首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of the proteolysis of aldolase on both the substrate specificity of the enzyme and binding capacity for actin have been studied. Carboxypeptidase A, trypsin, chymotrypsin and pepsin, all acted to cleave peptides from the C-terminal portion of the enzyme, resulting initially in a marked loss of activity towards fructose-1:6-bisphosphate (FBP), without impairment of activity towards fructose-1-phosphate (F1P). In some cases, however, further proteolysis caused reductions in activity with F1P as well. By correlating the size of the peptide fragments released by these enzymes with the known sequence of aldolase, evidence has been provided that cleavage of His-359 and/or Tyr-361 lead to the loss of FBP activity, while further cleavage of up to six amino acids begin to affect activity against F1P, as well. In regard to the ability of the proteolysed aldolase to bind to F-actin, it was evident from these studies that binding ability was not impaired in the initial stages of proteolysis referred to above, but was retained until the enzyme was extensively degraded. This differential behaviour of the active and binding sites on aldolase clearly establish their separate topographical localization. These results have been discussed in relation to the positioning of these separate sites on the enzyme, the nature of the interaction between aldolase and actin and the phenomenon of enzyme ambiquity in cells and tissues.  相似文献   

2.
Homogeneous preparations of fructose-1,6-bisphosphatase from mouse, man, rabbit, pig, and rat were tested as substrates for cyclic AMP-dependent protein kinase. Up to 1 mol of [32P]phosphate per mole enzyme subunit was incorporated into fructose-1,6-bisphosphatase from pig and rabbit liver, which should be compared with 2.6 mol of phosphate per mole enzyme subunit in the case of the rat liver enzyme. The phosphorylation of fructose-1,6-bisphosphatase from the livers of man and mouse was negligible. Phosphorylation of pig and rabbit fructose-1,6-bisphosphatase decreased the apparent Km for fructose-1,6-bisphosphate, but in contrast to the case of the rat liver enzyme it did not change the inhibition constants for AMP and fructose-2,6-bisphosphate. The phosphorylation sites in rabbit and pig liver fructose-1,6-bisphosphatase were located close to the carboxyterminal of the polypeptide chains, since trypsin treatment of the phosphorylated enzyme quantitatively removed all of the protein-bound radioactivity without significantly altering the subunit molecular weight and with a maintained neutral pH optimum.  相似文献   

3.
Chemical modification of rabbit liver fructose 1,6-bisphosphatase by 5,5′-dithiobis-(2-nitrobenzoic acid) results in thiolation of four highly reactive sulfhydryl groups and a diminished sensitivity to AMP inhibition but not loss of enzyme activity. Ethoxyformylation of the histidine groups of fructose 1,6-bisphosphatase does not result in a sharp loss of activity until at least 4 or 5 of the 13 residues have reacted. Exhaustive formylation does abolish the enzyme's activity. These four most reactive sulfhydryl groups and the one or two least easily modified histidine moieties (those responsible for activity) can be protected against modification by fructose-1,6-P2 and to a lesser extent by fructose-6-P. The binding of fructose-1,6-P2 to fructose 1,6-bisphosphatase, however, depends on the presence of structural metal ion since EDTA which removes all endogenous Zn2+ from the protein prevents binding of fructose-1, 6-P2 to the enzyme.  相似文献   

4.
Mild alkaline treatment of glycopeptide (GP-II) resulted in the loss of 1 mole of serine and 5 moles of threonine per mole of GP-II, suggesting the presence of O-glycosyl bonds between 1 serine and 5 threonine residues and carbohydrate chains. Treatment of GP-II with alkaline borohydride released only disaccharide. Methylation studies of the carbohydrate moiety gave 2,3,4,6-tetra-O-methyl and 2,4,6-tri-O-methyl derivatives of mannose in a ratio of approximately 1:1. In addition, one step of Smith degradation resulted in the loss of about 6 residues of mannose per mole of GP-II. Moreover, alpha-mannosidase [EC 3.2.1.24] liberated about 6 residles of mannose per mole of GP-II. On the basis of these data, the structure of the carbohydrate moiety of GP-II was confirmed to be 3-O-alpha-mannosylmannose. The amino- and carboxyl-terminal amino acids of GP-II were determined to be threonine and serine, respectively. On reductive cleavage of N-proline bonds with metallic sodium in liquid ammonia, 2 moles of alanine per mole of GP-II were lost. From the compositions of three fragments isolated from the reductive cleavage products, the amino acid sequence of the peptide portion of GP-II was determined. Based on these data, a probable structure was proposed for GP-II.  相似文献   

5.
The effects of cyclic AMP-dependent phosphorylation on the structural properties of rat liver fructose-1,6-bisphosphatase were investigated by uv difference spectroscopy and circular dichroism. The incorporation of 4 mol of phosphate per mole of fructose-1,6-bisphosphatase induces a significant increase in the alpha-helix content of the enzyme without affecting its spectrophotometric properties. The addition of fructose 1,6-bisphosphate or fructose 2,6-bisphosphate also affects the conformation of the enzyme. However, both the phosphorylated and the nonphosphorylated forms exhibit similar ligand-induced conformational changes. These results show that cyclic AMP-dependent phosphorylation of fructose-1,6-bisphosphatase induces a specific conformational change. They also suggest that this modification does not alter the interaction of the enzyme protein with fructose 1,6-bisphosphate and fructose 2,6-bisphosphate.  相似文献   

6.
We have cloned an open reading frame from the Escherichia coli K-12 chromosome that had been assumed earlier to be a transaldolase or a transaldolase-related protein, termed MipB. Here we show that instead a novel enzyme activity, fructose-6-phosphate aldolase, is encoded by this open reading frame, which is the first report of an enzyme that catalyzes an aldol cleavage of fructose 6-phosphate from any organism. We propose the name FSA (for fructose-six phosphate aldolase; gene name fsa). The recombinant protein was purified to apparent homogeneity by anion exchange and gel permeation chromatography with a yield of 40 mg of protein from 1 liter of culture. By using electrospray tandem mass spectroscopy, a molecular weight of 22,998 per subunit was determined. From gel filtration a size of 257,000 (+/- 20,000) was calculated. The enzyme most likely forms either a decamer or dodecamer of identical subunits. The purified enzyme displayed a V(max) of 7 units mg(-)1 of protein for fructose 6-phosphate cleavage (at 30 degrees C, pH 8.5 in 50 mm glycylglycine buffer). For the aldolization reaction a V(max) of 45 units mg(-)1 of protein was found; K(m) values for the substrates were 9 mm for fructose 6-phosphate, 35 mm for dihydroxyacetone, and 0.8 mm for glyceraldehyde 3-phosphate. FSA did not utilize fructose, fructose 1-phosphate, fructose 1,6-bisphosphate, or dihydroxyacetone phosphate. FSA is not inhibited by EDTA which points to a metal-independent mode of action. The lysine 85 residue is essential for its action as its exchange to arginine (K85R) resulted in complete loss of activity in line with the assumption that the reaction mechanism involves a Schiff base formation through this lysine residue (class I aldolase). Another fsa-related gene, talC of Escherichia coli, was shown to also encode fructose-6-phosphate aldolase activity and not a transaldolase as proposed earlier.  相似文献   

7.
Inhibition studies with the photoreactive AMP analog, 8-azidoadenosine 5'-monophosphate (8-azido-AMP), demonstrate that this compound is, like AMP, an allosteric inhibitor of pig kidney and muscle fructose-1,6-biphosphateses. Photolysis of a mixture of purified pig kidney fructose-1,6-biphosphate and 8-azido-[14C]AMP results in the loss of enzyme activity and the reagent is incorporated to the protein. The incorporation of reagent linearly correlates with the loss of enzyme activity. Extrapolation to zero activity correlates with the incorporation of 3.7 mol of reagent/mol of enzyme (i.e. 0.9 per subunit). Thus, 8-azido-AMP appears to be a photoaffinity label for the allosteric AMP binding site of fructose-1,6-biphosphatase.  相似文献   

8.
Phosphofructokinase-1 plays a key role in the regulation of carbohydrate metabolism. Its activity can be used as an indicator of the glycolytic flux in a tissue sample. The method most commonly employed to determine phosphofructokinase-1 activity is based on oxidation of NADH by the use of aldolase, triosephosphate isomerase, and alpha-glycerophosphate dehydrogenase. This method suffers from several disadvantages, including interactions of the auxiliary enzymes with phosphofructokinase-1. Other methods that have been used also require auxiliary enzymes or are less sensitive than a coupled assay. Here, we propose a direct method to determine phosphofructokinase-1 activity, without the use of auxiliary enzymes. This method employs fructose-6-phosphate and ATP labeled with 32P in the gamma position ([gamma-32P]ATP), and leads to the formation of ADP and fructose-1,6-bisphosphate labeled with 32P ([1-32P]fructose-1,6-bisphosphate). Activated charcoal is used to adsorb unreacted [gamma-32P]ATP, and the radioactive product in the supernatant, [1-32P]fructose-1,6-bisphosphate, is analyzed on a liquid scintillation counter. The proposed method is precise and relatively inexpensive, and can be applied to determine phosphofructokinase-1 activity in cellular extracts as well as in the purified enzyme.  相似文献   

9.
C J Carter 《Life sciences》1983,32(17):1949-1955
There is a linear negative correlation between the activities of glutamine synthetase and fructose-1, 6-diphosphatase in normal Human putamen autopsy samples, and also in the Huntington's disease putamen. However, glutamine synthetase activity is reduced in choreic brain samples, while fructose-1, 6-diphosphatase activity is normal. The ratio of fructose-1, 6-diphosphatase to glutamine synthetase is therefore increased in Huntington's disease. The products of the two reactions, glutamine and fructose-6-phosphate, are the starting substrates for glycolipid and glycoprotein biosynthesis, via the glutamine:fructose-6-phosphate aminotransferase catalysed formation of glucoseamine-6-phosphate. The alternative metabolic route of fructose-6-phosphate leads to glycogen. The availability of glutamine, and the activity of glutamine synthetase may control fructose-6-phosphate metabolism, and the increased ratio of fructose-1,6-diphosphatase to glutamine synthetase in Huntington's disease may explain the accumulation of glycogen, and the reduction in ganglioside levels reported in this state.  相似文献   

10.
Separation of extracts, obtained from isolated intact P. sativum chloroplasts, by fast protein liquid chromatography (FPLC) on superose 6, reveals a 1,400 kDa-FBPase II form at pH 6.0 and a 380 kDa form at pH 7.5. Addition of F1,6P2, Mg++ and ATP cause dissociation of the large form into the smaller one, which leads to an approximate 4-fold increase in activity. Reversibility of the mole mass change could be shown for the influence of pH and of fructose-1, 6-bisphosphate on purified enzyme samples, separated from crude leaf extracts. Compared to thelarge enzyme form, the small form has higher activity and is specific for the substrate fructose-1, 6-bisphosphate, while the large form is not. Activation of FBPase II in the light and inactivation in the dark is discussed on the basis of different oligomeric forms of the enzyme caused by changes in the concentration of intermediates and effectors in the chloroplast stroma. The conclusion is drawn that oligomerization of key enzymes might provide an effective mechanism for enzyme activation/inactivation in vivo.  相似文献   

11.
1. Rabbit liver transketolase activity was purified 56-fold using the following steps: ammonium sulfate precipitation, chromatography on DEAE-Sephadex A-25, concentration through an Amicon ultrafiltration cell and rechromatography on DEAE-Sephadex A-25. 2. The enzyme showed an optimum PH for activity at 7.8-8.0. 3. The optimum temperature was around 40 degrees C and the activation energy calculated from the Arrhenius plot was found to be 11.4 kcal/mole. 4. The molecular weight of the enzyme, as determined by gel filtration, was found to be approximately 162,000, while the content of thiamin diphosphate was between 1.8 and 2 mumole per mole protein. 5. Addition of thiamin diphosphate and magnesium chloride did not influence the activity. 6. From the kinetic studies of the enzyme, the Km values for xylulose-5-phosphate, ribose-5-phosphate and fructose-6-phosphate were 3.8 x 10(-5) M, 9.5 x 10(-5) M and 1.1 x 10(-2) M, respectively.  相似文献   

12.
(i) We have studied the influence of reduced phosphoglucose-isomerase (PGI) activity on photosynthetic carbon metabolism in mutants of Clarkia xantiana Gray (Onagraceae). The mutants had reduced plastid (75% or 50% of wildtype) or reduced cytosolic (64%, 36% or 18% of wildtype) PGI activity. (ii) Reduced plastid PGI had no significant effect on metabolism in low light. In high light, starch synthesis decreased by 50%. There was no corresponding increase of sucrose synthesis. Instead glycerate-3-phosphate, ribulose-1,5-bisphosphate, reduction of QA (the acceptor for photosystem II) and energy-dependent chlorophyll-fluorescence quenching increased, and O2 evolution was inhibited by 25%. (iii) Decreased cytosolic PGI led to lower rates of sucrose synthesis, increased fructose-2,6-bisphosphate, glycerate-3-phosphate and ribulose-1,5-bisphosphate, and a stimulation of starch synthesis, but without a significant inhibition of O2 evolution. Partitioning was most affected in low light, while the metabolite levels changed more at saturating irradiances. (iv) These results provide decisive evidence that fructose-2,6-bisphosphate can mediate a feedback inhibition of sucrose synthesis in response to accumulating hexose phosphates. They also provide evidence that the ensuing stimulation of starch synthesis is due to activation of ADP-glucose pyrophosphorylase by a rising glycerate-3-phosphate: inorganic phosphate ratio, and that this can occur without any loss of photosynthetic rate. However the effectiveness of these mechanisms varies, depending on the conditions. (v) These results are analysed using the approach of Kacser and Burns (1973, Trends Biochem. Sci. 7, 1149–1161) to provide estimates for the elasticities and flux-control coefficient of the cytosolic fructose-1,6-bisphosphatase, and to estimate the gain in the fructose-2,6-bisphosphate regulator cycle during feedback inhibition of sucrose synthesis.Abbreviations and symbols Chl chlorophyll - Fru6P fructose-6-phosphate - Frul,6bisP fructose-1,6-bisphosphate - Fru-1,6Pase fructose-1,6-bisphosphatase - Fru2,6bisP fructose-2,6-bisphosphate - Fru2,6Pase fructose-2,6-bisphosphatase - Glc6P glucose-6-phosphate - PGI phosphoglucose isomerase - Pi inorganic phosphate - QA acceptor for photosystem II - Ru1,5bisP ributose-1,5-bisphosphate - SPS sucrose-phosphate synthase  相似文献   

13.
A thiol group present in rabbit liver fructose-1,6-bisphosphatase is capable of reacting rapidly with N-ethylmaleimide (NEM) with a stoichiometry of one per monomer. Either fructose 1,6-bisphosphate or fructose 2,6-bisphosphate at 500 microM protected against the loss of fructose 2,6-bisphosphate inhibition potential when fructose-1,6-bisphosphatase was treated with NEM in the presence of AMP for up to 20 min. Fructose 2,6-bisphosphate proved more effective than fructose 1,6-bisphosphate when fructose-1,6-bisphosphatase was treated with NEM for 90-120 min. The NEM-modified enzyme exhibited a significant loss of catalytic activity. Fructose 2,6-bisphosphate was more effective than the substrate in protecting against the thiol group modification when the ligands are present with the enzyme and NEM. 100 microM fructose 2,6-bisphosphate, a level that should almost saturate the inhibitory binding site of the enzyme under our experimental conditions, affords only partial protection against the loss of activity of the enzyme caused by the NEM modification. In addition, the inhibition pattern for fructose 2,6-bisphosphate of the NEM-derivatized enzyme was found to be linear competitive, identical to the type of inhibition observed with the native enzyme. The KD for the modified enzyme was significantly greater than that of untreated fructose-1,6-bisphosphatase. Examination of space-filling models of the two bisphosphates suggest that they are very similar in conformation. On the basis of these observations, we suggest that fructose 1,6-bisphosphate and fructose 2,6-bisphosphate occupy overlapping sites within the active site domain of fructose-1,6-bisphosphatase. Fructose 2,6-bisphosphate affords better shielding against thiol-NEM modification than fructose 1,6-bisphosphate; however, the difference between the two ligands is quantitative rather than qualitative.  相似文献   

14.
Limited tryptic digestion of pig kidney fructose-1,6-bisphosphatase in the presence of magnesium ions results in the formation of an active enzyme derivative which is no longer inhibited by the allosteric effector AMP. The presence of AMP during incubation of fructose-1,6-bisphosphatase with trypsin protects against the loss of AMP inhibition. By contrast, the presence of the nonhydrolyzable substrate analog fructose 2,6-bisphosphate accelerates the rate of formation of that form of fructose-1,6-bisphosphatase which is insensitive to AMP inhibition. Sodium dodecyl sulfate-polyacrylamide electrophoresis of samples taken during trypsin treatment shows that the loss of AMP inhibition parallels the conversion of the native 36,500 molecular weight fructose-1,6-bisphosphatase subunit into a 34,000 molecular weight species. Automated Edman degradation of trypsin-treated fructose-1,6-bisphosphatase following gel filtration shows a single sequence beginning at Gly-26 in the original enzyme, but no changes in the COOH-terminal region of fructose-1,6-bisphosphatase. Thus, the proteolytic product has been characterized as "des-1-25-fructose-1,6-bisphosphatase." A comparison of the kinetic properties of control enzyme and des-1-25-fructose-1,6-bisphosphatase reveals some differences in properties (pH optimum, Ka for Mg2+, K+ activation, inhibition by fructose 2,6-bisphosphate) between the two enzymes, but none is so striking as the complete loss of AMP sensitivity shown by des-1-25-fructose-1,6-bisphosphatase. The loss of AMP inhibition is due to the loss of AMP-binding capacity, but it is not known at this stage whether residues of the AMP site are present in the 25-amino acid NH2-terminal region or the removal of this region leads to a conformational change that abolishes the function of an AMP site located elsewhere in the molecule.  相似文献   

15.
The fructose-1,6-bisphosphatase gene was used with multicopy plasmids to study rapid reversible and irreversible inactivation after addition of glucose to derepressed Saccharomyces cerevisiae cells. Both inactivation systems could inactivate the enzyme, even if 20-fold over-expressed. The putative serine residue, at which fructose-1,6-bisphosphatase is phosphorylated, was changed to an alanine residue without notably affecting the catalytic activity. No rapid reversible inactivation was observed with the mutated enzyme. Nonetheless, the modified enzyme was still irreversibly inactivated, clearly demonstrating that phosphorylation is an independent regulatory circuit that reduces fructose-1,6-bisphosphatase activity within seconds. Furthermore, irreversible glucose inactivation was not triggered by phosphorylation of the enzyme.  相似文献   

16.
Abstract Mutants of Saccharomyces cerevisiae without phosphoenolpyruvate carboxykinase activity showed no measurable lactate proton symport, while mutants without fructose-1,6-bisphosphatase had normal transport activity. Incubation of a pck1 mutant, under derepression conditions in the presence of glycerol, restored the activity of the lactate-proton symport, with identical kinetic characteristics to that in the wild-type. For efficient lactate-proton symport activity, not only is an external inducer such as lactic acid needed, but also a molecule derived from the acid metabolism may be necessary.  相似文献   

17.
The proteolysis of native glucosamine-6-phosphate synthase (Mr 67,000) from Escherichia coli was investigated using two nonspecific and five specific endoproteinases, alpha-chymotrypsin generated two nonoverlapping polypeptides CT1 and CT2 of Mr 40,000 and 27,000 lacking glucosamine-6P synthesizing activity. Amino terminal and carboxy terminal sequence analysis showed that cleavage occurred between positions 240 and 241 of the primary sequence without further degradation. The glutamine amidohydrolase activity was located in the CT2 N-terminal polypeptide which was capable of incorporating 0.7 equivalent of the glutamine site-directed affinity label [2-3H]-N3-(4-methoxyfumaroyl)-diaminopropionic acid indicating that it bears the amidotransferase function. CT1 which displayed a higher reactivity than CT2 for fructose-6P binding contains the ketose/aldose isomerase activity. These data suggest the existence of a hinge structure essential for the catalytically efficient coupling between the ammonia generating domain and the sugar binding domain and support the model recently proposed by Mei and Zalkin in which purF-type amidotransferases contain a glutamine hydrolase domain of approximately 200 amino acids fused to an ammonia-transfer domain.  相似文献   

18.
Enzymatic properties, renaturation and metabolic role of mannitol-1-phosphate dehydrogenase from Escherichia coli. D-mannitol-1-phosphate dehydrogenase was purified to homogeneity from Escherichia coli, and its physicochemical and enzymatic properties were investigated. The molecular weight of the polypeptide chain is 45,000 as determined by polyacrylamide gel electrophoresis in denaturing conditions. High performance size exclusion chromatography gives an apparent molecular weight of 47,000 for the native enzyme, showing that D-mannitol-1-phosphate dehydrogenase is a monomeric NAD-dependent dehydrogenase. D-mannitol-1-phosphate dehydrogenase is rapidly denatured by 6 M guanidine hydrochloride. Non-superimposable transition curves for the loss of activity and the changes in fluorescence suggest the existence of a partially folded inactive intermediate. The protein can be fully renatured after complete unfolding, and the regain of both native fluorescence and activity occurs rapidly within a few seconds at pH 7.5 and 20 degrees C. Such a high rate of reactivation is unusual for a protein of this size. D-mannitol-1-phosphate dehydrogenase is specific for mannitol-1-phosphate (or fructose-6-phosphate) as a substrate and NAD+ (or NADH) as a cofactor. Zinc is not required for the activity. The affinity of D-mannitol-1-phosphate dehydrogenase for the reduced or oxidized form of its substrate or cofactor remains constant with pH. The affinity for NADH is 20-fold higher than for NAD+. The forward and reverse catalytic rate constants of the reaction: mannitol-1-phosphate + NAD+ in equilibrium fructose-6-phosphate + NADH have different pH dependences. The oxidation of mannitol-1-phosphate has an optimum pH of 9.5, while the reduction of fructose-6-phosphate has its maximum rate at pH 7.0. At pH values around neutrality the maximum rate of reduction of fructose-6-phosphate is much higher than that of oxidation of mannitol-1-phosphate. The enzymatic properties of isolated D-mannitol-1-phosphate dehydrogenase are discussed in relation to the role of this enzyme in the intracellular metabolism.  相似文献   

19.
Vanadate (0.1–1 mM) was supplied to leaves of barley (Hordeum vulgare var. Roland) via the transpiration stream. It led to a selective inhibition of the rate of photosynthesis at high light without altering the initial slope of the light response curve, produced markedly biphasic photosynthesis induction kinetics, and selectively decreased sucrose synthesis compared to starch synthesis. There was a 3-fold increase of the steady state level of the signal metabolite fructose-2,6-bisphosphate in near saturating light. Fructose-2,6-bisphosphate is a potent inhibitor of cytosolic fruc-tose-l,6-bisphosphatase and, in agreement, the fructose-1,6-bisphosphatc level doubled. The increase of fructose-2,6-bisphosphate could not be accounted for by the known regulation of fructose-6-phosphate,2-kinase and fructose 2,6-bisphosphatase by 3-phosphoglycerate and fiuctose-6-phosphate, because these metabolites remained constant or even changed in the opposite direction to that required to generate an increase of fructose-2,6-bisphosphate. Instead, vanadate strongly inhibited the hydrolysis of fructose-2,6-bisphosphate in extracts, producing a half maximal inhibition at 2 \nM and 50 \iM in assays designed to preferentially measure the high-and low-affinity forms of fructose-2,6-bisphosphatase, respectively. Vanadale had no effect on fructosc-6-phosphate,2-kinase activity at these concentrations. Vanadate also led to a deactivation of sucrose phosphate synthase. The results are discussed in relation to the role of fructose-2,6-bisphosphate in regulating sucrose synthesis, and its interaction with the 'coarse' control of sucrose phosphate synthase.  相似文献   

20.
G A Daniels  G Drews    M H Saier  Jr 《Journal of bacteriology》1988,170(4):1698-1703
In photosynthetic bacteria such as members of the genera Rhodospirillum, Rhodopseudomonas, and Rhodobacter a single sugar, fructose, is transported by the phosphotransferase system-catalyzed group translocation mechanism. Previous studies indicated that syntheses of the three fructose catabolic enzymes, the integral membrane enzyme II, the peripheral membrane enzyme I, and the soluble fructose-1-phosphate kinase, are coordinately induced. To characterize the genetic apparatus encoding these enzymes, a Tn5 insertion mutation specifically resulting in a fructose-negative, glucose-positive phenotype was isolated in Rhodobacter capsulatus. The mutant was totally lacking in fructose fermentation, fructose uptake in vivo, phosphoenolpyruvate-dependent fructose phosphorylation in vitro, and fructose 1-phosphate-dependent fructose transphosphorylation in vitro. Extraction of the membrane fraction of wild-type cells with butanol and urea resulted in the preparation of active enzyme II free of contaminating enzyme I activity. This preparation was used to show that the activity of enzyme I was entirely membrane associated in the parent but largely soluble in the mutant, suggesting the presence of an enzyme I-enzyme II complex in the membranes of wild-type cells. The uninduced mutant exhibited measurable activities of both enzyme I and fructose-1-phosphate kinase, which were increased threefold when it was grown in the presence of fructose. Both activities were about 100-fold inducible in the parental strain. Although the Tn5 insertion mutation was polar on enzyme I expression, fructose-1-phosphate kinase activity was enhanced, relative to the parental strain. ATP-dependent fructokinase activity was low, but twofold inducible and comparable in the two strains. A second fru::Tn5 mutant and a chemically induced mutant selected on the basis of xylitol resistance showed pleiotropic loss of enzyme I, enzyme II, and fructose-1-phosphate kinase. These mutants were used to clone the fru regulon by complementing the negative phenotype with a wild-type cosmid bank.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号