首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mass spectral analyses of the CO2 liberated in the Cypridina luciferin-luciferase and firefly luciferin-luciferase reactions run in the presence of 17O2 and H218O show that the product is predominantly C18O16O (mass 46) and not C17O16O (mass 45). Incorporation of 18O into medium CO2 by exchange does not account for the observed results. These experiments provide evidence that the Cypridina and firefly bioluminescence reactions proceed via a linear peroxide mechanism rather than the dioxetane mechanism and suggest that a common mechanism may underly many bioluminescence reactions.  相似文献   

2.
The use of a fully active, synthetic analogue of coelenterate-type luciferin labeled in the carbonyl position with 14C and 18O was used to probe the mechanism of the Renilla luciferase catalyzed oxidative decarboxylation of this compound. In the presence of 17O2, the CO2 produced in this oxidation can be shown to contain approximately one 17O atom per CO2 molecule. This result is consistent with a cyclic peroxide or dioxetanone-type mechanism. In the presence of luciferase, the oxygen in the luciferin carbonyl group is rapidly exchanged with solvent water prior to the production of CO2. Thus, the reaction CO2 contains considerable oxygen derived from water, via exchange with the carbonyl group, and about one oxygen from O2 via a cyclic peroxide.  相似文献   

3.
The rate of reaction of ferro- and ferricytochrome c (C(II) and C(III)) with ferri- and ferrocyanide and of C(III) with O2? and CO2? was determined in H2O and in 2H2O in the temperature range 5–35 °C. No isotope effect was evident in any of the reductions of C(III); the apparent energy of activation was identical in H2O and 2H2O. An isotope effect with kH2Ok2H2O = 1.25 to 1.85, depending on pH for instance was observed in the oxidation of C(II), in the slow phase of oxidation which involves conformational changes. An interpretation (supported by evidence from previous work) involving water molecules in the close vicinity of the reaction site on the protein is discussed.  相似文献   

4.
The relative effectiveness of oxidizing (.OH, H2O2), ambivalent (O2?) and reducing free radicals (e? and CO2?) in causing damage to membranes and membrane-bound glyceraldehyde-3-phosphate dehydrogenase of resealed erythrocyte ghosts has been determined. The rates of damage to membranebound glyceraldehyde-3-phosphate dehydrogenase (R(enz)) were measured and the rates of damage to membranes (R(mb)) were assessed by measuring changes in permeability of the resealed ghosts to the relatively low molecular weight substrates of glyceraldehyde-3-phosphate dehydrogenase. Each radical was selectively isolated from the mixture produced during gamma-irradiation, using appropriate mixtures of scavengers such as catalase, superoxide dismutase and formate. .OH, O2? and H2 O2 were approximately equally effective in inactivating membrane-bound glyceraldehyde-3-phosphate dehydrogenase, while e? and CO2? were the least effective. R(enz) values of O2? and H2O2 were 10-times and of .OH 15-times that of e?. R(mb) values were quite similar for e? and H2O2 (about twice that of O2?), while that of .OH was 3-times that of O2?. Hence, with respect to R(mb): .OH >e? = H2O2 >O2? , and with respect to R(enz): .OH >O2? = H2O2 >e?. The difference between the effectiveness of the most damaging and the least damaging free radicals was more than 10-fold greater in damage to the enzyme than to the membranes. Comparison between H2O2 added as a chemical reagent and H2O2 formed by irradiation showed that membranes and membrane-bound glyceraldehyde-3-phosphate dehydrogenase were relatively inert to reagent H2O2 but markedly susceptible to the latter.  相似文献   

5.
Oxygen-18 exchange out of [18O]Pi catalyzed by Mg2+-activated unadenylated glutamine synthetase from E.coli was followed by 31P-NMR in the presence of the other substrates, ADP and L-glutamine. The pattern of the 16O18O in the species P18O4, P18O316O1, P18O216O2, P18O116O3, P16O4 during the exchange followed a binomial distribution consistent with indiscriminate removal of any of the four oxygens of Pi. The rate constant for 16O18O exchange was 410±40 min?1 while the rate constant for net reaction (ATP formation) was 62±4 min?1. Thus exchange proceeds ~7 times faster than net reaction, a finding in accord with that of Stokes and Boyer (J.Biol.Chem. (1976) 251, 5558) for the Mn2+-activated adenylylated glutamine synthetase. A model for the overall catalytic events first derived from rapid kinetic fluorescence experiments (Rhee and Chock, Proc. Natl. Acad. Sci. USA, (1976) 73, 476) was successfully used to fit the oxygen exchange data in this paper.  相似文献   

6.
[4-14C]Cholesterol was incubated with an adrenocortical preparation in the presence of 16O2 and 18O2 devoid of significant 16O18O. Isolated (20R,22R)-20,22-dihydroxycholesterol was converted to a trimethylsilyl derivative and analyzed by gas chromatography - mass spectrometry to determine the isotope distribution of the oxygen atoms at C-20 and C-22. The ions of me 289, 291, and 293 (comprising the C8 C-20 to C-27 side-chain and containing, respectively, 16O2, 16O18O, and 18O2) exhibited a binomial distribution indicating that the oxygen atoms of the vicinal glycol were drawn at random from the atomic pool of the oxygen molecules. If both side-chain hydroxyl groups had originated from the atoms of the same oxygen molecule, the ion of me 291 would have been absent.  相似文献   

7.
(1) H+/electron acceptor ratios have been determined with the oxidant pulse method for cells of denitrifying Paracoccus denitrificans oxidizing endogenous substrates during reduction of O2, NO?2 or N2O. Under optimal H+-translocation conditions, the ratios H+O, H+N2O, H+NO?2 for reduction to N2 and H+NO?2 for reduction to N2O were 6.0–6.3, 4.02, 5.79 and 3.37, respectively. (2) With ascorbate/N,N,N′,N′-tetramethyl-p-phenylenediamine as exogenous substrate, addition of NO?2 or N2O to an anaerobic cell suspension resulted in rapid alkalinization of the outer bulk medium. H+N2O, H+NO?2 for reduction to N2 and H+NO?2 for reduction to N2O were ?0.84, ?2.33 and ?1.90, respectively. (3) The H+oxidant ratios, mentioned in item 2, were not altered in the presence of valinomycinK+ and the triphenylmethylphosphonium cation. (4) A simplified scheme of electron transport to O2, NO?2 and N2O is presented which shows a periplasmic orientation of the nitrite reductase as well as the nitrous oxide reductase. Electrons destined for NO?2, N2O or O2 pass two H+-translocating sites. The H+electron acceptor ratios predicted by this scheme are in good agreement with the experimental values.  相似文献   

8.
R.L. Pan  S. Izawa 《BBA》1979,547(2):311-319
NH2OH-treated, non-water-splitting chloroplasts can oxidize H2O2 to O2 through Photosystem II at substantial rates (100–250 μequiv · h?1 · mg?1 chlorophyll with 5 mM H2O2) using 2,5-dimethyl-p-benzoquinone as an electron acceptor in the presence of the plastoquinone antagonist dibromothymoquinone. This H2O2 → Photosystem II → dimethylquinone reaction supports phosphorylation with a Pe2 ratio of 0.25–0.35 and proton uptake with H+e values of 0.67 (pH 8)–0.85 (pH 6). These are close to the Pe2 value of 0.3–0.38 and the H+e values of 0.7–0.93 found in parallel experiments for the H2O → Photosystem II → dimethylquinone reaction in untreated chloroplasts. Semi-quantitative data are also presented which show that the donor → Photosystem II → dibromothymoquinone (→O2) reaction can support phosphorylation when the donor used is a proton-releasing reductant (benzidine, catechol) but not when it is a non-proton carrier (I?, ferrocyanide).  相似文献   

9.
Incorporation of 18O into CO2 was measured under various buffer conditions when the bioluminescent oxidation of Cypridina luciferin, catalyzed by luciferase, was carried out either in H216O medium with 18O2 gas, or in H218O medium with 16O2 gas. The results indicate that (1) the exchange of oxygen between CO2 and solvent H2O is significantly influenced by the kind of buffer as well as by pH, (2) the exchange of oxygen between solvent H2O and CO2 produced from luciferin in a neutral buffer can be reasonably well estimated from the exchange that takes place when the same amount of CO2 gas is introduced into the same buffer by the presently employed method, and (3) in the Cypridina bioluminescent reaction, one of two oxygens of O2 is quantitatively incorporated into the product CO2 prior to the exchange of oxygen between CO2 and solvent H2O.  相似文献   

10.
Rats were exposed to air containing 18O2 at atmospheric pressure. In vivo incorporation of 18O in brain homovanillic acid (HVA) was determined by gas chromatography-mass spectrometry. One 18O atom was incorporated into each molecule of HVA indicating that tyrosine is the predominant precursor of brain dopamine and that the oxygen in the 3-position is of atmospheric origin. Intraperitoneal administration of 18O-enriched water did not alter the 18O content of brain HVA Mass fragmentography (2) was used to measure the increase in 18O and the decrease in 16O in HVA from rat brain over several hours of exposure to an 18O enriched atmosphere. These experiments demonstrate the possibility to pulse label brain dopamine and its metabolites by in vivo inhalation of stable oxygen isotopes. The procedure should be useful for quantitative determinations of the turnover of brain dopamine in animals and man.  相似文献   

11.
The stoichiometry of free NADPH oxidation in phenobarbital induced rabbit liver microsomes was measured by means of registering the rates of NADPH, H+ and O2 consumption and O2? and H2O2 production. ΔO2?:ΔH2O2 ratio is approximately I indicating that about half H2O2 results from O2? dismutation, the second half being formed directly. ΔNADPH:ΔH2O2 and ΔO2:ΔH2O2 ratios exceed I and therefore another product of the reaction is water. The fact that the ratio (ΔNADPH-ΔH2O2):(ΔO2-ΔH2O2) is 2 allows one to consider direct 4-electron O2 reduction as the major way of water formation rather than endogenous substrate hydroxylation.  相似文献   

12.
Proton and 13C magnetic resonance studies are reported on the synthetic polypentapeptide of elastin, HCO-(Val(1)-Pro(2)-Gly(3)-Val(4)-Gly(5))n-Val-OMe, where n ∼- 18. Temperature and solvent dependence of peptide NH chemical shift and solvent dependence of peptide carbonyl chemical shift were used to delineate these moieties preliminary to identification of secondary structure.Based on these studies it is proposed, for the organic solvents of dimethyl sulfoxide, methanol, and low-temperature trifluoroethanol, that dynamic hydrogen bonds form in order of decreasing frequency of occurrence between the Val(1)CO and the Val(4) NH (a β-turn), between the Gly(3) NH and the Gly(5)CO (an 11-atom, hydrogen-bonded ring), and a more limited interaction between the Gly(3)CO and the Gly(5) NH (a γ-turn).Arguments are presented that relate the conformational features proposed above to the coacervate, which is a filamentous state.  相似文献   

13.
A mixture of xanthine or hypoxanthine and xanthine oxidase generates the superoxide radical, O2?, and H2O2. In the presence of iron salts, O2? and H2O2 can interact to produce the hydroxyl radical, OH·. Superoxide-dependent formation of OH· can be measured by its ability to hydroxylate salicylate as followed by an improved colorimetric assay described in this paper. A more accurate analysis of OH· can be obtained using its ability to hydroxylate phenol, the hydroxylated products being separated and measured after derivatization using gas-liquid chromatography and electron-capture detection. The derivatization and separation techniques are described.  相似文献   

14.
Superoxide dismutase and catalase were not detected in M. pneumoniae and several other species of Mycoplasma some of which consume oxygen and secrete H2O2. M. pneumoniae in suspension formed O2? in the presence of NADH and flavins and extracts of M. pneumoniae formed O2? in the presence of either NADH or NADPH. The lack of superoxide dismutase in M. pneumoniae could not be attributed to superoxide dismutase in the complex medium in which the organisms were grown because organisms grown in medium in which the superoxide dismutase had been inactivated by heat still contained undetectable amounts. Mycoplasmas appear to be an exception to the rule that organisms which consume O2 synthesize superoxide dismutase.  相似文献   

15.
The 18O-enrichment of CO2 produced in the light or during the post-illumination burst was measured by mass spectrometry when a photoautotrophic cell suspension of Euphorbia characias L. was placed in photorespiratory conditions in the presence of molecular 18O2. The only 18O-labeled species produced was C18O16O; no C18O18O could be detected. Production of C18O16O ceased after addition of two inhibitors of the photosynthetic carbon-oxidation cycle, aminooxyacetate or aminoacetonitrile, and was inhibited by high levels of CO2. The average enrichment during the post-illumination burst was estimated to be 46 ± 15% of the enrichment of the O2 present during the preceding light period. Addition of exogenous carbonic anhydrase, by catalyzing the exchange between CO2 and H2O, drastically diminished the 18O-enrichment of the produced CO2. The very low carbonio-anhydrase level of the photoautotrophic cell suspension probably explains why the 18O labeling of photorespiratory CO2 could be observed for the first time. These data allow the establishment of a direct link between O2 consumption and CO2 production in the light, and the conclusion that CO2 produced in the light results, at least partially, from the mitochondrial decarboxylation of the glycine pool synthesized through the photosynthetic carbon-oxidation cycle. Analysis of the C18O16O and CO2 kinetics provides a direct and reliable way to assess in vivo the real contribution of photorespiratory metabolism to CO2 production in the light.  相似文献   

16.
The cell-free preparations from autotrophieally grown Pseudomonas saccharophila catalyzed the process of electron transport from H2 or various other organic electron donors to either O2 or NO3? with concomitant ATP generation. The respective PO ratios with H2 and NADH were 0.63 and 0.73, the respective PNO3? ratios were 0.57 and 0.54. In contrast, the PO and PNO3? ratios with succinate were 0.18 and 0.11, respectively. ATP formation coupled to the oxidation of ascorbate, in the absence or presence of added N,N,N′,N′-tetramethyl-p-phenylenediamine or cytochrome c, could not be detected. Various uncouplers inhibited phosphorylation with either O2 or NO3? as terminal electron acceptors without affecting the oxidation of H2 or other substrates. The NADH oxidation at the expense of O2 or NO3? reduction as well as the associated phosphorylation were inhibited by rotenone and amytal. The aerobic and anaerobic H2 oxidation and coupled ATP synthesis, on the other hand, was unaffected by the flavoprotein inhibitors as well as by the NADH trapping system. The NADH, H2, and succinate-linked electron transport to O2 or NO3? and the associated phosphorylations were sensitive, however, to antimycin A or 2-n-nonyl-4-hydroxyquino-line-N-oxide, and cyanide or azide. The data indicated that although the phosphorylation sites 1 and II were associated with NADH oxidation by O2 or NO3?, the energy conservation coupled to H2 oxidation under aerobic or anaerobic conditions appeared to involve site II only.  相似文献   

17.
Cyclooctaamylose crystallizes from aqueous solution with space-group symmetry P21 and lattice parameters: a = 20.253(8), b = 10.494(5), c = 16.892(6) A and β = 105.32(1)o, Z = 2; the apparent formular per asymmetric unit is C48H80O40·17H2O. The macrocycle is in an open conformation but displays significant deviations from ideal eight fold molecular symmetry. Of the 19 water molecules thus far located, four of which have occupancy factors of one half, 12 may be characterized as being in the torus of the cycloamylose.  相似文献   

18.
The action of xanthine oxidase upon acetaldehyde or xanthine at pH 10.2 has been shown to be accompanied by substantial accumulation of O2? during the first few minutes of the reaction. H2O2 decreases this accumulation of O2? presumably because of the Haber-Weiss reaction (H2O2+O2?OH?+OH+O2) and very small amounts of superoxide dismutase eliminate it. This accumulation of O2? was demonstrated in terms of a burst of reduction of cytochrome c, seen when the latter compound was added after aerobic preincubation of xanthine oxidase with its substrate. The kinetic peculiarities of the luminescence seen in the presence of luminol, which previously led to the proposal of H2O4?, can now be satisfactorily explained entirely on the basis of known radical intermediates.  相似文献   

19.
On the mechanism of action of lysophospholipase-transacylase from rat lung   总被引:1,自引:0,他引:1  
Lysophospholipase-transacylase from rat lung catalyzes the transfer of palmitate from 1-palmitoyl-sn-glycero-3-phosphocholine to water and to another molecule of 1-palmitoyl-sn-glycero-3-phosphocholine. Incorporation of palmitate into phosphatidylcholine is restricted to palmitate donated by lysophosphatidylcholine, free palmitate cannot be esterified to lysophosphatidylcholine by the enzyme. Experiments in the presence of H218O and mass spectrometric analysis of the reaction products show that 18O is incorporated into the released palmitate but not into the transesterification product phosphatidylcholine. This proofs that the hydrolytic reaction proceeds by O-acyl cleavage. Furthermore, the results strongly suggest that transfer of palmitate to lysophosphatidylcholine occurs through an intermediary covalent acyl-enzyme complex.  相似文献   

20.
The mechanism of microsomal oxidative deamination of alicyclic primary amines: cyclopentylamine, cyclohexylamine, cycloheptylamine, 1- and 2-aminoindan, 1- and 2-aminotetralin, was studied under an atmosphere of 18O2 or in a medium containing H218O. The oxygen-18 contents of the products determined by gas-liquid chromatography/mass spectrometry revealed that almost all (75–100 atom%) of the oxygen of oximes was derived from molecular oxygen, whereas a part (4–25 atom% ) of the oxygen of ketones. The studies on the hydrolysis of oximes and the oxygen exchange reaction of ketones proved that the latter proceeded at a considerable rate (t12 = 9.5–336 min) and the former made a minor contribution, to explain why the major portion (75–96 atom%) of the oxygen in ketones was derived from water. The results support the mechanism that microsomal deamination proceeds mainly through a carbinolamine intermediate, which is initially hydroxylated at the α carbon to the amino group, partially equilibrating with the imine, and then rearranges to form a ketone and ammonia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号