首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of edeine on the translation of mRNA or poly(U)-directed polyphenylalanine synthesis has been studied in an edeine-resistant mutant of Saccharomyces cerevisiae under three different experimental conditions: in the whole lysate system, in a micrococcal-nuclease-treated lysate, and in a high-salt-treated lysate. The results indicate that translation of messenger is more resistant to edeine in the whole lysate than in the depleted lysates; these observations suggest that resistance to edeine is associated with the presence of endogenous mRNA. It is shown that 40S mutant subunits have a higher affinity for polysomal RNA than 40S wild-type subunits. Since the mRNA binding is inhibited by 7-methylguanosine 5'-monophosphate, the interaction between polysomal RNA and 40S ribosomes is specific for mRNA. The data demonstrate that in each of the depleted lysates, with edeine initially present, the formation of the 80S initiation complex is inhibited. However, edeine inhibition of [3H]methionine binding to 80S ribosomes is overcome completely in the mutant extract by preincubation of this lysate with polysomal RNA. The results indicate that the mutant may carry a specific change in a messenger-binding factor or in a ribosomal protein thereby permitting an increased stability of the messenger-ribosome complex which consequently results in an increased resistance of the mutant lysate to edeine.  相似文献   

2.
The function of eukaryotic initiation factor 5 (eIF-5) from rabbit reticulocyte lysate has been studied by sucrose gradient preparation of 40 S and 80 S initiation complexes. eIF-5 is required for transfer of initiator tRNA from 40 S preinitiation complexes to puromycin-reactive 80 S complexes. The transfer is dependent upon GTP hydrolysis and is associated with release of eIF-2 and eIF-3 from the 40 S subunit. The GTP-dependent loss of eIF-2 and eIF-3 is catalyzed by eIF-5 in the absence of 60 S subunits or when subunit joining is prevented by edeine, but not when GTP is replaced by GuoPP(NH)P. Unstable 40 S subunit . Met-tRNAf complexes generated by eIF-5 can form puromycin-reactive 80 S complexes when 60 S subunits are added in the absence of added GTP. In addition, kinetic evidence is presented that indicates GTP hydrolysis occurs prior to 80 S complex formation.  相似文献   

3.
The technique of primer extension inhibition has been adapted to analyze the eukaryotic ribosome-mRNA interaction. Formation of the ribosome-mRNA complex was performed in a nuclease-treated rabbit reticulocyte lysate. Before primer extension analysis, however, the complex is isolated by sucrose gradient centrifugation. Both 80 S- and 40 S-mRNA complexes can be individually analyzed because of this isolation step. 80 S ribosomes and 40 S ribosomal subunits could be localized at the initiation codon by a number of independent means where all complexes were formed in a manner consistent with the current understanding of the initiation pathway for translation in eukaryotes. Complexes were also isolated with the aid of the antibiotic edeine, where the 40 S ribosomal subunit was not located at the initiation codon, but 5' to the initiation codon. This extension inhibition assay was used to complement studies regarding the ATP dependence of the 40 S-mRNA interacting initiation steps that involve the mammalian RNA-interacting initiation factors eIF-4A, -4B, and -4F. A strong requirement for ATP was observed for 40 S-mRNA complex formation. A factor-mediated stimulation of complex formation by a combination of eIF-4A, -4B, and -4F was observed, and was one which required the presence of ATP. This factor-mediated ATP-dependent stimulation of complex formation was significantly inhibited by preincubating eIF-4A with the ATP analog 5'-p-fluorosulfonylbenzoyl adenosine. Finally, all complexes accumulated to a significant degree were analyzed by the primer extension assay. It was found that the 40 S ribosomal subunit was positioned at the initiation codon for all variations tested.  相似文献   

4.
5.
An initiating cell-free protein synthesis system derived from brain was utilized to demonstrate that the intravenous injection of D-lysergic acid diethylamide (LSD) to rabbits resulted in a lesion at the initiation stage of brain protein synthesis. Three inhibitors of initiation, edeine, poly(I), and aurintricarboxylic acid were used to demonstrate a reduction in initiation-dependent amino acid incorporation in the brain cell-free system. One hour after LSD injection, there was also a measurable decrease in the formation of 40S and 80S initiation complexes in vitro, using either [35S]methionine or [35S]Met-tRNAf. Analysis of the methionine pool size after LSD administration indicated there was no change in methionine levels. Analysis of the formation of initiation complexes in the brain cell-free protein synthesis system prepared 6 h after LSD administration indicated that there was a return to control levels at this time. The effects of LSD on steps in the initiation process are thus reversible.  相似文献   

6.
Migration of 40 S ribosomal subunits on messenger RNA, detected previously in experiments using the antibiotic edeine (Kozak, M., and Shatkin, A.J. (1978) J. Biol. Chem. 253, 6568-6577) has now been observed in the presence of other inhibitors of initiation. 40 S subunit migration has been detected in both wheat germ and reticulocyte lysates treated with edeine, pactamycin, or sodium fluoride. The variety of structurally unrelated inhibitors that mediate this effect argues against the interpretation that migration is a drug-induced artifact. Indeed, limited migration of 40 S ribosomes occurs upon simply lowering the magnesium concentration, in the absence of inhibitors. Thus, migration seems to be an inherent property of 40 S ribosomal subunits and might be involved in the mechanism by which eukaryotic ribosomes select initiation sites in messenger RNA.  相似文献   

7.
40 S ribosomal subunits of Artemia salina embryos can bind formylmethionyl-transfer RNAf non-enzymically, i.e., in the absence of initiation factors. This, like the enzymic reaction, is largely AUG-dependent. Much more fMet-tRNAf is bound by 80 S ribosomes but, in this case, a large fraction (about two-thirds) of the binding is AUG-independent. Whereas the AUG-dependent binding is very sensitive to edeine, a potent initiation inhibitor, the AUG-independent binding is resistant to this antibiotic. Virtually all of the bound fMet-tRNAf is in all cases capable of reacting with puromycin to form fMet-puromycin; hence the bound aminoaoyl-tRNA is in the peptidyl (donor) site of the 80 S ribosome. Non-acylated tRNAs also bind to this site with high affinity in a codon-independent reaction and block the 80 S binding of fMet-tRNAf. The properties of the peptidyl site are consistent with a non-decoding site which harbors the initiator aminoacyl-tRNA, when the 80 S initiation complex is formed, and to which every molecule of tRNA remains temporarily attached following peptide bond synthesis.  相似文献   

8.
The crystal structures of the universal translation-initiation inhibitors edeine and pactamycin bound to ribosomal 30S subunit have revealed that edeine induces base pairing of G693:C795, residues that constitute the pactamycin binding site. Here, we show that base pair formation by addition of edeine inhibits tRNA binding to the P site by preventing codon-anticodon interaction and that addition of pactamycin, which rebreaks the base pair, can relieve this inhibition. In addition, edeine induces translational misreading in the A site, at levels comparable to those induced by the classic misreading antibiotic streptomycin. Binding of pactamycin between residues G693 and C795 strongly inhibits translocation with a surprising tRNA specificity but has no effect on translation initiation, suggesting that reclassification of this antibiotic is necessary. Collectively, these results suggest that the universally conserved G693:C795 residues regulate tRNA binding at the P site of the ribosome and influence translocation efficiency.  相似文献   

9.
Edeine-synthesizing polyenzymes, associated with a complex of sytoplasmic membrane and DNA, were obtained from gently lysed cells of Bacillus brevis Vm4. The polyenzymes-membrane-DNA complex, isolated from dells intensively synthesizing edeines (18--20 h culture) contained edeine B. Edeine B was found to be bound covalently t o the edeine synthetase. The amount of edeine bound to polyenzymes was 0.1--0.3 mumol/mg protein, depending on the age of cells. Detachment of deeine synthetase with a covalently bound edeine B from the membrane-DNA complex was accomplished by a treatment with (NH4)2-SO4 at 45--55% saturation or by DEAE-cellulose column fractionation. In contrast to other components of the complex, the edeine-polyenzymes fragment was not adsorbed to the DEAE-cellulose. Sephadex G-200 column chromatography separated the edeine-polyenzymes complex into 3 fractions. Edeine-polyenzymes complex, obtained from lysozyme-Brij-58-DNAase treated cells, contained edeine B bound to two protein fractions of mol. wt 210 000 and 160 000. Edeine-polyenzymes complex detached from the complex with the membrane and DNA contained edeine B, bound only to protein fraction of mol. wt 210 000. Edeine A was not found in the edeine-polyenzymes complex. No accumulation of free antibiotics within 16--22 h old cells of B. brevis Vm4 was detected. The edeine-polyenzymes complex associated with the DNA-membrane complex has shown no antimicrobial activity. By treating of above with alkali, edeine B of specific activity: 80 units/mjmol was released. The complex of DNA-membrane associated with edeine-polyenzymes complex was able to synthesize DNA, under the conditions described for synthesis, directed by a DNA-membrane complex. Edeine when associated with this complex did not effect the DNA-synthesizing activity.  相似文献   

10.
An mRNA-dependent cell-free translation system has been developed from the human pathogenic fungus Candida albicans using either S30 or S100 lysates prepared from glass-bead-disrupted whole cells. Translation of the synthetic template poly(U) in this system is highly efficient at temperatures up to 37 degrees C and is ATP-dependent. Studies using a range of elongation-specific inhibitors suggest that the mechanism of translational elongation in C. albicans is similar to that of another yeast, Saccharomyces cerevisiae. A micrococcal-nuclease-treated C. albicans S100 lysate was able to translate exogenously-supplied homologous mRNAs, and a range of heterologous natural mRNAs, using an initiation mechanism that is inhibited by the antibiotic edeine and the 5' cap analogue 7-methylguanosine 5'-monophosphate (m7GMP). As with cell-free lysates prepared from S. cerevisiae, the C. albicans lysate is unable to initiate translation upon natural mRNAs at temperatures above 20 degrees C.  相似文献   

11.
Edeine-synthesizing polyenzymes, associated with a complex of cytoplasmic membrane and DNA, were obtained from gently lysed cells of Bacillus brevis Vm4. The polyenzymes-membrane-DNA complex, isolated from cells intensively synthesizing edeines (18–20 h culture) contained edeine B. Edeine B was found to be bound covalently to the edeine synthetase. The amount of edeine bound to polyenzymes was 0.1–0.3 μmol/mg protein, depending on the age of cells.Detachment of edeine synthetase with a covalently bound edeine B from the membrane-DNA complex was accomplished by a treatment with (NH4)2SO4 at 45–55% saturation or by DEAE-cellulose colum fractionation. In contrast to other components of the complex, the edeine-polyenzymes fragment was not adsorbed to the DEAE-cellulose. Sephadex G-200 column chromatography separated the edeine-polyenzymes complex into 3 fractions. Edeine-polyenzymes complex, obtained from lysozyme-Brij-58-DNAase treated cells, contained edeine B bound to protein fraction of mol. wt 210 000 and 160 000. Edeine-polyenzymes complex detached from the complex with the membrane and DNA contained edeine B, bound only to protein fraction of mol. wt 210 000. Edeine A was not found in the edeine-polyenzymes complex. No accumulation of free antibiotics within 16–22 h old cells of B. brevis Vm4 was detected. The edeine-polyenzymes complex associated with the DNA-membrane complex has shown no antimicrobial activity. By treating of above with alkali, edeine b of specific activity: 80 units/μmol was released.The complex of DNA-membrane associated with edeine-polyenzymes complex was able to synthesize DNA, under the conditions described for synthesis, directed by a DNA-membrane complex. Edeine when associatd with this complex did not effect the DNA-synthesizing activity.  相似文献   

12.
M Kostura  N Craig 《Biochemistry》1986,25(21):6384-6391
Inhibitors of RNA synthesis such as actinomycin D, MPB, and cordycepin progressively inhibit the initiation of protein synthesis in intact, nucleated mammalian cells. This inhibition is not dependent on the levels of mRNA, ribosomes, or tRNA. Lysates prepared from CHO cells treated with actinomycin D do not incorporate labeled globin mRNA or ovalbumin mRNA into 80S initiation complexes at the rates of untreated control extract. The ability of the extracts to produce and accumulate 48S preinitiation complexes was assessed using the 60S subunit joining inhibitors edeine and 5'-guanylyl imidodiphosphate. Control extracts were able to accumulate both the 48S preinitiation complexes and the migration-related intermediates in the presence of both inhibitors. However, lysates derived from CHO cells treated with actinomycin D were unable to produce these complexes. This was also true at low temperature, a condition that does not inhibit mRNA binding but prevents migration of the 43S complex along the mRNA. Mixing experiments with extracts from untreated control or AMD-treated CHO cells provided no evidence for a translational inhibitor. Thus, our data are consistent with the hypothesis that treatment of whole cells with actinomycin D inhibits protein synthesis initiation at the level of mRNA binding and not at migration or 60S subunit joining.  相似文献   

13.
The small ribosomal subunit is responsible for the decoding of genetic information and plays a key role in the initiation of protein synthesis. We analyzed by X-ray crystallography the structures of three different complexes of the small ribosomal subunit of Thermus thermophilus with the A-site inhibitor tetracycline, the universal initiation inhibitor edeine and the C-terminal domain of the translation initiation factor IF3. The crystal structure analysis of the complex with tetracycline revealed the functionally important site responsible for the blockage of the A-site. Five additional tetracycline sites resolve most of the controversial biochemical data on the location of tetracycline. The interaction of edeine with the small subunit indicates its role in inhibiting initiation and shows its involvement with P-site tRNA. The location of the C-terminal domain of IF3, at the solvent side of the platform, sheds light on the formation of the initiation complex, and implies that the anti-association activity of IF3 is due to its influence on the conformational dynamics of the small ribosomal subunit.  相似文献   

14.
The small (40 S) subunit of rat liver ribosomes is capable of binding the initiator tRNA (Met-tRNAi), in the absence of added protein factors, in marked preference to other aminoacyl-tRNAs. This binding requires magnesium ions, is codon (ApUpG)-specific, is not obtained with 60 S subunits, and is significantly higher than that observed with 80 S ribosomes. The 40 S subunit also exhibits a preference for ApUpG over several other trinucleotides. The reaction is inhibited by 60 S particles; it is also inhibited by compounds that effect chain initiation such as edeine and aurintricarboxylic acid, but not by cycloheximide, tetracycline or KF. All other aminoacyl-tRNAs, including Met-tRNAm, bind more efficiently to 80 S ribosomes at low MgCl2 concentrations with EF1 or in high Mg++-containing solutions.  相似文献   

15.
To provide a bridge between in vivo and in vitro studies of eukaryotic translation initiation, we have developed a reconstituted translation initiation system using components from the yeast Saccharomyces cerevisiae. We have purified a minimal set of initiation factors (elFs) that, together with yeast 80S ribosomes, GTP, and initiator methionyl-tRNA, are sufficient to assemble active initiation complexes on a minimal mRNA template. The kinetics of various steps in the pathway of initiation complex assembly and the formation of the first peptide bond in vitro have been explored. The formation of active initiation complexes in this system is dependent on ribosomes, mRNA, Met-tRNAi, GTP hydrolysis, elF1, elF1A, elF2, elF5, and elF5B. Our data indicate that elF1 and elF1A both facilitate the binding of the elF2 x GTP x Met-tRNAi complex to the 40S ribosomal subunit to form the 43S complex. elF5 stimulates a step after 43S complex formation, consistent with its proposed role in activating GTP hydrolysis by elF2 upon initiation codon recognition. The presence of elF5B is required for the joining of the 40S and 60S subunits to form the 80S initiation complex. The step at which each of these factors acts in this reconstituted system is in agreement with previous data from in vivo studies and work using reconstituted mammalian systems, indicating that the system recapitulates fundamental events in translation initiation in eukaryotic cells. This system should allow us to couple powerful yeast genetic and molecular biological experiments with in vitro kinetic and biophysical experiments, yielding a better understanding of the molecular mechanics of this central, complex process.  相似文献   

16.
Eukaryotic initiation factor 5 (eIF-5), isolated from rabbit reticulocyte lysates, is a monomeric protein of 58-62 kDa. The function of eIF-5 in the formation of an 80 S polypeptide chain initiation complex from a 40 S initiation complex has been investigated. Incubation of the isolated 40 S initiation complex (40 S.AUG.Met.tRNAf.eIF-2 GTP) with eIF-5 resulted in the rapid and quantitative hydrolysis of GTP bound to the 40 S initiation complex. The rate of this reaction was unaffected by the presence of 60 S ribosomal subunits. Analysis of eIF-5-catalyzed reaction products by gel filtration indicated that both eIF-2.GDP binary complex and Pi formed were released from the ribosomal complex whereas Met-tRNAf remained bound to 40 S ribosomes as a Met-tRNAf.40 S.AUG complex. Reactions carried out with biologically active 32P-labeled eIF-5 indicated that this protein was not associated with the 40 S.AUG.Met-tRNAf complex; similar results were obtained by immunological methods using monospecific anti-eIF-5 antibodies. The isolated 40 S.AUG.Met-RNAf complex, free of eIF-2.GDP binary complex and eIF-5, readily interacted with 60 S ribosomal subunits in the absence of exogenously added eIF-5 to form the 80 S initiation complex capable of transferring Met-tRNAf into peptide linkages. These results indicate that the sole function of eIF-5 in the initiation of protein synthesis is to mediate hydrolysis of GTP bound to the 40 S initiation complex in the absence of 60 S ribosomal subunits. This leads to formation of the intermediate 40 S.AUG.Met-tRNAf and dissociation of the eIF-2.GDP binary complex. Subsequent joining of 60 S ribosomal subunits to the intermediate 40 S.AUG.Met-tRNAf complex does not require participation of eIF-5. Thus, the formation of an 80 S ribosomal polypeptide chain initiation complex from a 40 S ribosomal initiation complex can be summarized by the following sequence of partial reactions. (40 S.AUG.Met-tRNAf.eIF-2.GTP) eIF-5----(40 S.AUG.Met-tRNAf) + (eIF-2.GDP) + Pi (1) (40 S.AUG.Met-tRNAf) + 60 S----(80 S.AUG.Met-tRNAf) (2) 80 S initiation complex.  相似文献   

17.
The AUG-dependent formation of an 80 S ribosomal initiation complex was studied using purified rabbit reticulocyte initiation factors radiolabeled by reductive methylation. The radiolabeled initiation factors were as biologically active as untreated factors. Reaction mixtures containing a variety of components (AUG, GTP, Met-tRNAf, initiation factors, and 40 S and 60 S ribosomal subunits) were incubated at 30 degrees C and then analyzed on linear sucrose gradients for the formation of ribosomal complexes. The results show that both eukaryotic initiation factor (eIF)-3 and the ternary complex (eIF-2.GTP.Met-tRNAf) bind independently to the 40 S subunit and each of these components enhances the binding of the other. All of the polypeptides of eIF-2 and eIF-3 participate in this binding. Formation of an 80 S ribosomal complex requires eIF-5 and 60 S subunits in a reaction that is stimulated by eIF-4C. Both eIF-2 and eIF-3 are released from the 40 S preinitiation complex during formation of the 80 S initiation complex. Release of eIF-2 and eIF-3 does not occur and 80 S ribosomal complexes are not formed if GTP is replaced by a nonhydrolyzable analog such as guanosine 5'-O3-(1,2-mu-imido)triphosphate. Despite a variety of attempts, it has not yet been possible to demonstrate binding of eIF-4C, eIF-4D, or eIF-5 to either 40 S or 80 S ribosomal complexes.  相似文献   

18.
Three lines of evidence are presented indicating that GTP hydrolysis associated with eukaryotic peptide initiation occurs in the absence of 60 S subunits when methionyl-tRNAf is bound to 40 S ribosomal subunits. An enzyme fraction required for binding of methionyl-tRNAf to 40 S subunits and peptide initiation, tentatively equated with eIF-(4 + 5), has GTPase activity and appears to be responsible for hydrolysis of GTP in the methionyl-tRNAf.eIF-2.GTP complex. Direct analysis of the methionyl-tRNAf.40 S complex formed with with eIF-2 and [8-3H] guanine, [gamma-32P]GTP reveals bound guanine but not gamma-phosphate. Edeine, a peptide antibiotic containing spermidine and beta-tyrosine residues at its COOH terminus and NH2 terminus, respectively, blocks peptide initiation and interferes with binding of methionyl-tRNAf to 40 S ribosomal subunits. Inhibition of binding is observed when the eIF-2-mediated binding reaction is carried out with GTP but not with guanosine 5'-(beta,gamma-methylene)triphosphate or guanosine 5'-(beta,gamma-imido)triphosphate. Edeine was labeled by iodination and shown to bind with high affinity to 40 S but not to 60 S ribosomal subunits. It is suggested that edeine blocks a specific site on the 40 S ribosomal subunit to which a segment of the methionyl-tRNAf molecule is bound during the course of the initiation reaction sequence.  相似文献   

19.
The formation and release of an eukaryotic initiation factor (eIF)-2 X GDP binary complex during eIF-5-mediated assembly of an 80 S ribosomal polypeptide chain initiation complex have been studied by sucrose gradient centrifugation analysis. Isolated 40 S initiation complex reacts with eIF-5 and 60 S ribosomal subunits to form an 80 S ribosomal initiation complex with concomitant hydrolysis of an equimolar amount of bound GTP to GDP and Pi. Sucrose gradient analysis of reaction products revealed that GDP was released from ribosomes as an eIF-2 X GDP complex. Evidence is presented that eIF-5-mediated hydrolysis releases the GTP bound to the 40 S initiation complex as an intact eIF-2 X GDP complex rather than as free GDP and eIF-2 which subsequently recombine to form the binary complex. Furthermore, formation and release of eIF-2 X GDP from the ribosomal complex do not require concomitant formation of an 80 S initiation complex since both reactions occur efficiently when the 40 S initiation complex reacts with eIF-5 in the absence of 60 S ribosomal subunits. These results, along with the observation that the 40 S initiation complex formed with the nonhydrolyzable analogue of GTP, 5'-guanylylmethylene diphosphonate, can neither join a 60 S ribosomal subunit nor releases ribosome-bound eIF-2, suggest that following eIF-5-mediated hydrolysis of GTP bound to the 40 S initiation complex, both Pi and eIF-2 X GDP complex are released from ribosomes prior to the joining of 60 S ribosomal subunits to the 40 S initiation complex.  相似文献   

20.
Eukaryotic initiation factor 5 (eIF-5), which specifically catalyzes the joining of a 60 S ribosomal subunit to a 40 S initiation complex to form a functional 80 S initiation complex, has been purified from ribosomal salt wash proteins of calf liver. The purified factor exhibits only one polypeptide band of Mr = 62,000 following electrophoresis in 10% polyacrylamide gels in the presence of sodium dodecyl sulfate. The native protein has a sedimentation coefficient of 4.2 S and a Stokes radius of 33 A which is consistent with eIF-5 being a monomeric protein of Mr = 58,000-62,000. Less pure preparations of eIF-5 elute in gel filtration columns with an apparent Mr of 160,000-180,000 presumably due to association of eIF-5 with other high molecular weight proteins since eIF-5 activity present in such preparations can also be shown by gel electrophoretic separation under denaturing conditions to be associated with a 62,000-dalton protein. Furthermore, eIF-5 purified from calf liver extracts with or without a number of protease inhibitors is indistinguishable with regard to molecular weight and final specific activity of purified preparations. The purified factor catalyzes the hydrolysis of GTP present in 40 S initiation complexes in the absence of 60 S ribosomal subunits. The presence of 60 S ribosomal subunits neither stimulates nor inhibits the hydrolysis of GTP. However, the factor cannot mediate 40 S or 40 + 60 S ribosome-dependent hydrolysis of GTP in the absence of Met-tRNAf or other components required for 40 S initiation complex formation. It can be calculated that 1 pmol of eIF-5 protein can catalyze the formation of at least 10 pmol of 80 S initiation complex under the conditions of in vitro initiation reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号