首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Assay of HMG-CoA reductase kinase activity requires HMG-CoA reductase (reductase, E.C. 1.1.1.34) free of associated reductase kinase. Microsomal reductase insensitive to inactivation by Mg-nucleotides alone may be prepared by heating microsomes at 50 degrees C for 15 min. The reductase in these microsomes may subsequently be inactivated by Mg-nucleotides only after addition of reductase kinase. Inactivation is a linear function of time and of cytosol protein concentration and may be reversed by treatment with a phosphoprotein phosphatase. The extent of inactivation observed under standard conditions provides an assay for reductase kinase activity. Factors present in cytosol that hinder measurement of either reductase or reductase kinase activity must be removed or inhibited. Reductase phosphatase is inhibited by 50 mM NaF. Reductase kinase kinase activity is not expressed under the assay conditions used. Mg-Nucleotide-independent inhibitors of reductase activity are removed by chromatography on DEAE-Sephacel or Blue Sepharose. Mevalonate kinase and reductase kinase are separable by chromatography on DEAE-Sephacel or Sephadex G-200. We describe a rapid chromatographic procedure for separating reductase kinase of crude fractions from mevalonate kinase and from Mg-nucleotide-independent inhibitors of reductase activity. The 1.0 M KCl eluate from DEAE-Sephacel contains all of the cytosol reductase kinase activity. This method is applicable to measurement of reductase kinase activity in cytosol or more purified fractions.  相似文献   

2.
Purification and properties of methyl sulfoxide reductases from rat kidney   总被引:1,自引:0,他引:1  
Two kinds of enzymes (tentatively designated methyl sulfoxide reductases I and II) responsible for the reduction of the methyl sulfoxide group on various xenobiotics have been purified about 223- and 155-fold, respectively, from rat kidney cytosol. The molecular weight was determined to be 12,000 +/- 1000 for methyl sulfoxide reductase I and 24,000 +/- 1000 for methyl sulfoxide reductase II. Thioredoxin or dithiothreitol is essential in order for the reducing activity to occur. The respective Km values of p-bromophenylmethyl sulfoxide were 2.75 and 1.30 mM for methyl sulfoxide reductases I and II. Replacement of the methyl group on the sulfur atom with a longer alkyl group or phenyl group caused a markedly low or negligible substrate activity.  相似文献   

3.
Nitric oxide synthase (NOS) is composed of an oxygenase domain and a reductase domain. The reductase domain has NADPH, FAD, and FMN binding sites. Wild-type nNOS reduced the azo bond of methyl red with a turnover number of approximately 130 min(-1) in the presence of Ca(2+)/calmodulin (CaM) and NADPH under anaerobic conditions. Diphenyleneiodonium chloride (DPI), a flavin/NADPH binding inhibitor, completely inhibited azo reduction. The omission of Ca(2+)/CaM from the reaction system decreased the activity to 5%. The rate of the azo reduction with an FMN-deficient mutant was also 5% that of the wild type. NADPH oxidation rates for the wild-type and mutant enzymes were well coupled with azo reduction. Thus, we suggest that electrons delivered from the FMN of the nNOS enzyme reduce the azo bond of methyl red and that this reductase activity is controlled by Ca(2+)/CaM.  相似文献   

4.
The effect of substituents on the 1,4-benzoquinone ring of ubiquinone on its electron-transfer activity in the bovine heart mitochondrial succinate-cytochrome c reductase region is studied by using synthetic ubiquinone derivatives that have a decyl (or geranyl) side-chain at the 6-position and various arrangements of methyl, methoxy and hydrogen in the 2, 3 and 5 positions of the benzoquinone ring. The reduction of quinone derivatives by succinate is measured with succinate-ubiquinone reductase and with succinate-cytochrome c reductase. Oxidation of quinol derivatives is measured with ubiquinol-cytochrome c reductase. The electron-transfer efficacy of quinone derivatives is compared to that of 2,3-dimethoxy-5-methyl-6-decyl-1,4-benzoquinone. When quinone derivatives are used as the electron acceptor for succinate-ubiquinone reductase, the methyl group at the 5-position is less important than are the methoxy groups at the 2- and 3-positions. Replacing the 5-methyl group with hydrogen causes a slight increase in activity. However, replacing one or both of 2- and 3-methoxy groups with a methyl completely abolishes electron-acceptor activity. Replacing the 3-methoxy group with hydrogen results in a complete loss of electron-acceptor activity, while replacing the 2-methoxy with hydrogen results in an activity decrease by 70%, suggesting that the methoxy group at the 3-position is more specific than that at the 2-position. The structural requirements for quinol derivatives to be oxidized by ubiquinol-cytochrome c reductase are less strict. All 1,4-benzoquinol derivatives examined show partial activity when used as electron donors for ubiquinol-cytochrome c reductase. Derivatives that possess one unsubstituted position at 2, 3 or 5, with a decyl group at the 6-position, show substrate inhibition at high concentrations. Such substrate inhibition is not observed when fully substituted derivatives are used. The structural requirements for quinone derivatives to be reduced by succinate-cytochrome c reductase are less specific than those for succinate-ubiquinone reductase. Replacing one or both of the 2- and 3-methoxy groups with a methyl and keeping the 5-position unsubstituted (plastoquinone derivatives) yields derivatives with no acceptor activity for succinate-Q reductase. However, these derivatives are reducible by succinate in the presence of succinate-cytochrome c reductase. This reduction is antimycin-sensitive and requires endogenous ubiquinone, suggesting that these (plastoquinone) derivatives can only accept electrons from the ubisemiquinone radical at the Qi site of ubiquinol-cytochrome c reductase, and cannot accept electrons from the QPs of succinate-ubiquinone reductase.  相似文献   

5.
The inhibitory effects of alkyl phenyl ketones on carbonyl reductase activity were examined in pig heart. In this study, carbonyl reductase activity was estimated as the ability to reduce 4-benzoylpyridine to S(-)-alpha-phenyl-4-pyridylmethanol in the cytosolic fraction from pig heart (pig heart cytosol). The order of their inhibitory potencies was hexanophenone > valerophenone > heptanophenone > butyrophenone > propiophenone. The inhibitory potencies of acetophenone and nonanophenone were much lower. A significant relationship was observed between Vmax/Km values for the reduction of alkyl phenyl ketones and their inhibitory potencies for carbonyl reductase activity in pig heart cytosol. Furthermore, hexanophenone was a competitive inhibitor for the enzyme activity. These results indicate that several alkyl phenyl ketones including hexanophenone inhibit carbonyl reductase activity in pig heart cytosol, by acting as substrate inhibitors.  相似文献   

6.
Reduction of tertiary amine N-oxides to the corresponding amines by liver preparations was investigated with imipramine N-oxide and cyclobenzaprine N-oxide under anaerobic conditions. Rabbit liver cytosol in the presence of an electron donor of aldehyde oxidase exhibited a significant N-oxide reductase activity which is comparable to the activity of the liver microsomes supplemented with NADPH. Rabbit liver aldehyde oxidase also exhibited the N-oxide reductase activity in the presence of its electron donor, indicating that the activity observed in the liver cytosol is due to this cytosolic enzyme. Furthermore, the tertiary amine N-oxide reductase activity of liver cytosols from rats, mice, hamsters and hogs was demonstrated by comparison with that of liver microsomes from these mammalian species.  相似文献   

7.
The effects of cytosol, NADPH and reduced glutathione (GSH) on the activity of 5'-deiodinase were studied by using washed hepatic microsomes from normal fed rats. Cytosol alone had little stimulatory effect on the activation of microsomal 5'-deiodinase. NADPH had no stimulatory effect on the microsomal 5'-deiodinase unless cytosol was added. 5'-deiodinase activity was greatly enhanced by the simultaneous addition of NADPH and cytosol (P less than 0.001); this was significantly higher than that with either NADPH or cytosol alone (P less than 0.001). GSH was active in stimulating the enzyme activity in the absence of cytosol, but the activity of 5'-deiodinase with 62 microM-NADPH in the presence of cytosol was significantly higher than that with 250 microM-GSH in the presence of the same concentration of cytosol (P less than 0.001). The properties of the cytosolic components essential for the NADPH-dependent activation of microsomal 5'-deiodinase independent of a glutathione/glutathione reductase system were further assessed using Sephadex G-50 column chromatography to yield three cytosolic fractions (A, B and C), wherein A represents pooled fractions near the void volume, B pooled fractions of intermediate Mr (approx. 13 000), and C of low Mr (approx. 300) containing glutathione. In the presence of NADPH (1 mM), the 5'-deiodination rate by hepatic washed microsomes is greatly increased if both A and B are added and is a function of the concentrations of A, B, washed microsomes and NADPH. A is heat-labile, whereas B is heat-stable and non-dialysable. These observations provide the first evidence of an NADPH-dependent cytosolic reductase system not involving glutathione which stimulates microsomal 5'-deiodinase of normal rat liver. The present data are consistent with a deiodination mechanism involving mediation by a reductase (other than glutathione reductase) in fraction A of an NADPH-dependent reduction of a hydrogen acceptor in fraction B, followed by reduction of oxidized microsomal deiodinase by the reduced acceptor (component in fraction B).  相似文献   

8.
Activation of HMG-CoA reductase by microsomal phosphatase   总被引:1,自引:0,他引:1  
HMG-CoA reductase activity can be modulated by a reversible phosphorylation-dephosphorylation with the phosphorylated form of the enzyme being inactive and the dephosphorylated form, active. Phosphatases from diverse sources, including cytosol, have been shown to dephosphorylate and activate HMG-CoA reductase. The present study demonstrates phosphatase activity capable of activating HMG-CoA reductase that is associated with purified microsomes. The incubation of microsomes at 37 degrees C for 40 min results in a twofold stimulation of HMG-CoA reductase activity, and this stimulation is blocked by sodium fluoride or phosphate. The ability of microsomes to increase HMG-CoA reductase activity occurs regardless of whether microsomes are prepared by ultracentrifugation or calcium precipitation. Additionally, phosphatases capable of activating HMG-CoA reductase are present in both the smooth and rough endoplasmic reticulum. Freeze-thawing does not prevent microsomes from activating HMG-CoA reductase but preincubation results in a significant decrease in the ability of microsomes to increase HMG-CoA reductase activity. Thus, the present study demonstrates that purified liver microsomes contain phosphatase activity capable of activating HMG-CoA reductase.  相似文献   

9.
d(-)threo-Chloramphenicol blocks chlorophyll and plastid protein synthesis in Euglena. During chloroplast development in white light, but not in red, the cells escape from chloramphenicol inhibition and chlorophyll formation is restored. Concomitantly, chloramphenicol is reduced. Reduction of chloramphenicol in an enzyme extract from Euglena requires NADPH and ferredoxin for maximal activity. Methyl viologen replaces ferredoxin, and when chemically reduced, ferredoxin or methyl viologen reduces chloramphenicol directly. This suggests that the enzyme involved is ferredoxin-NADP reductase. In agreement, crude extracts from wild type and W(3)BUL, a mutant lacking detectable plastids and plastid DNA, when separated on acrylamide gels, show a single band which reduces methyl viologen with NADPH, and its mobility is similar in wild type and in mutant W(3)BUL. The reductase is inducible by light and increases 3-fold in wild type in white or red light and 1.5-fold in W(3)BUL in white light. DCMU does not block chloramphenicol reduction in vivo indicating that electrons originate from sources other than photosynthetic electron transport. We infer that chloramphenicol is reduced by ferredoxin which receives electrons via ferredoxin-NADP reductase. The limiting step is not the enzyme but the source of reducing power which can be supplied from the cytoplasm, probably under control of the blue light receptor. Ferredoxin and ferredoxin NADP reductase appear to be coded in the nuclear genome, synthesized on cytoplasmic ribosomes, and join a group of enzymes which cannot be precisely localized, since they may be active anywhere from their site of synthesis in the cytoplasm to their place of deposition in the chloroplast.  相似文献   

10.
A low-molecular-weight protein located in the cytosol of mouse preputial glands has been shown to stimulate the activity of a microsomal acyl coenzyme A (CoA) reductase in the gland. This cytoplasmic protein was stable to heating and lyophilization, but was destroyed by trypsin digestion. It was able to bind palmitoyl-CoA and gel elution behavior indicated it had a molecular weight of 10,000–12,000. The level of this stimulatory cytosolic protein and the activity of acyl-CoA reductase were shown to correlate with differentiation of the preputial gland during development of puberty in male mice; the acyl-CoA reductase activity first appeared at 4 weeks of age and increased dramatically up to 6 weeks of age. By 8 weeks, when sexual maturity was attained, the reductase activity decreased to that level found in mature male mice. The cytosol from the preputial glands of the youngest mice (3 weeks) contained sufficient heat-stable acyl-CoA binding protein to stimulate acyl-CoA reduction; however, the 3-week-old preputial gland microsomes had little or no acyl-CoA reductase activity. As the animal matured, the stimulatory capacity in the heat-treated cytosol increased, reaching a maximum at 6 weeks; by 8 weeks, the stimulatory capacity of the soluble fraction had decreased to that found in mature male mouse. Results of this study suggest that the concentration of acyl-CoA, cytoplasmic acyl-CoA binding protein, and acyl-CoA reductase activity regulate the level of fatty alcohols in vivo and that the reductase activity and binding protein have similar patterns of development during puberty.  相似文献   

11.
The plant fraction of alfalfa ( Medicago sativa L. cv. Aragon) nodules contained both nitrate reductase (NR) and nitrite reductase (NiR). Specific activity of NADH-NR from the cytosol of nodules not treated with NO3- was about 30 nmol (mg protein)-1-h-1 and was not basically affected by NO3 addition. In contrast, typical specific activity for cytosolic NiR was 1.5 umol (mg protein)-1h-1 using methyl viologen as electron donor. This activity strongly increased with NO3 concentration, probably due to substrate induction. Maximal activity was 3.5 μmol (mg protein)-1h-1 at 50 to 200 mM NO3.
Estimates indicate that the contribution of cytosol to the overall NR and NiR activities of alfalfa nodules is distinctly different: less than 10% and about 70%, respectively. The increasing amounts of NO2 accumulating in the cytosol upon NO3, supply, and the different response to NO3 of bacteroid and cytosolic NRs support the concept that most of this NO2 comes from the bacteroids.  相似文献   

12.
Abstract The subcellular distribution of nitrous oxide reductase was studied in the gliding soil bacterium Flexibacter canadensis . Nitrous oxide reductase activity, as measured by the methyl viologen-nitrous oxide oxidoreductase assay, was associated entirely with the membrane fraction of cell-free extracts. The enzyme was liberated from the membranes with use of detergents but not by high-salt concentrations, thus implying that nitrous oxide reductase is an integral membrane protein. The nitrous oxide reductase of F. canadensis is the first reported example of a membrane-bound form of this respiratory enzyme.  相似文献   

13.
The 9,10-mono-ozonide of methyl linoleate was shown to be a substrate for rat hepatic cytosolic, rat lung cytosolic and rat hepatic microsomal glutathione S-transferases (GST). The activities of lung cytosol and liver microsomes with methyl linoleate ozonide (MLO) were found to be high relative to the activity demonstrated by liver cytosol, as compared with their respective activities towards 1-chloro-2,4-dinitrobenzene (CDNB). Only a slight catalytic activity towards the ozonide was noticed for rat lung microsomes. Isoenzyme 2-2 exhibited the highest specific activity (208 nmol/min/mg) when isoenzymes 1-1, 1-2, 2-2, 3-3, 3-4, 4-4 and 7-7 were compared. This isoenzyme accounts for approx. 25% of cytosolic GST protein in rat lung, while in rat liver it represents approx. 9%. This may partly explain the high activity towards the ozonide noticed for rat lung cytosol. No stable conjugates were formed as products of the reaction of MLO with glutathione; although two glutathione-conjugates were noticed on TLC, they were only formed as intermediate compounds. Coupling of an aldehyde dehydrogenase assay or a glutathione reductase assay to the GST-catalyzed conjugation, demonstrated that oxidized glutathione and aldehydes are formed as the major products in the reaction. To further confirm the formation of aldehydes, the products of the GST-catalyzed reaction were incubated with 2,4-dinitrophenylhydrazine, which resulted in hydrazone formation. In conclusion, the activity of the GST towards the ozonide of methyl linoleate is similar to their peroxidase activity with lipid hydroperoxides as substrates.  相似文献   

14.
Cellular ubiquinone (UQ) is expected to act as an endogenous antioxidant against oxidative stress. To confirm this, UQ-reductases which are necessary to regenerate ubiquinol (UQH2) were investigated in rat tissue, and a novel NADPH-dependent UQ (NADPH-UQ) reductase was found in cytosol. The cytosolic NADPH-UQ reductase activity accounted for more than 80% of UQ-10 reduction by the rat liver homogenate in the presence of NADPH. Furthermore, the NADPH-UQ reductase activities in various tissues were correlated to the redox states of UQ in the corresponding tissues. Rat liver cytosol with NADPH protected lecithin liposomes containing UQ-10, as well as UQH2-10 from AMVN (2,2'-azobis(2,4-dimethylvaleronitrile))-induced lipid peroxidation. The enzyme purified from rat liver cytosol, reduced UQ-10 in lecithin liposomes at approximately the same rate as did cytosol. These results supported that cytosolic NADPH-UQ reductase is the enzyme responsible for nonmitochondrial UQ reduction acting as an endogenous antioxidant against oxidative stress. The antioxidant role of the UQ redox cycle and NADPH-UQ reductase was discussed in relation to other cellular NADPH-dependent antioxidant enzymes.  相似文献   

15.
Haloperidol reduction can be assayed in human red blood cells   总被引:1,自引:0,他引:1  
One metabolite of haloperidol present in plasma is "reduced haloperidol." This study demonstrates that human red blood cells are capable of converting haloperidol to reduced haloperidol in vitro. The reductase involved requires NADPH, as does haloperidol (ketone) reductase in human liver cytosol.  相似文献   

16.
Chen CL  Sung JM 《Plant physiology》1983,73(4):1065-1066
The effects of water stress on nitrate reductase and nitrite reductase activities in symbiotic nodules were examined in field-grown soybean plants (Glycine max L Merr. cv Clark). The in vitro assays of enzyme activity indicated that the nodule cytosol and bacteroids contained both nitrate reductase and nitrite reductase activities. The reduction of nitrate in bacteroids increased significantly as nodule water potential declined from −0.6 to −1.4 megapascals, and then decreased when −1.8 megapascals water potential was reached. On the contrary, the reduction of nitrate in nodule cytosol was inhibited as water stress progressed. Increases in water stress intensity also caused a significant inhibition in nitrite reductase activities of bacteroids and nodule cytosol within soybean nodules. The results show that nitrate reduction occurred both in the cytosol and bacteroids of water-stressed soybean nodules. The reduction of nitrate functioned at different physiological modes in these two fractions.  相似文献   

17.
A poplar hybrid, Populus tremula x Populus alba, was transformed with the bacterial genes for either glutathione reductase (GR) (gor) or glutathione synthetase (GS) (gshII). When the gor gene was targeted to the chloroplasts, leaf GR activities were up to 1000 times greater than in all other lines. In contrast, targeting to the cytosol resulted in 2 to 10 times the GR activity. GR mRNA, protein, and activity levels suggest that bacterial GR is more stable in the chloroplast. When the gshII gene was expressed in the cytosol, GS activities were up to 100 times greater than in other lines. Overexpression of GR or GS in the cytosol had no effect on glutathione levels, but chloroplastic-GR expression caused a doubling of leaf glutathione and an increase in reduction state. The high-chloroplastic-GR expressors showed increased resistance to photoinhibition. The herbicide methyl viologen inhibited CO2 assimilation in all lines, but the increased leaf levels of glutathione and ascorbate in the high-chloroplastic-GR expressors persisted despite this treatment. These results suggest that overexpression of GR in the chloroplast increases the antioxidant capacity of the leaves and that this improves the capacity to withstand oxidative stress.  相似文献   

18.
The regulation of 3-hydroxy-3-methylglutarylcoenzyme A reductase and acylcoenzyme A:cholesterol acyltransferase activities by phosphorylation-dephosphorylation in rabbit intestine was studied in vitro. Preparing intestinal microsomes in the presence of 50 mM NaF caused a 64% decrease in the reductase activity. It had no effect on acyl-CoA:cholesterol acyltransferase activity. Microsomes that were prepared in NaF were incubated with intestinal cytosol, a partially purified phosphatase from cytosol, and Escherichia coli alkaline phosphatase. All three preparations increased 3-hydroxy-3-methylglutaryl-CoA reductase by two- or three-fold suggesting dephosphorylation and 'reactivation' of enzyme activity. Cytosol caused a 78% increase in acyl-CoA:cholesterol acyltransferase activity, but neither the partially purified phosphatase nor the E. coli alkaline phosphatase affected the acyltransferase activity. Microsomes incubated with increasing concentrations of MgCl2 and ATP decreased both the activities of 3-hydroxy-3-methylglutaryl-CoA reductase and acylcoenzyme A:cholesterol acyltransferase in a step-wise fashion. Whereas this inhibitory effect was specific for reductase, the effect on acyl-CoA:cholesterol acyltransferase activity was secondary to the presence of ATP in the assay mixture. The 8500 X g supernatant of intestinal whole homogenate from isolated intestinal cells or scraped mucosa was incubated with MgCl2, ATP and NaF. In microsomes prepared from this supernatant, the activity of 3-hydroxy-3-methylglutaryl-CoA reductase was significantly decreased. Again, no change was observed in the acyltransferase activity. The rate of cholesterol esterification in isolated intestinal cells was not affected by 0.1 mM cAMP or 50 mM NaF. We conclude that under conditions which regulate 3-hydroxy-3-methylglutaryl-CoA reductase activity in rabbit intestine by phosphorylation-dephosphorylation, no regulation of acyl-CoA:cholesterol acyltransferase activity is observed.  相似文献   

19.
Protein carboxyl methylation in rat kidney cytosol is increased by the addition of guanosine 5'-O-[gamma-thio]triphosphate (GTPgammaS), a non-hydrolysable analogue of GTP. GTPgammaS-stimulated methyl ester group incorporation takes place on isoaspartyl residues, as attested by the alkaline sensitivity of the labelling and its competitive inhibition by L-isoaspartyl-containing peptides. GTPgammaS was the most potent nucleotide tested, whereas GDPbetaS and ATPgammaS also stimulated methylation but to a lesser extent. Maximal stimulation (5-fold) of protein L-isoaspartyl methytransferase (PIMT) activity by GTPgammaS was reached at a physiological pH in the presence of 10 mM MgCl2. Other divalent cations, such as Cu2+, Zn2+ and Co2+ (100 microM), totally inhibited GTPgammaS-dependent carboxyl methylation. The phosphotyrosine phosphatase inhibitor vanadate potentiated the GTPgammaS stimulation of PIMT activity in the kidney cytosol at a concentration lower than 40 microM, but increasing the vanadate concentration to more than 40 microM resulted in a dose-dependent inhibition of the GTPgammaS effect. The tyrosine kinase inhibitors genistein (IC50 = 4 microM) and tyrphostin (IC50 = 1 microM) abolished GTPgammaS-dependent PIMT activity by different mechanisms, as was revealed by acidic gel analysis of methylated proteins. Whereas tyrphostin stabilised the methyl ester groups, genistein acted by blocking a crucial step required for the activation of PIMT activity by GTPgammaS. The results obtained with vanadate and genistein suggest that tyrosine phosphorylation regulates GTPgammaS-stimulated PIMT activity in the kidney cytosol.  相似文献   

20.
The regulation of 3-hydroxy-3-methylglutarylcoenzyme A reductase and acylcoenzyme A: cholesterol acyltransferase activities by phosphorylation-dephosphorylation in rabbit intestine was studied in vitro. Preparing intestinal microsomes in the presence of 50 mM NaF caused a 64% decrease in the reductase activity. It had no effect on acyl-CoA: cholesterol acyltransferase activity. Microsomes that were prepared in NaF were incubated with intestinal cytosol, a partially purified phosphatase from cytosol, and Escherichia coli alkaline phosphatase. All three preparations increased 3-hydroxy-3-methylglutaryl-CoA reductase by two- or three-fold suggesting dephosphorylation and ‘reactivation’ of enzyme activity. Cytosol caused a 78% increase in acyl-CoA: cholesterol acyltransferase activity, but neither the partially purified phosphatase nor the E. coli alkaline phosphatase affected the acyltransferase activity. Microsomes incubated with increasing concentrations of MgCl2 and ATP decreased both the activities of 3-hydroxy-3-methylglutaryl-CoA reductase and acylcoenzyme A: cholesterol acyltransferase in a step-wise fashion. Whereas this inhibitory effect was specific for reductase, the effect on acyl-CoA: cholesterol acyltransferase activity was secondary to the presence of ATP in the assay mixture. The 8500×g supernatant of intestinal whole homogenate from isolated intestinal cells or scraped mucosa was incubated with MgCl2, ATP and NaF. In microsomes prepared from this supernatant, the activity of 3-hydroxy-3-methylglutaryl-CoA reductase was significantly decreased. Again, no change was observed in the acyltransferase activity. The rate of cholesterol esterification in isolated intestinal cells was not affected by 0.1 mM cAMP or 50 mM NaF. We conclude that under conditions which regulate 3-hydroxy-3-methylglutaryl-CoA reductase activity in rabbit intestine by phosphorylation-dephosphorylation, no regulation of acyl-CoA: cholesterol acyltransferase activity is observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号