed. The effects of Gpp[NH]p could be blocked with the inactive derivative GDP[β-S]. The active guanine nucleotides, particularly GTP, served as stimuli in their own right. At high concentrations of Ca2+ and GTP, degranulation was strikingly inhibited; inhibition was also achieved with high concentrations of guanylyl[β,γ-methylene]diphosphate (Gpp[CH2]p). Both GDP and GMP were without any effect. When neutrophils were pretreated with pertussis toxin, granule discharge induced by fMet-Leu-Phe was almost completely blocked, as reported by others. If the neutrophils pretreated with pertussis toxin were then permeabilized with digitonin, the synergy between Ca2+ and the stimulatory guanine nucleotides was maintained. These data suggest the involvement of G-proteins in secretion induced by Ca2+; however, this response either uses a different G-protein or a different pool of G-proteins from those responses triggered by fMet-Leu-Phe.  相似文献   

5.
Nucleotide specificity in microtubule assembly in vitro   总被引:7,自引:0,他引:7  
A procedure is described for removing most of the GDP bound at the exchangeable GTP binding site (E site) of tubulin. Microtubule protein containing substoichiometric amounts of GDP at the E site is found to polymerize in response to: (a) two nonhydrolyzable ATP analogues, adenylyl imidodiphosphate (AMP-PNP) and adenylyl beta, gamma-methylenediphosphonate (AMP-PCP); and (b) substoichiometric levels of GTP or dGTP. The results are interpreted as suggesting that: (1) when GDP is removed from tubulin, the E site shows broad specificity for nucleoside triphosphates: (2) microtubule assembly can be induced by the binding of substoichiometric amounts of nucleoside triphosphate to the E site.  相似文献   

6.
Plasma membranes (1–2 mg protein) prepared from the livers of adult male rats and human organ donors were incubated with 0.6 μM [α-32P] guanosine triphosphate (GTP) in an adenosine triphosphate (ATP)-regenerating buffer at 37°C for 1 h; during this incubation, the [32P]GTP is hydrolyzed and the nucleotide that is predominantly bound to the membranes is [32P] guanosine diphosphate (GDP). [32P]GDP release from the liver membranes was proportional to the protein concentration and increased as a function of time. At 5 mM, Ca2+, Mg2+, Mn2+, and Zn2+ maximally inhibited GDP release by 80–90%, whereas, 5 mM Cu2+ maximally stimulated the reaction by 100%. Therefore, cations were not included in the buffer used in the GDP release step. One μM Gpp(NH)p (5′-guanylylimidodiphosphate), a nonhydrolyzable analog of GTP, maximally stimulated [32P]GDP release in the liver membranes by up to 30%. Although 10 nM Gpp(NH)p had no effect on GDP release, it appeared to stabilize the hormonal effect by blocking further GDP/GTP exchange. In the rat membranes, 1–100 nM glucagon (used as a positive control) stimulated [32P]GDP release by about 17% (P < .05); similarly, 0.1–100 nM insulin stimulated [32P]GDP release by 10–13% (P < .05). In the human membranes, 10 pM to 100 nM insulin stimulated [32P]GDP release by 7–10%. In the rat membranes, 10 nM insulin stimulated [32P]GDP release by 17 and 24% at 2 and 4 min, respectively (P < .05); in the human membranes, 10 nM insulin stimulated [32P]GDP release by about 9% at 2 and 4 min. Normal rabbit IgG (used as a control for insulin receptor antibody) by itself stimulated the GDP release by rat and human membranes. However, the stimulation of the GDP release by insulin receptor antibody was consistently higher than that observed with normal rabbit IgG. Four to 15 μg of insulin receptor antibody stimulated [32P]GDP release by 12–22% (P < .05) and 7–14% in rat and human membranes, respectively. These results indicate that ligand binding to the insulin receptor results in a functional interaction of the receptor with a guanine nucleotide-binding transducer protein (G protein) and activation of GTP/GDP exchange.  相似文献   

7.
Triamines produced by an extreme thermophile, Thermus thermophilus, were isolated and their chemical structures were determined. It was found that two novel triamines, norspermidine (1,7-diamino-4-azaheptane, NH2(CH2)3· NH(CH2)3NH2) and sym-homospermidine (1,9-diamino-5-azanonane, NH2(CH2)4NH· (CH2)4NH2) are present in the thermophile cells in addition to spermidine (1,8-diamino-4-azaoctane, NH2(CH2)3NH(CH2)4NH2).  相似文献   

8.
The binding of tritiated guanylylimidodiphosphate ([3H]GMP-P(NH)P) to turkey erythrocyte ghosts was studied in parallel with the activation by GMP-P(NH)P of adenylate cyclase. The high affinity binding capacity for GMP-P(NH)P, 50 pmoles per mg protein, exceeds the estimated quantity of adenylate cyclase of 1 pmole per mg of protein. The rate of nucleotide binding is not affected by isoproterenol. Further, in the presence of the hormone the rate of binding is much slower than the rate of activation. Although the rate of dissociation of bound [3H]GMP-P(NH)P is negligible at 37°, it is increased dramatically by unlabeled GMP-P(NH)P, GTP, EDTA, ATP, AMP-P(CH2)P, or p-aminophenylmercuric acetate. In contrast, the rate of decay of the GMP-P(NH)P-simulated state is not altered by these agents. Thus, the major fraction of GMP-P(NH)P binding to membranes is not relevant to cyclase activation.  相似文献   

9.
Nucleotides such as GTP and GDP appear to be involved in signal transduction via G protein modulation of adenylate cyclase activity. Studies on direct binding of [3H]GDP to membranes prepared from cultured immature rat Sertoli cells indicated that this process was reversible, approached steady state within 10 min, had a Ka of 4.5 ·106M−1 and was specific for guanine nucleotides. The non-hydrolyzable analog, guanosine 5′-O-[3-thio]triphosphate (GPPP[S]), was most effective as an inhibitor of [3H]GDP binding (ED50 = 4.8·10−8M), whereas guanosine 5′-O-[2-thio]diphosphate (Gpp[S]) was less potent (ED50 = 3.4·10−7M). Release of bound GDP was enhanced by follitropin (FSH) in the presence of Gppp[S], although not by FSH alone. Sertoli cell membranes possess guanine nucleotide hydrolase activity, where 95% of added nucleotide was rapidly degraded to guanosine. Binding kinetics were significantly influenced by nucleotide metabolism, which was prevented by controlling the Mg2+ concentration with EDTA and including App[NH]p to reduce nonspecific hydrolysis. Kinetic studies indicated that Gpp[S] inhibited (P < 0.05) Gppp[S]-stimulated adenylate cyclase activity (Ki = 1.8·10−7M), whereas basal activity remained unaffected. Addition of Gpp[S] to pre-activated enzyme (FSH plus GTP) resulted in a time-dependent decay of adenylate cyclase activity with a Koff value of 6 ± 1·min−1. Using a two-stage pre-inculbation technique, adenylate cyclase activity was demonstrated to be sensitive to the nucleotide bound. When FSH was included, catalytic activity was not altered by the order of pre-incubation with the nucleotides. This suggested that the exchange of bound Gpp[S] for Gppp[S] was enhance by FSH. Activation and attenuation of FSH-sensitive adenylate cyclase activity is dependent on a nucleotide exchange mechanism which is driven by (1) the higher affinity of G for GTP than GDP, (2) enhanced release of GD when FSH is present and (3) GTP hydrolysis coupled to rapid metabolism of guanine nucleotides.  相似文献   

10.
New types of azidoaryl analogs of GTP: γ-(4-azido)anilide of GTP (I), γ-(N-(4-azidobenzyl)-N-methyl)amide of GTP (II) and of GDP: β-(4-azido)anilide of GDP (III), β-(N-(4-azidobenzyl)-N-methyl)amide of GDP (IV) have been synthesized by treatment of the nucleotide in aqueous solution with N-cyclohexyl-N′-β-(4-methylmorpholinium)- ethylcarbodiimidep-toluene sulfonate and the respective amine. The analog of GTP bearing at the γ-phosphate an alkylating 2-chloroethylamino group: γ-(4-N-(2-chloroethyl)-N-methylaminobenzyl)amide of GTP (V) was prepared by the method described previously for the preparation of the analog of ATP (Knorre, D.G., Kurbatov, V.A. and Samukov, V.V. (1976) FEBS Lett. 70, 105–108). Azidoaryl analogs of GTP and GDP as well as the chloroethylaminoaryl analog of GTP compete with GDP in the formation of the binary complex EF-Tu·GDP with the respective Ki values 3.9·10?7 M (I), 2.9·10?8 M (II), 6.9·10?7 M (III), 5.0·10?7 M (IV) and 3.8·10?8 M (V) relative to GDP. constants of the complexes of the radioactively-labeled GTP analogs I, II and V with elongation factor Tu were calculated to be 8.5·10?6 M, 3.4·10?7 M and 4.6·10?8 M, respectively, or approx. 1740-, 70- and 9-times greater than that of GDP. GTP analogs I, II and V were found to substitute GTP in the stimulation of EF-Tu-dependent binding of aminoacyl-tRNA to the ribosome-mRNA complex.  相似文献   

11.
The mechanism underlying ATP-induced permeabilization of transformed mouse fibroblasts was studied by using nonhydrolyzable analogues of ATP. Incubation of 3T6 cells with 0.6 mM of either ATP, 5′-adenylyl imidodiphosphate (p[NH]ppA) or adenosine 5′-[β,γ-methylene]triphosphate (p[CH2]ppA) resulted in an increase of 17-, 8- or 5-times, respectively, in the cell membrane permeability, measured by the efflux of normally impermeant metabolites from the cells. The induced cell permeabilization was preceded by a reduction in the membrane potential (Δψ), determined according to the distribution of the cation tetraphenylphosphonium (TPP+) between the cells and the medium. Reduction of 26, 18 and 13 mV in Δψ was exerted by 0.6 mM of either ATP, p[NH]ppA or p[CH2]ppA, respectively. In 3T3 cells the untransformed counterparts of 3T6 cells, neither reduction of Δψ, nor alterations in membrane permeability were exerted by either ATP or by its analogues. The data indicate that the dissociation of the β,γ-phosphate bond is not essential for membrane permeabilization by external ATP, implying that the binding of ATP to the cell surface of transformed cells is sufficient to initiate the permeabilization process. The data also suggest that Δψ is involved in the control of membrane permeability.  相似文献   

12.
E Hamel  C M Lin 《Biochemistry》1990,29(11):2720-2729
Recently it was proposed [O'Brien, E. T., & Erickson, H. P. (1989) Biochemistry 28, 1413-1422] that tubulin polymerization supported by guanosine 5'-(beta,gamma-imidotriphosphate) [p(NH)ppG], guanosine 5'-(beta,gamma-methylenetriphosphate) [p(CH2)ppG], and ATP might be due to residual GTP in reaction mixtures and that these nucleotides would probably support only one cycle of assembly. Since we had observed polymerization with these three compounds, we decided to study these reactions in greater detail in two systems. The first contained purified tubulin and a high concentration of glycerol, the second tubulin and microtubule-associated proteins (MAPs). In both systems, reactions supported by nucleotides other than GTP were most vigorous at lower pH values. In the glycerol system, repeated cycles of polymerization were observed with ATP and p(CH2)ppG, but not with p(NH)ppG. With p(NH)ppG, a single cycle of polymerization was observed, and this was caused by contaminating GTP. In the MAPs system, repeated cycles of polymerization were observed with both nonhydrolyzable GTP analogues, even without contaminating GTP, but ATP was not active at all in this system. Binding to tubulin of p(NH)ppG, p(CH2)ppG, and, to a lesser extent, ATP was demonstrated indirectly, since high concentrations of the three nucleotides displaced radiolabeled GDP originally bound in the exchangeable site, with p(NH)ppG the most active of the three compounds in this displacement assay. The failure of GTP-free p(NH)ppG to support tubulin polymerization in our glycerol system even though it displaced GDP from the exchangeable site was further investigated by examining the effects of p(NH)ppG on polymerization and polymer-bound nucleotide with low concentrations of GTP. The two nucleotides appeared to act synergistically in supporting polymerization, so that a reaction occurred with a subthreshold GTP concentration if p(NH)ppG was also in the reaction mixture. Analysis of radiolabeled exchangeable-site nucleotide in polymers formed in reaction mixtures containing both GTP and p(NH)ppG demonstrated that p(NH)ppG which entered polymer did so primarily at the expense of GDP originally bound in the exchangeable site rather than at the expense of GTP. It appears that in the glycerol reaction condition, tubulin-p(NH)ppG cannot initiate tubulin polymerization but that it can participate in polymer elongation. ATP and p(CH2)ppG also entered the exchangeable site during polymerization without GTP in glycerol, as demonstrated by displacement of radiolabeled GDP from polymer when these alternate nucleotides were used.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
We describe in vitro microtubule assembly that exhibits, in bulk solution, behavior consistent with the GTP cap model of dynamic instability. Microtubules assembled from pure tubulin in the absence of free nucleotides could undergo one cycle of assembly, but could not sustain an assembly plateau. After the initial peak of assembly was reached and bound E-site GTP hydrolyzed to GDP, the microtubules gradually disassembled. We studied buffer conditions that maximized this disassembly while still allowing robust assembly to take place. While both glycerol and glutamate increased the rate of initial assembly and then slowed disassembly, magnesium promoted initial assembly and, surprisingly, enhanced disassembly. After cooling, a second cycle of assembly was unsuccessful unless GTP or the hydrolyzable GTP analogue GMPCPOP was readded. The nonhydrolyzable GTP analogues GMPPNP and GMPPCP could not support the second assembly cycle in the absence of E-site GTP. Analysis using HPLC found no evidence that GMPPNP, GMPPCP, or ATP could bind to free tubulin, and these nucleotides did not compete with GTP for the E-site. We have, however, demonstrated that the nonhydrolyzable GTP analogues and ATP do have an important effect on microtubule assembly. GMPPNP, GMPPCP, and ATP could each enhance the rate of assembly and stabilize the plateau of assembled microtubules against disassembly, while not binding appreciably to free tubulin. We conclude that these nucleotides, as well as GTP itself, enhance assembly by binding to a site on microtubules that is not present on free, unpolymerized tubulin. We estimate the affinity (KD) of the polymeric site for nucleotide triphosphates to be approximately 10(-4)M.  相似文献   

14.
At least two species of elongation factor 1 from wheat embryo have been detected by sucrose gradient analysis and Sephadex gel filtration. The heavy species (EF1h) which has a molecular weight of 200,000 can be converted into the light species (EF1l) with a molecular weight of approximately 50,000 by addition of GTP or GDP. The conversion of EF1h to EF1l is more rapid in the presence of GDP than in the presence of GTP. Aminoacyl-tRNA which reacts preferentially with EF1l favors the conversion of EF1h to EF1l with GTP. Both GTP and GDP promote inactivation of EF1h, but the addition of aminoacyl-tRNA counteracts the effect of the guanosine triphosphate. These reactions are discussed with respect to the function of the various forms of EF1 in aminoacyl-tRNA binding to ribosomes.  相似文献   

15.
Diphtheria toxin fragment A interacts with Cibacron blue in solution, although it is not retained by blue Sepharose columns. Difference spectral titration of fragment A with the dye gives a dissociation constant of the order of 10–5 M and a 11 stoichiometry for the complex. In equilibrium dialysis experiments Cibacron blue behaves as a competitive inhibitor of the binding of NAD to diphtheria toxin fragment A. The dye inhibits in a non-competitive way the fragment A-catalysed transfer of ADP-ribose from NAD to elongation factor 2 (EF2). By affinity chromatography on blue Sepharose a binding of EF2 and of ADP-ribosyl-EF2 with the dye is also demonstrated. GDP, GTP and GDP(CH2)P are able to displace EF2 from blue Sepharose.  相似文献   

16.
Guanine-nucleotide binding proteins (G proteins) serve as molecular switches in signaling pathways, by coupling the activation of G protein-coupled receptors (GPCRs) at the cell surface to intracellular responses. In the resting state, G protein forms a heterotrimer, consisting of the G protein α subunit with GDP (Gα·GDP) and the G protein βγ subunit (Gβγ). Ligand binding to GPCRs promotes the GDP–GTP exchange on Gα, leading to the dissociation of the GTP-bound form of Gα (Gα·GTP) and Gβγ. Then, Gα·GTP and Gβγ bind to their downstream effector enzymes or ion channels and regulate their activities, leading to a variety of cellular responses. Finally, Gα hydrolyzes the bound GTP to GDP and returns to the resting state by re-associating with Gβγ. The G proteins are classified with four major families based on the amino acid sequences of Gα: i/o, s, q/11, and 12/13. Here, we established the backbone resonance assignments of human Gαi3, a member of the i/o family with a molecular weight of 41 K, in complex with GDP. The chemical shifts were compared with those of Gαi3 in complex with a GTP-analogue, GTPγS, which we recently reported, indicating that the residues with significant chemical shift differences are mostly consistent with the regions with the structural differences between the GDP- and GTPγS-bound states, as indicated in the crystal structures. The assignments of Gαi3·GDP would be useful for the analyses of the dynamics of Gαi3 and its interactions with various target molecules.  相似文献   

17.
Abstract

Estrogen receptor (ER) is a gene-regulatory protein that mediates the action of estradiol. In order to examine the role of conformational dynamics of DNA in estrogenic regulation of gene expression, we studied the binding of ER to poly(dA-dC).poly(dG-dT) which undergoes transition to a left-handed Z-DNA form. This type of dinucleotide repeats are widely distributed in mammalian genome and are present in estrogen response elements. Binding affinity of ER for the polynucleotide was assessed by its ability to release ER bound to DNA-cellulose. ER binding by poly(dA-dC).poly(dG-dT) was enhanced in the presence of an endogenous polyamine, spermidine, H2N(CH2)4NH(CH2)3NH2. The concentration of spermidine required for facilitating 50% elution of ER (EC50) was 75 μM. This EC50 increased to 500 μM for a spermidine homolog, H2N(CH2)8NH(CH2)3NH2, demonstrating polyamine structural specificity. Spectroscopic measurements showed that the presence of 100 – 200 μM spermidine initiated changes in the conformation of the polynucleotide indicative of Z-DNA form, but a major alteration to Z-DNA spectrum occurred only at 300 μM concentration. These data suggest that ER favors DNA sequences poised for Z-DNA transition. The efficacy of spermidine homologs in facilitating ER-DNA interaction may be important in predicting their efficiency to replace cellular functions of spermidine.  相似文献   

18.
The effects of Mg2+ and guanine nucleotides on glucagon binding to its receptor were studied using [125I-Tyr10]monoiodoglucagon. Contrary to findings with beta-adrenergic receptors, high affinity binding of the stimulatory hormone was not dependent on Mg2+ and low affinity binding could be obtained on nucleotide addition regardless of presence of Mg2+. GDP, guanyl-5'-yl thiophosphate (GDP beta S), GTP, and guanyl-5'-yl imidodiphosphate (GMP-P(NH)P) were all able to induce low affinity hormone binding. Since the Ns component of adenylyl cyclase, with which the receptor interacts, is inactive in stimulating the catalytic component C of adenylyl cyclase in the absence of Mg2+, both before and after GDP addition, it is suggested that Ns has at least two domains that change conformation independently of each other: a r domain, that interacts with the receptor and confers to it high affinity binding, and a c domain, that interacts with the catalyst C and stimulates it. It is suggested further that Ns is r+c- when stabilizing the receptor in its conformation with high affinity for hormone, and r-c- when under the influence of GDP which results in the receptor adopting the conformation that exhibits low affinity for the hormone. Comparison of potencies of the four nucleotides to induce low affinity binding showed that GDP and GDP beta S were equipotent and 10 times more potent than GTP and 100 times more potent than GMP-P(NH)P. Under the conditions used it was impossible to substantiate that the effects of GTP or GMP-P(NH)P were not due to formation of GDP from GTP or presence of GDP-like material in GMP-P(NH)P. It is suggested that, contrary to widely held opinions, GDP and GDP-like compounds, and not GTP or its analogs, are responsible for the lowering of the affinity of adenylyl cyclase stimulating receptors for their hormones or agonists. Furthermore, the experiments suggest that the c+ conformation of the c domain of Ns co-exists with the r+ and not the r- conformation of its r domain.  相似文献   

19.
Abstract

Many radiolabelled receptors coupled to intracellular adenylate cyclase activity have been found to be modulated by physiological modulators such as GTP (guanosine triphosphate) and Gpp(NH)p (guanosine-imido-diphosphate). In particular, the apparent affinity of agonists competing for the binding of 3H-antagonist-labelled receptors is reduced in the presence of GTP and Gpp(NH)p. We report herein the agonist-specific effects of GTP and Gpp(NH)p on rat brain cortical S2 serotonin receptors. The agonists serotonin, 5-methoxytryptamine, bufotenine, and tryptamine display threefold lower affinities for S2 serotonin receptors in the presence of 10-4M GTP or Gpp(NH)p than in the absence of the nucleotides. The antagonists spiperone, cinanserin, cyproheptadine and methysergide are unaffected by the guanine nucleotides. The Hill coefficients of the agonists increase from between 0.70–0.80 to 0.90–1.00 due to guanine nucleotides. ATP, ADP, and GDP have little or no effect. This pattern of guanine nucleotide effects has been found with receptors which are modulated by a guanine nucleotide regulatory protein and may indicate that the S2 serotonin receptor may be coupled to intracellular adenylate cyclase activity.  相似文献   

20.
The 31P NMR pressure response of guanine nucleotides bound to proteins has been studied in the past for characterizing the pressure perturbation of conformational equilibria. The pressure response of the 31P NMR chemical shifts of the phosphate groups of GMP, GDP, and GTP as well as the commonly used GTP analogs GppNHp, GppCH2p and GTPγS was measured in the absence and presence of Mg2+-ions within a pressure range up to 200 MPa. The pressure dependence of chemical shifts is clearly non-linear. For all nucleotides a negative first order pressure coefficient B 1 was determined indicating an upfield shift of the resonances with pressure. With exception of the α-phosphate group of Mg2+·GMP and Mg2+·GppNHp the second order pressure coefficients are positive. To describe the data of Mg2+·GppCH2p and GTPγS a Taylor expansion of 3rd order is required. For distinguishing pH effects from pressure effects a complete pH titration set is presented for GMP, as well as GDP and GTP in absence and presence of Mg2+ ions using indirect referencing to DSS under identical experimental conditions. By a comparison between high pressure 31P NMR data on free Mg2+-GDP and Mg2+-GDP in complex with the proto-oncogene Ras we demonstrate that pressure induced changes in chemical shift are clearly different between both forms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号