首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The rate of slow Li+ influx and the fraction of active form of acetylcholine receptor (AChR) of Electrophorus electricus membrane vesicles at equilibrium between the active and desensitized forms of the receptor were measured in the presence of various concentrations of phenyltrimethylammonium (PTA) and nereistoxin (NTX), by a simple filtration assay and flame emission spectroscopy. The equilibrium constants of these ligands in the minimal model, which accounts for the AChR-mediated ion flux, were estimated simply from these two measurements, since the equilibrium constants for acetylcholine (ACh) and carbamylcholine (Carb) estimated from two kinetic measurements agreed well with those estimated from five sophisticated kinetic measurements of AChR-mediated ion fluxes. PTA showed high potency but not high efficacy, and showed inhibition when large doses were applied. NTX showed both low potency and low efficacy and acted as an inhibitor when it was added with Carb. The apparent dissociation constants of these three agonists evaluated from the minimal model and the equilibrium constants agreed with those obtained by assay of inhibition of radiolabeled ligand binding.  相似文献   

2.
Minaba M  Ichiyama S  Kojima K  Ozaki M  Kato Y 《The FEBS journal》2006,273(24):5508-5516
Signal transduction mediated by heterotrimeric G proteins regulates a wide variety of physiological functions. We are interested in the manipulation of G-protein-mediating signal transduction using G-protein-coupled receptors, which are derived from evolutionarily distant organisms and recognize unique ligands. As a model, we tested the functionally coupling GOA-1, G alpha(i/o) ortholog in the nematode Caenorhabditis elegans, with the human muscarinic acetylcholine receptor M2 subtype (M2), which is one of the mammalian G alpha(i/o)-coupled receptors. GOA-1 and M2 were prepared as a fusion protein using a baculovirus expression system. The affinity of the fusion protein for GDP was decreased by addition of a muscarinic agonist, carbamylcholine and the guanosine 5'-[3-O-thio]triphosphate ([35S]GTPgammaS) binding was increased with an increase in the carbamylcholine concentrations in a dose-dependent manner. These effects evoked by carbamylcholine were completely abolished by a full antagonist, atropine. In addition, the affinity for carbamylcholine decreased under the presence of GTP as reported for M2-G alpha(i/o) coupling. These results indicate that the M2 activates GOA-1 as well as G alpha(i/o).  相似文献   

3.
The spectroscopic properties and specificity of binding of a fluorescent quaternary amine, ethidium, with acetylcholine receptor-enriched membranes from Torpedo californica have been examined. Competition binding with [3H]phencyclidine in the presence of carbamylcholine showed that ethidium binds with high affinity to a noncompetitive inhibitor site (KD = 3.6 X 10(-7) M). However, in the presence of alpha-toxin, ethidium's affinity is substantially lower (KD approximately 1 X 10(-3) M). Ethidium was also found to enhance [3H]acetylcholine binding with a KD characteristic of ethidium binding to a high-affinity noncompetitive inhibitor site. These findings indicate that ethidium binds to an allosteric site which is regulated by agonist binding and can convert the agonist sites from low to high affinity. Fluorescence titrations of ethidium in the presence of carbamylcholine yielded a similar KD (2.5 X 10(-7) M) and showed an ethidium stoichiometry of one site/acetylcholine receptor monomer. Ethidium was completely displaced by noncompetitive inhibitors such as phencyclidine, histrionicotoxin, and dibucaine. The enhanced fluorescence lifetime of the bound species showed that the increased fluorescence intensity reflects a 13-fold increase in quantum yield for the complex compared to ethidium in buffer. Fractional dissociation of ethidium with phencyclidine produced a double-exponential fluorescence decay rate with lifetime components characteristic of ethidium free in solution and bound to the receptor. These data argue that the alterations in ethidium fluorescence elicited by other ligands is due to a change in the fraction of specifically bound ethidium rather than a change in quantum yield of a pre-existing ethidium-acetylcholine receptor complex. The extent of polarization indicates that bound ethidium is strongly immobilized. The magnitude of the quantum yield enhancement and the shifts of excitation and emission maxima of bound ethidium suggest that its binding site is within a hydrophobic domain with limited accessibility to the aqueous phase.  相似文献   

4.
The nicotinic acetylcholine receptor, purified from Torpedo electric organ, was coupled to a light addressable potentiometric sensor (LAPS) to form a LAPS-receptor biosensor. Receptor-ligand complexes containing biotin and urease were captured on a biotinylated nitrocellulose membrane via a streptavidin bridge and detected with a silicon-based sensor. Competition between biotinylated alpha-bungarotoxin and nonbiotinylated ligands formed the basis of this assay. This biosensor detected both agonists (acetylcholine, carbamylcholine, succinylcholine, suberyldicholine, and nicotine) and competitive antagonists (d-tubocurarine, alpha-bungarotoxin, and alpha-Naja toxin) of the receptor with affinities comparable to those obtained using radioactive ligand binding assays. Consistent with agonist-induced desensitization of the receptor, the LAPS-receptor biosensor reported a time-dependent increase in affinity for the agonist carbamylcholine as expected, but not for the antagonists.  相似文献   

5.
Treatment of neural membranes from rat cerebral cortex with phospholipase C (phosphatidylcholine cholinephosphohydrolase) inhibited the binding of radiolabelled antagonists to muscarinic acetylcholine receptors. This inhibition was incomplete, was not competitive, and did not appear to be related to the production of inhibitory products. The affinity of carbamylcholine for cortex muscarinic receptors was increased by phospholipase C action. The distribution of receptors between states of high and low affinity was not affected by phospholipase C; rather, the affinity for carbamylcholine of the lowest affinity receptors was selectively increased. This suggests that membrane lipids influence the interaction of the receptor binding subunit with other structures in the synaptic membrane.  相似文献   

6.
7.
P Blount  J P Merlie 《Neuron》1989,3(3):349-357
We have stably expressed in fibroblasts different pairs of alpha and non-alpha subunits of the mouse muscle nicotinic acetylcholine receptor (AChR). The gamma and delta, but not the beta, subunits associated efficiently with the alpha subunit, and they extensively modified its binding characteristics. The alpha gamma and alpha delta complexes formed distinctly different high affinity binding sites for the competitive antagonist d-tubocurarine that, together, completely accounted for the two nonequivalent antagonist binding sites in native AChR. The alpha delta complex and native AChR had similar affinities for the agonist carbamylcholine. In contrast, although the alpha gamma complex contains the higher affinity competitive antagonist binding site, it had an affinity for carbamylcholine that was an order of magnitude less than that of the alpha delta complex or the AChR. The comparatively low agonist affinity of the alpha gamma complex may represent an allosterically regulated binding site in the native AChR. These data support a model of two nonequivalent binding sites within the AChR and imply that the basis for this nonequivalence is the association of the alpha subunit with the gamma or delta subunit.  相似文献   

8.
L Larose  J Morisset 《Life sciences》1985,37(3):255-261
Dispersed rat pancreatic acini were incubated in 0.5mM calcium medium with increasing concentrations of carbamylcholine, with or without the ionophore A23187 (10(-6)M). Addition of the ionophore reduced maximal amylase release, increased the maximal effective concentration of carbamylcholine and dramatically impaired the agonist's capacity to induce enzyme secretion at low concentration. The ionophore also abolished the inhibition of secretion observed at high carbamylcholine concentrations. These effects of the ionophore on the cholinergic secretory response cannot be explained by interaction at the muscarinic receptor since neither the Bmax, the affinity of the receptor for the [3H]QNB nor the binding of carbamylcholine were affected by the ionophore. It is suggested that for the conditions studied, the ionophore can interact with the secretory process at one or several points ulterior to the initial recognition site of carbamylcholine on its receptor.  相似文献   

9.
It is well-established that the binding of N-formyl peptides to the N-formyl peptide receptor on neutrophils can be described by a kinetic scheme that involves two ligand-bound receptor states, both a low affinity ligand-receptor complex and a high affinity ligand-receptor complex, and that the rate constants describing ligand-receptor binding and receptor affinity state interconversion are ligand-specific. Here we examine whether differences due to these rate constants, i.e. differences in the numbers and lifetimes of particular receptor states, are correlated with neutrophil responses, namely actin polymerization and oxidant production. We find that an additional receptor state, one not discerned from kinetic binding assays, is required to account for these responses. This receptor state is interpreted as the number of low affinity bound receptors that are capable of activating G proteins; in other words, the accumulation of these active receptors correlates with the extent of both responses. Furthermore, this analysis allows for the quantification of a parameter that measures the relative strength of a ligand to bias the receptor into the active conformation. A model with this additional receptor state is sufficient to describe response data when two ligands (agonist/agonist or agonist/antagonist pairs) are added simultaneously, suggesting that cells respond to the accumulation of active receptors regardless of the identity of the ligand(s).  相似文献   

10.
The antiviral drug amantadine is also a potent neuromuscular blocking agent. When the nicotinic receptor from a Torpedinidae species is reconstituted into soybean liposomes, the binding of α-bungarotoxin is not altered although the carbamylcholine induced radioactive cation influx is blocked.By studying cation fluxes in amantadine preincubated membranes previously exposed to different concentrations of carbamylcholine for different periods of time, we have shown that the drug accelerates the conversion of the nicotinic acetylcholine receptor from a state of low affinity to a state of high affinity for carbamyalcholine, a phenomenon correlated with receptor desensitization. The drug did not induce such a shift by itself.The present data and those by Earnest et al. (Biochemistry22, 5523–5535, 1984) show that the nicotinic acetylcholine receptor reconstituted into liposomes is a good model for studying the effects of noncompetitive blockers of nicotinic acetylcholine receptor function.  相似文献   

11.
A P Minton  M Sokolovsky 《Biochemistry》1990,29(6):1586-1593
The binding of the agonist carbamylcholine to muscarinic receptors in rat heart myocytes from young and aged cultures and in rat atrial membranes has been measured in the absence and presence of GppNHp, pertussis toxin, and/or batrachotoxin. The effect of each of the added substances upon agonist binding was accounted for by a model according to which the receptor may form an equilibrium complex with agonist and either of two distinct effector substances, one of which is postulated to increase the affinity of receptor for agonist and the other of which is postulated to decrease the affinity of receptor for agonist.  相似文献   

12.
13.
Effects of various cholinergic ligands on the intrinsic fluorescence of acetylcholine receptor purified from the electric organ of Narke japonica were investigated. Binding with acetylcholine decreased the fluorescence by 7–8%, and that with carbamylcholine by 4–5% at 20 °C. Decamethonium and d-tubocurarine did not affect significantly the fluorescence intensity, while hexamethonium enhanced it. These changes were completely inhibited by preincubation of the receptor with α-bungarotoxin, which indicated that the observed intrinsic fluorescence change was due to the specific binding of each ligand. Data of the quenching experiment using iodide ion as an extrinsic quencher suggested the occurrence of the conformational change in the receptor upon binding with various cholinergic ligands. Considering these results together with those on intrinsic fluorescence change, conformational change provoked by binding with acetylcholine or carbamylcholine seems to differ from that provoked by binding with other cholinergic ligands examined.  相似文献   

14.
Tetranitromethane at a concentration of 50 microM modifies the muscarinic receptors in membrane preparations from rat striatum, hippocampus and heart atrium, but not from the rat brain stem. While the binding of antagonists is only slightly altered, the modified receptor possesses an increased affinity of up to 8-fold for [3H]-acetylcholine binding to the high affinity state. This effect is absent if the nitration is carried out in the presence of an antagonist, but not in the presence of an agonist. The affinity for carbamylcholine is increased for both the high and the low affinity state of the receptor, as is evident from its ability to compete with a labeled antagonist. In addition, the proportion of binding sites (alpha) exhibiting the high affinity state for [3H]-acetylcholine or for carbamylcholine is increased upon nitration. This increase cannot be protected against by an antagonist, and is enhanced when nitration takes place in the presence of an agonist. With the agonists oxotremorine and [3H]-oxotremorine-M only the latter effect (i.e., increase in alpha) is observed following nitration, while their dissociation constants for the receptor are unchanged. Data are discussed with respect to the proposed existence of subtypes of muscarinic receptors, as well as the importance of the agonist chosen for studies of ligand-receptor interactions.  相似文献   

15.
The goal of this study was to elucidate the relationships between early ligand binding/receptor processing events and cellular responses for the N-formyl peptide receptor system on human neutrophils as a model of a GPCR system in a physiologically relevant context. Binding kinetics of N-formyl-methionyl-leucyl-phenylalanyl-phenylalanyl-lysine-fluorescein and N-formyl-valyl-leucyl-phenylalanyl-lysine-fluorescein to the N-formyl peptide receptor on human neutrophils were characterized and combined with previously published binding data for four other ligands. Binding was best fit by an interconverting two-receptor state model that included a low affinity receptor state that converted to a high affinity state. Response behaviors elicited at 37 degrees C by the six different agonists for the N-formyl peptide receptor were measured. Dose response curves for oxidant production, actin polymerization, and G-protein activation were obtained for each ligand; whereas all ligands showed equal efficacy for all three responses, the ED(50) values varied as much as 7000-fold. The level of agonism and rank order of potencies of ligands for actin and oxidant responses were the same as for the G-protein activation assay, suggesting that the differences in abilities of ligands to mediate responses were determined upstream of G-protein activation at the level of ligand-receptor interactions. The rate constants governing ligand binding and receptor affinity conversion were ligand-dependent. Analysis of the forward and reverse rate constants governing binding to the proposed signaling receptor state showed that it was of a similar energy for all six ligands, suggesting the hypothesis that ligand efficacy is dictated by the energy state of this ligand-receptor complex. However, the interconverting two-receptor state model was not sufficient to predict response potency, suggesting the presence of receptor states not discriminated by the binding data.  相似文献   

16.
An acidic phospholipase A2 (EC 3.1.1.4) isolated from Naja naja siamensis venom blocks acetylcholine receptor function in excitable post synaptic membrane vesicles from Torpedo californica electroplax. Specifically, the phospholipase acts catalytically to prevent the large increase in sodium efflux induced by carbamylcholine. The efflux inhibition can be correlated with specific hydrolysis of phospholipids in the membrane. During the time course of inhibition, the binding affinity of the receptor for carbamylcholine increases 10-fold, a phenomenon associated with receptor desensitization. Prolonged treatment of the membranes with phospholipase A2 causes nonspecific lysis of the vesicles. Incorporation of unsaturated fatty acids or lysophosphatidylcholine into Torpedo membranes also blocks carbamylcholine-induced sodium efflux. The fatty acids have no effect on the binding affinity of the receptor, and lysophosphatidylcholine causes a small decrease in receptor affinity for carbamylcholine. Lysophosphatidylethanolamine and most saturated fatty acids have no direct effect on sodium efflux, but the lysophosphatides cause vesicle lysis. All of the inhibitory effects of the phospholipase and the fatty acids can be reversed and/or prevented by treatment of the vesicles with bovine serum albumin.  相似文献   

17.
Engineered receptor fragments and glycoprotein ligands employed in different assay formats have been used to dissect the basis for the dramatic enhancement of binding of two model membrane receptors, dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin (DC-SIGN) and the macrophage galactose lectin, to glycoprotein ligands compared to simple sugars. These approaches make it possible to quantify the importance of two major factors that combine to enhance the affinity of single carbohydrate-recognition domains (CRDs) for glycoprotein ligands by 100-to 300-fold. First, the presence of extended binding sites within a single CRD can enhance interaction with branched glycans, resulting in increases of fivefold to 20-fold in affinity. Second, presentation of glycans on a glycoprotein surface increases affinity by 15-to 20-fold, possibly due to low-specificity interactions with the surface of the protein or restriction in the conformation of the glycans. In contrast, when solution-phase networking is avoided, enhancement due to binding of multiple branches of a glycan to multiple CRDs in the oligomeric forms of these receptors is minimal and binding of a receptor oligomer to multiple glycans on a single glycoprotein makes only a twofold contribution to overall affinity. Thus, in these cases, multivalent interactions of individual glycoproteins with individual receptor oligomers have a limited role in achieving high affinity. These findings, combined with considerations of membrane receptor geometry, are consistent with the idea that further enhancement of the binding to multivalent glycoprotein ligands requires interaction of multiple receptor oligomers with the ligands.  相似文献   

18.
In order to develop high affinity, fluorescent ligands for the estrogen receptor based on 2-arylindenes, it is important to understand how this non-steroidal estrogen is oriented within the binding site and to know how hydroxyl substituents affect binding. To investigate these issues a series of dihydroxyl-substituted 2,3-diphenylindenes were prepared by the cyclization of appropriately substituted alpha-benzyldesoxybenzoins, and their binding affinities for the estrogen receptor measured by a competitive radiometric binding assay. Introduction of a p-hydroxyl group in the 2-phenyl ring of two 2,3-diphenyl-6-hydroxyindene systems causes a 3-fold increase in binding affinity, whereas, p-hydroxylation in the 3-phenyl ring of these systems causes a 2-fold reduction in binding affinity. The parallel change in binding affinity in these two systems suggests a consistent binding orientation of the 2,3-diarylindene systems, which, on the basis of earlier studies, has the indene system corresponding to the A/B-ring system of estradiol. This orientation model and the enhanced affinity of the p-hydroxy 2-ring derivatives are suggestive of a new hydrogen bonding site below the D-ring binding site. Changes in receptor binding affinity upon hydroxylation in triphenylacrylonitrile ligands for the estrogen receptor, reported by others, do not show such parallelism, suggesting that different derivatives may not be bound in congruent orientations. A m-hydroxyl substituent in ring-3 of the 2,3-diarylindene has very little effect on receptor binding. In designing fluorescent 2,3-diarylindene ligands for the estrogen receptor, 3-ring hydroxylation may be useful in reducing non-specific binding and in modifying electron donation to the fluorophore with only modest or no reduction in binding affinity. p-Hydroxylation of the 2-ring, although increasing receptor binding, is not consistent with the electron accepting nature required of this ring.  相似文献   

19.
Interleukin-2 (IL-2) and its receptor complex have become one of the most studied members of a growing family of protein hormones characterized by structural similarities in both ligands and their receptors. Structure-function studies of IL-2 have been complicated by the multimeric nature of its receptor. Two receptor subunits (55- and 75-kDa type I cell surface proteins) can participate to form the high affinity binding site. Although the IL-2 is apparently unique in some respects, similar subunit cooperativity has now been shown to be a common feature for other members of this receptor family. The availability of cell lines expressing the individual IL-2 receptor subunits has allowed detailed analysis of subunit binding characteristics. Results regarding the relationship of molecular recognition at each subunit to the mechanism of ligand binding at the high affinity site, however, have led to different interpretations. In this study we have employed previously prepared C-terminal IL-2 mutant proteins to examine receptor binding at all three classes using a variety of equilibrium and kinetic techniques. These results indicate that the high affinity IL-2 receptor complex includes the p55/p75 heterodimer prior to IL-2 binding and that both receptor subunits participate simultaneously in ligand capture.  相似文献   

20.
The M2 muscarinic acetylcholine receptor mutant (M2 mutant), with a lack of glycosylation sites, a deletion in the central part of the third inner loop, and the addition of a six histidine tag at the C-terminus, was fused to maltose binding protein (MBP) at its N-terminus and expressed in Escherichia coli. The expression level was 0.2 nmol receptor per 100 ml culture, as assessed as [3H]L-quinuclidinyl benzilate ([3H]QNB) binding activity, when the BL 21 strain was cultured at 37 degrees C to a late growth phase and the expression was induced by isopropyl beta-thiogalactoside at 20 degrees C. No [3H]QNB binding activity was detected when it was not fused to MBP or when expression was induced at 37 degrees C instead of 20 degrees C. The MBP-M2 mutant expressed in E. coli showed the same ligand binding activity as the M2 mutant expressed in the Sporodoptera frugiperda (Sf9)/baculovirus system, as assessed as displacement of [(3)H]QNB with carbamylcholine and atropine. The MBP-M2 mutant was solubilized, purified with Co2+-immobilized Chelating Sepharose gel and SP-Sepharose, and then reconstituted into lipid vesicles with G protein Go or Gi1 in the presence or absence of cholesterol. The reconstituted vesicles showed GTP-sensitive high affinity binding for carbamylcholine and carbamylcholine-stimulated [35S]GTP gamma S binding activity in the presence of GDP. The proportion of high affinity sites for carbamylcholine and the extent of carbamylcholine-stimulated [(35)S]GTP gamma S binding were the same as those observed for the M2 mutant expressed in Sf9 cells and were not affected by the presence or absence of cholesterol. These results indicate that the MBP-M2 mutant expressed in E. coli has the same ability to interact with and activate G proteins as the M2 mutant expressed in Sf9, and that cholesterol is not essential for the function of the M2 muscarinic receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号