首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The kinetics of interaction of PPi and its diphosphonic analog, methylenediphosphonic acid (MDPA), with nucleoside triphosphates, DNA and Mg2+ binding sites of DNA-dependent RNA polymerase II from calf thymus was investigated. The values of apparent Km in the NTP polymerization reaction for ATP and CTP equal to 2.7 X 10(-4) and 1.8 X 10(-4) M, respectively, were determined. It was shown that MDPA and PPi competitively inhibited the RNA polymerase reaction with respect to nucleoside triphosphate. The inhibition constants (Ki) of ATP and CTP incorporation for MDPA were 2.2 X 10(-4) and 3.3 X 10(-4) M, respectively, while those of the nucleoside triphosphate incorporation for PPi were equal to 1.4 X 10(-4) and 2.0 X 10(-4) M, respectively. MDPA and PPi were incompetitive inhibitors of template (DNA) and Mn2+. A possible mechanism of inhibition of the RNA polymerase reaction by MDPA is proposed.  相似文献   

2.
P Bhargava  D Chatterji 《FEBS letters》1988,241(1-2):33-37
The binding affinity between the substrates ATP and UTP with the purified yeast RNA polymerase II have been studied here in the presence and absence of Mn2+. In the absence of template DNA, both ATP and UTP showed tight binding with the enzyme without preference for any specific nucleotide, unlike Escherichia coli RNA polymerase. Fluorescence titration of the tryptophan emission of the enzyme by nucleoside triphosphate substrates gave an estimated Kd value around 65 microM in the absence of Mn2+ whereas in the presence of Mn2+, the Kd was 20 microM. The effect of substrates on the longitudinal relaxation of the HDO proton in enzyme-substrate complex also yielded a similar Kd value.  相似文献   

3.
19 F NMR spectroscopy have been applied to evaluate metal ion binding by the representative PvuII endonuclease in the absence of substrate. In separate experiments, ITC data demonstrate that PvuII endonuclease binds 2.16 Mn(II) ions and 2.05 Ca(II) metal ions in each monomer active site with K d values of  ≈ 1 mM. While neither calorimetry nor protein NMR spectroscopy is directly sensitive to Mg(II) binding to the enzyme, Mn(II) competes with Mg(II) for common sites(s) on PvuII endonuclease. Substitution of the conserved active site carboxylate Glu68 with Ala resulted in a loss of affinity for both equivalents of both Ca(II) and Mn(II). Interestingly, the active site mutant D58A retained an affinity for Mn(II) with K d  ≈ 2 mM. Mn(II) paramagnetic broadening in 19F spectra of wild-type and mutant 3-fluorotyrosine PvuII endonucleases are consistent with ITC results. Chemical shift analysis of 3-fluorotyrosine mutant enzymes is consistent with a perturbed conformation for D58A. Therefore, free PvuII endonuclease binds metal ions, and metal ion binding can precede DNA binding. Further, while Glu68 is critical to metal ion binding, Asp58 does not appear to be critical to the binding of at least one metal ion and appears to also have a role in structure. These findings provide impetus for exploring the roles of multiple metal ions in the structure and function of this representative endonuclease. Received: 30 March 1999 / Accepted: 28 September 1999  相似文献   

4.
《BBA》1987,890(1):89-96
Electron donation to Photosystem II (PS II) by diphenylcarbazide (DPC) is interrupted by the presence of endogenous Mn in PS II particles. Removal of this Mn by Tris treatment greatly stimulates the electron transport with DPC as donor. Binding of low concentration of exogenous Mn(II) to Tris-treated PS II particles inhibits DPC photooxidation competitively with DPC. This phenomenon was used to locate a highly specific Mn(II) binding site on the oxidizing side of Photosystem II with dissociation constant about 0.15 μM. The binding of Mn(II) is electrostatic in nature. Its affinity depends not only on the ionic strength, but also on the anion species of the salt in the medium. The effectiveness in decreasing the affinity follows the order F > SO2−4 > CH3COO > CI > Br > NO3. This observation is interpreted as follows: smaller ions, like F, CH3COO, and larger ions, like SO2−4, have inhibitory effects on Mn(II) binding, whereas ions with optimal size, like Cl, Br and NO3, can stabilize the binding, resembling the anion requirement for reactivation of Cl-depleted chloroplasts. We suggest that the binding site for Mn(II) we observed is the site for the endogenous Mn in the O2-evolving complex of PS II. This site remains after Tris treatment, which removes all the endogenous Mn as well as the three extrinsic proteins, indicating that it is on the intrinsic component(s) of PS II reaction centers. Furthermore, the Cl requirement for O2 evolution may be attributed, at least partly to its stabilizing effect on Mn binding.  相似文献   

5.
Measurements of the relaxation rate of water protons (PRR) have been used to study the interaction of yeast phosphoglycerate kinase with the manganous complexes of a number of nucleotides. The results indicate that phosphoglycerate kinase belongs to the same class of enzymes as creatine kinase, adenylate kinase, formyltetrahydrofolate synthetase, and arginine kinase, with maximal binding of metal ion to tne enzyme in the presence of the nucleotide substrate. However, an analysis of titration curves for a number of nucleoside diphosphates (ADP, IDP, GDP) showed that there is a substantial synergism in binding of the metal ion and nucleotide to the enzyme in the ternary complex. The metal-substrate binds to the enzyme approximately two orders of magnitude more tightly than the free nucleotide; Other evidence for an atypical binding scheme for Mn(II)-nucleoside diphosphates was obtained by electron paramagnetic resonance (EPR) studies; the EPR spectrum for the bound Mn(II) in the enzyme-MnADP complex differed substantially from those obtained for other kinases. An identical EPR spectrum is observed with the MnADP complex with the rabbit muscle enzyme as with the yeast enzyme. In contrast, the dissociation constant for the enzyme-MnATP complex is approximately fourfold lower than that for enzyme-ATP, and there are no substantial changes in the electron paramagnetic resonance spectrum of MnATP2- when the complex is bound to phosphoglycerate kinase. A small but significant change in the PRR of water is observed on addition of 3-phosphoglycerate (but not 2-phosphoglycerate) to the MnADP-enzyme complex. However, addition of 3-phosphoglycerate to enzyme-MnADP did not influence the EPR spectrum of the enzyme-bound Mn(II).  相似文献   

6.
Replacement of Mg (II), the natural activator of brain hexokinase (EC 2.7.1.1) by paramagnetic Mn (II) without affecting the physiological properties of the enzyme, has rendered brain hexokinase accessible to investigations by magnetic resonance methods. Based on such studies, a site on the enzyme, where Mn (II) binds directly with high affinity has been identified and characterized in detail. Use ofβ,γ-bidentate Cr (III) ATP as an exchange-inert analogue for Mn (II) ATP has shown that Mn (II) binding directly to the enzyme has no catalytic role but another Mn (II) ion binding simultaneously and independently to the enzyme through the nucleotide bridge participates in enzyme function. However, using this direct binding Mn (II) ion and a covalently bound spin label as paramagnetic probes a beginning has been made in mapping the ligand binding sites of the enzyme. Ultra-violet difference spectroscopy has revealed the presence of at least two glucose 6-phosphate locations on the enzyme one of which presumably is the high affinity regulatory site modulated by substrate glucose. Elution behaviour of the enzyme on a phosphocellulose column suggests that glucose induces a specific phosphate site on the enzyme to which the phosphate bearing regulatory ligands of the enzyme may bind.  相似文献   

7.
8.
Lead(II)-induced cleavage can be used as a tool to probe conformational changes in RNA. In this report, we have investigated the conformation of M1 RNA, the catalytic subunit of Escherichia coli RNase P, by studying the lead(II)-induced cleavage pattern in the presence of various divalent metal ions. Our data suggest that the overall conformation of M1 RNA is very similar in the presence of Mg(2+), Mn(2+), Ca(2+), Sr(2+) and Ba(2+), while it is changed compared to the Mg(2+)-induced conformation in the presence of other divalent metal ions, Cd(2+) for example. We also observed that correct folding of some M1 RNA domains is promoted by Pb(2+), while folding of other domain(s) requires the additional presence of other divalent metal ions, cobalt(III) hexamine or spermidine. Based on the suppression of Pb(2+) cleavage at increasing concentrations of various divalent metal ions, our findings suggest that different divalent metal ions bind with different affinities to M1 RNA as well as to an RNase P hairpin-loop substrate and yeast tRNA(Phe). We suggest that this approach can be used to obtain information about the relative binding strength for different divalent metal ions to RNA in general, as well as to specific RNA divalent metal ion binding sites. Of those studied in this report, Mn(2+) is generally among the strongest RNA binders.  相似文献   

9.
Self-splicing group II introns are highly structured RNA molecules, containing a characteristic secondary and catalytically active tertiary structure, which is formed only in the presence of Mg(II). Mg(II) initiates the first folding step governed by the κζ element within domain 1 (D1κζ). We recently solved the NMR structure of D1κζ derived from the mitochondrial group II intron ribozyme Sc.ai5γ and demonstrated that Mg(II) is essential for its stabilization. Here, we performed a detailed multinuclear NMR study of metal ion interactions with D1κζ, using Cd(II) and cobalt(III)hexammine to probe inner- and outer-sphere coordination of Mg(II) and thus to better characterize its binding sites. Accordingly, we mapped 1H, 15N, 13C, and 31P spectral changes upon addition of different amounts of the metal ions. Our NMR data reveal a Cd(II)-assisted macrochelate formation at the 5′-end triphosphate, a preferential Cd(II) binding to guanines in a helical context, an electrostatic interaction in the ζ tetraloop receptor and various metal ion interactions in the GAAA tetraloop and κ element. These results together with our recently published data on Mg(II) interaction provide a much better understanding of Mg(II) binding to D1κζ, and reveal how intricate and complex metal ion interactions can be.  相似文献   

10.
The recombinant form of the extrinsic 23 kDa protein (psbP) of Photosystem II (PSII) was studied with respect to its capability to bind Mn. The stoichiometry was determined to be one manganese bound per protein. A very high binding constant, KA = 10− 17 M− 1, was determined by dialysis of the Mn containing protein against increasing EDTA concentration. High Field EPR spectroscopy was used to distinguish between specific symmetrically ligated Mn(II) from those non-specifically Mn(II) attached to the protein surface. Upon Mn binding PsbP exhibited fluorescence emission with maxima at 415 and 435 nm when tryptophan residues were excited. The yield of this blue fluorescence was variable from sample to sample. It was likely that different conformational states of the protein were responsible for this variability. The importance of Mn binding to PsbP in the context of photoactivation of PSII is discussed.  相似文献   

11.
The nature of binding between manganese ions and morphine was studied using Fourier transform proton nuclear magnetic resonance techniques. Proton relaxation times in the presence of Mn(II) ions were determined together with their temperature dependence. Slow exchange conditions were observed for the NCH3 group, while fast exchange conditions applied for all the other protons. The rotational correlation time of the complex was approximated by that of the free morphine molecule, as measured by selective and nonselective proton relaxation rate measurements. The distances between the metal ion and proton nuclei of morphine were evaluated on the basis of an association constant, measured from water proton spin-lattice relaxation rate binding studies. The results indicate that the metal binds directly to the two oxydryls with Kass = 9.7 × 10?3.The rate constant for the interaction of Mn(II) with the opiate is 2.25 × 104 sec?1 at 27°C, as determined from the temperature dependence of longitudinal relaxation rate of the NCH3 group.  相似文献   

12.
In an attempt to distinguish between the interaction of GTP and ATP with tubulin dimer, high-resolution 1H- and 31P-NMR experiments have been carried out on the nucleotides in the presence of tubulin. The location of the ATP binding sites on the protein in relation to the GTP sites is still not clear. Using NMR spectroscopy, we have tried to address this question. Evidence for the existence of a site labelled as X-site and another site (labelled as L-site for both the nucleotides on tubulin has been obtained. It is suggested that this X-site is possibly the putative E-site. In order to gain further insight into the nature of these sites, the Mg(II at the N-site has been replaced by Mn(II and the paramagnetic effect of Mn(II on the linewidth of the proton resonances of tubulin-bound ATP and GTP has been studied. The results show that the L-site nucleotide is closer to the N-site metal ion compared to the X-site nucleotide. On the basis of these results, it is suggested that the L-site of ATP is distinct from the L-site of GTP while the X-site of both the nucleotides seems to be same. By using the paramagnetic effect of the metal ion, Mn(II), at the N-site on the relaxation rates of tubulin-bound ATP at L-site, distances of the protons of the base, sugar and phosphorous nuclei of the phosphorous moiety of ATP, from the N-site metal ion have been mapped. The base protons are 2 0.7–1 nm distant from the N-site metal ion, while the protons of the sugar are 2 0.8-1 nm from this metal ion site. On the other hand, the phosphorous nuclei of the phosphate groups are somewhat nearer (2 0.4–0.5 nm from the N-site metal ion.  相似文献   

13.
Metal binding to the iron storage protein apoferritin is the first step in the process by which iron accumulates within the protein shell. In the present study, the stoichiometry of metal binding to apoferritin in solution has been examined using the probe ions Mn(II), VO(IV), and Cd(II) in conjunction with EPR spectroscopic and cadmium ion selective electrode measurements. Binding studies were carried out with the individual ions, in competition with one another, and in competition with Fe(II), Fe(III), and Tb(III). All three probe ions show binding stoichiometries near 0.3 and 0.7 metal ion per subunit, close to the theoretically predicted values of 0.33 and 0.67 for the binding of one and two metal ions, respectively, per three subunits. These results in conjunction with other data are consistent with the binding of one, and possibly two, metal ions within each of the eight hydrophilic channels which are located on 3-fold axes leading to the interior of the protein. Pairs of cadmium binding sites have been located in these channels by x-ray crystallography (Rice, D. W., Ford, G. C., White, J. L., Smith, J. M. A., and Harrison, P. M. (1983) Adv. Inorg. Biochem. 5, 39-49). The possibility that some metal binding occurs elsewhere on the protein is not precluded by the present data, however. In competition experiments between various metal ions, approximately 0.3 metal ion per subunit is readily displaced implying common binding sites in the channels for all of them. The stoichiometry of Mn(II) displacement by Fe(II) is less clear. Oxidation of Fe(II) to Fe(III) by molecular oxygen in the presence of Mn(II) regenerates some Mn(II) binding on the protein, suggesting migration of iron(III) to other protein sites, or perhaps to core.  相似文献   

14.
Light-induced interaction of Fe(II) cations with the donor side of Mn-depleted photosystem II (PS II(–Mn)) results in the binding of iron cations and blocking of the high-affinity (HAZ) Mn-binding site. The pH dependence of the blocking was measured using the diphenylcarbazide/2,6-dichlorophenolindophenol test. The curve of the pH dependence is bell-shaped with pK 1 = 5.8 and pK 2 = 8.0. The pH dependence of the O2-evolution mediated by PS II membranes is also bellshaped (pK 2 = 7.6). The pH dependence of the process of electron donation from exogenous donors in PS II(–Mn) was studied to determine the location of the alkaline pH sensitive site of the electron transport chain. The data of the study showed that the decrease in the iron cation binding efficiency at pH > 7.0 during blocking was determined by the donor side of the PS II(–Mn). Mössbauer spectroscopy revealed that incubation of PS II(–Mn) membranes in a buffer solution containing 57Fe(II) + 57Fe(III) was accompanied by binding only Fe(III) cations. The pH dependence of the nonspecific Fe(III) cation binding is also described by the same bell-shaped curve with pK 2 = 8.1. The treatment of the PS II(–Mn) membranes with the histidine modifier diethylpyrocarbonate resulted in an increase in the iron binding strength at alkaline pH. It is suggested that blocking efficiency at alkaline pH is determined by competition between OH and histidine ligand for Fe(III). Because the high-affinity Mn-binding site contains no histidine residue, this fact can be regarded as evidence that histidine is located at another (other than high-affinity) Fe(III) binding site. In other words, this means that the blockage of the high-affinity Mn-binding site is determined by at least two iron cations. We assume that inactivation of oxygen-evolving complex and inhibition of photoactivation in the alkaline pH region are also determined by competition between OH and a histidine residue involved in coordination of manganese cation outside the high-affinity site.  相似文献   

15.
A method was developed to determine whether microorganisms mediate the precipitation of manganese(II) in the marine environment. Radioactive 54Mn(II) was used as a tracer to measure the precipitation (binding and oxidation) of Mn(II) [i.e., the 54Mn(II) trapped on 0.2-μm membrane filters] in the presence and absence of biological poisons. A variety of antibiotics, fixatives, and metabolic inhibitors were tested in laboratory control experiments to select poisons that did not interfere in the chemistry of manganese. The poisons were deemed suitable if (i) they did not complex Mn(II) more strongly than the ion-exchange resin Chelex 100, (ii) they did not interfere in the adsorption of 54Mn(II) onto synthetic δMnO2 (manganate), (iii) they did not cause desorption of 54Mn(II) which had been preadsorbed onto synthetic manganate, and (iv) they did not solubilize synthetic 54manganate. In addition, several known chelators, reducing agents, and buffers normally added to microbiological growth media or used in biochemical assays were tested. Most additions interfered to some extent with manganese chemistry. However, at least one inhibitor, sodium azide, or a mixture of sodium azide, penicillin, and tetracycline was shown to be appropriate for use in field studies of 54Mn(II) binding. Formaldehyde could also be used in short incubations (1 to 3 h) but was not suitable for longer time course studies. The method was applied to studies of Mn(II) precipitation in Saanich Inlet, British Columbia, Canada. Bacteria were shown to significantly enhance the rate of Mn(II) removal from solution in the manganese-rich particulate layer which occurs just above the oxygen-hydrogen sulfide interface in the water column.  相似文献   

16.
Westover KD  Bushnell DA  Kornberg RD 《Cell》2004,119(4):481-489
Binding of a ribonucleoside triphosphate to an RNA polymerase II transcribing complex, with base pairing to the template DNA, was revealed by X-ray crystallography. Binding of a mismatched nucleoside triphosphate was also detected, but in an adjacent site, inverted with respect to the correctly paired nucleotide. The results are consistent with a two-step mechanism of nucleotide selection, with initial binding to an entry (E) site beneath the active center in an inverted orientation, followed by rotation into the nucleotide addition (A) site for pairing with the template DNA. This mechanism is unrelated to that of single subunit RNA polymerases and so defines a new paradigm for the large, multisubunit enzymes. Additional findings from these studies include a third nucleotide binding site that may define the length of backtracked RNA; DNA double helix unwinding in advance of the polymerase active center; and extension of the diffraction limit of RNA polymerase II crystals to 2.3 A.  相似文献   

17.
Unadenylylated glutamine synthetase (EC 6.3.1.2) was isolated and purified to homogeneity from Salmonella typhimurium. The enzyme molecule is a symmetrical aggregate of 12 subunits arranged in two hexagonal layers, as is evident from electron micrographs. The subunit molecular weight of the enzyme was found to be approximately 50,000 by polyacrylamide gel electrophoresis in sodium dodecyl sulfate when compared to Escherichia coli glutamine synthetase and other protein standards. A long tube of glutamine synthetase was formed as a single-stranded coil resulting from incubation of the enzyme in a low ionic strength buffer. A study of Mn(II) binding to the unadenylylated enzyme at 25 °C was conducted as a function of pH. At pH 7.1 two classes of metal ion sites per subunit were found with KD values of 3.7 × 10?6 and 1.7 × 10?4m, while at pH 6.8 these values were 1.1 × 10?5 and 1.0 × 10?4m, respectively. Only one set of binding sites was observed at pH 6.2 with a KD value of 1.0 × 10?4m. The metal ion binding sites were further investigated by monitoring proton relaxation rates (prr) and the epr spectrum of enzyme-bound Mn(II). The longitudinal prr of water protons at pH 7.1 indicate that protons interacting with enzyme-Mn(II) at the “tight” site (KD = 3.7 × 10?6) are de-enhanced (?b1 = 0.42) and result from water protons beyond the inner coordination sphere. The second Mn(II) site has a value of ?b2 = 35 for the binary enhancement, suggesting that this site probably has two to three rapidly exchanging water molecules in its coordination sphere. The epr spectrum of enzyme-bound Mn(II) at the “tight” site is isotropic and is dramatically sharpened by adding the substrate analog methionine sulfoximine. Subsequent addition of ATP or the ATP analog, AMP-PCP (adenylyl methylene diphosphate) produced anisotropic spectra that were similar, suggesting that both ATP and AMP-PCP bind similarly on the enzyme surface. However, a marked change in the Mn(II) environment from anisotropic to near cubic results from the addition of ADP to the quaternary enzyme-Mn(II)-sulfoximine- (AMP-PCP) complex, indicating that ADP displaces AMP-PCP. No change in the anisotropic spectrum due to the enzyme-Mn(II)-sulfoximine-ATP complex is seen by the addition of ADP. This experimental result supports the experimental findings of Ronzio and Meister [Proc. Nat. Acad. Sci. USA59, 164 (1968)], who established that ATP phosphorylates methionine sulfoximine, thereby producing an inactive enzyme. The allosteric effectors, AMP and Trp, have little effect on the epr spectrum of the complex formed from Mn(II), enzyme, sulfoximine, and ADP, suggesting the absence of direct coordination of AMP or Trp to the bound Mn(II). The prr and epr results reported herein with glutamine synthetase from S. typhimurium when compared to those seen for the enzyme from E. coli [Villafranca et al., Biochemistry15, 544 (1976)] demonstrate some similarities but also many substantial differences between the enzymes from these two bacterial sources.  相似文献   

18.
19.
Magnetic resonance techniques have been applied to study the stability of the complexes formed between Mn(II) ions and NADP in aqueous solutions at a pH of 7.5 and 20 degrees C. The electron paramagnetic resonance (epr) data indicate that at low Mn(II) ion concentrations ([Mn(II)] less than 1 mM; [NADP] approximately 5 mM), a 1:1 complex is formed with an apparent stability constant K1 = 370 +/- 50 M-1 at an ionic strength of 0.22 in the presence of 0.20 M Cl-. At high Mn(II) ion concentrations, a Mn(II)2-NADP species, with an apparent stability constant K2 = 54 +/- 17 M-1, is present in significant amounts. When the epr data are corrected for the presence of the MnCl+ ion, the analysis of the new Scatchard plot yields stability constants for the two sites of K1 = 640 +/- 90 M-1 and K2 = 88 +/- 13 M-1, respectively. The presence of two metal ion binding sites on the NADP molecule has not been observed previously, and previous workers have always analyzed their data in terms of the 1:1 Mn(II)-NADP complex. An epr temperature study of K1 yields a value of delta H equal to 1.3 +/- 0.2 kcal/mol (1 cal = 4.187 J).  相似文献   

20.
The metal-ion-activated diphtheria toxin repressor (DtxR) is responsible for the regulation of virulence and other genes in Corynebacterium diphtheriae. A single point mutation in DtxR, DtxR(E175K), causes this mutant repressor to have a hyperactive phenotype. Mice infected with Mycobacterium tuberculosis transformed with plasmids carrying this mutant gene show reduced signs of the tuberculosis infection. Corynebacterial DtxR is able to complement mycobacterial IdeR and vice versa. To date, an explanation for the hyperactivity of DtxR(E175K) has remained elusive. In an attempt to address this issue, we have solved the first crystal structure of DtxR(E175K) and characterized this mutant using circular dichroism, isothermal titration calorimetry, and other biochemical techniques. The results show that although DtxR(E175K) and the wild type have similar secondary structures, DtxR(E175K) gains additional thermostability upon activation with metal ions, which may lead to this mutant requiring a lower concentration of metal ions to reach the same levels of thermostability as the wild-type protein. The E175K mutation causes binding site 1 to retain metal ion bound at all times, which can only be removed by incubation with an ion chelator. The crystal structure of DtxR(E175K) shows an empty binding site 2 without evidence of oxidation of Cys102. The association constant for this low-affinity binding site of DtxR(E175K) obtained from calorimetric titration with Ni(II) is Ka = 7.6 ± 0.5 × 104, which is very similar to the reported value for the wild-type repressor, Ka = 6.3 × 104. Both the wild type and DtxR(E175K) require the same amount of metal ion to produce a shift in the electrophoretic mobility shift assay, but unlike the wild type, DtxR(E175K) binding to its cognate DNA [tox promoter-operator (toxPO)] does not require metal-ion supplementation in the running buffer. In the timescale of these experiments, the Mn(II)-DtxR(E175K)-toxPO complex is insensitive to changes in the environmental cation concentrations. In addition to Mn(II), Ni(II), Co(II), Cd(II), and Zn(II) are able to sustain the hyperactive phenotype. These results demonstrate a prominent role of binding site 1 in the activation of DtxR and support the hypothesis that DtxR(E175K) attenuates the expression of virulence due to the decreased ability of the Me(II)-DtxR(E175K)-toxPO complex to dissociate at low concentrations of metal ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号