首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phytochrome behaves as a dimer in vivo   总被引:2,自引:2,他引:0  
Abstract It is well established that phytochrome exists as a dimer in vitro. A comparison of the relative photoequilibrium concentrations of PrPr, PrPfr and PfrPfr, with the relative sizes of the Pfr-pools which undergo dark reversion in the intact plant, leads to the hypothesis that phytochrome also exists as a dimer in vivo, This hypothesis is in accordance with kinetic properties of the phytochrome system under continuous irradiation. Additional support for this view is provided by the observation that Pfr-destruction after a red light flash, which should favour the formation of PrPfr dimers, is paralleled by a decay of Pr, even if the presence of Pr cycled through Pfr can be excluded. Preliminary observations could indicate an interaction of the subunits of a phytochrome dimer during the process of phototransformation.  相似文献   

2.
Variation in dynamics of phytochrome A in Arabidopsis ecotypes and mutants   总被引:2,自引:0,他引:2  
Phytochromes are photoreceptors in plants which can exist in two different conformations: the red light‐absorbing form (Pr) and the far‐red light‐absorbing form (Pfr), depending on the light quality. The Pfr form is the physiologically active conformation. To attenuate the Pfr signal for phytochrome A (phyA), at least two different mechanisms exist: destruction of the molecule and dark reversion. Destruction is an active process leading to the degradation of Pfr. Dark reversion is the light‐independent conversion of physiologically active Pfr into inactive Pr. Here, we show that dark reversion is not only an intrinsic property of the phytochrome molecule but is modulated by cellular components. Furthermore, we demonstrate that dark reversion of phyA may be observed in Arabidopsis ecotype RLD but not in other Arabidopsis ecotypes. For the first time, we have identified mutants with altered dark reversion and destruction in a set of previously isolated loss of function PHYA alleles (Xu et al. Plant Cell 1995, 7, 1433–1443). Therefore, the dynamics of the phytochrome molecule itself need to be considered during the characterization of signal transduction mutants.  相似文献   

3.
Germination of spores of Dryopteris fllix-mas has been induced by two pulses of saturating red light, separated by a dark period of about 8 to 24 h. By chosing different wavelengths, different Pfr/Ptot levels could be established. Thus, by a “null method” the second pulse could be used as a “test pulse”, determining the actual Pfr level remaining from the “start pulse”, and thus providing information about an apparent Pfr decay. It cannot be decided yet whether this apparent Pfr decay results from dark destruction or dark reversion. The apparent Pfr decay depends, as expected, on the temperature, being accelerated with increasing temperatures. Moreover, the later after sowing that the decay is tested, the faster it proceeds; a tentative interpretion is that newly synthesized Pr undergoes faster decay after phototransformation than that phytochrome pool present in the resting spores. A third factor that influences the apparent Pfr decay is the Pfr/Ptot level established by the first pulse (start pulse). The lower this level, the slower the decay kinetics. This could be due to phytochrome biosynthesis partly compensating for Pfr destruction, and the relative contribution of this biosynthesis to the total effect increases with lower Pfr levels. Spores of D. paleacea yield virtually the same results. Whatever the real basis of the observed Pfr decay, i.e. destruction, reversion, or a combination of these reactions with biosynthesis, it can be concluded that modification of this Pfr decay by various factors is the basis of the effect of those factors on light-induced germination.  相似文献   

4.
Phytochrome was measured spectrophotometrically in different tissues of the upper (positively photoblastic) and lower (negatively photoblastic) seeds of the cocklebur (Xanthium pennsylvanicum Wallr.). Axial parts of the seeds, in particular parts of the radicle, contained high levels of phytochrome, while cotyledonary parts contained only low levels. These results were consistent with the distribution of the light-sensitive areas of the seeds that were associated with germination. Phytochrome levels in both types of dimorphic seeds increased gradually with increasing duration of dark imbibition for 4–8 h, then the rates of increase in levels of phytochrome accelerated. In both types of seed, some phytochrome was measurable even before imbibition. In the lower seeds, up to 20% of the phytochrome was occasionally observed as Pfr in samples imbibed in darkness for a short time (up to 12 h). A slight blue shift of the peak of PT in the difference spectrum of phytochrome was observed in the case of lower seeds imbibed for 0–2 h. These results suggest that, to some extent, the lower axes contain dehydrated Pfr or intermediate(s) in the photoconversion of phytochrome. The dark reactions of Pfr were also examined in excised axes of both types of dimorphic seed after they had been pre-imbibed for 16 h in darkness. Dark destruction of Pfr was observed in both types of seed. In addition, net increases in levels of Pr were observed in the dark controls and in the samples irradiated with red light after the level of Pfr diminished. No ‘inverse’ dark reversion from Pr to Pfr was detected. Thus, after 16 h of imbibition, there were no differences in terms of properties of phytochrome between the two types of seed, and the different responses to light of upper and lower seeds might depend mainly on a difference in the physiological state of the two types of seed rather than the properties of phytochrome.  相似文献   

5.
Abstract A series of fluence-response curves for the binding of phytochrome to membranes in the absence of divalent cations, as described by Watson & Smith (1982), were constructed to demonstrate that the response obeys the law of reciprocity. Analysis of the binding of Pfr (the far-red-absorbing form of phytochrome) showed that two Pfr molecules bind to the membrane for each Pr (the form with an absorption maximum in the red) photoconverted to Pfr in the intrinsic membrane-bound phytochrome pool. Using this stoichiometry we have been able to model the binding curve of Pr and match the binding data. Pr binding can be simulated if Pr binds only as a consequence of the binding of Pfr, i.e. when Pfr is part of a Pr: Pfr dimer. The enrichment of the membranes with Pfr as a result of the binding of Pfr was also accurately simulated. There is no binding cooperativity. Phytochrome binding is a low-fluence response and the possibility that it has physiological significance as a mediator of phytochrome action is discussed.  相似文献   

6.
Photoperiodism and rhythmic response to light   总被引:2,自引:1,他引:1  
Abstract. Seedlings of Pharhitis nil show a circadian rhythm in the capacity to flower in response to the timing of a second red light pulse given at various times after a first saturating exposure to red when this is given together with a benzyladeninc spray. There are also changes in the photon irradiance required for half maximum response to the second red pulse. The photochemical properties of phytochrome in the photoperiodically sensitive cotyledons were also shown to change rhythmically. Oscillations in both pr→ Pfr and Pfr→ Pr photoconversion characteristics persisted over at least two circadian cycles with a periodicity of about 12 h. There were, however, no significant oscillations in either Pfr peak absorbance or in Δ(ΔA). The changes in sensitivity for the photoconversion of Pr→ Pfr did not parallel the much larger changes in sensitivity of the flowering response to red light. The amplitude of the Pr→ Pfr rhythm was at least as great as that for Pr→ Pfr, but the flowering response to far-red light was not rhythmic, nor was there any large change in sensitivity. The changes in photoconversion properties may reflect a basic biochemical oscillation which affects both photoreceptor properties and sensitivity to photoreceptor input. There was also a marked rhythm in the Pfr/P ratio that would be established by a saturating pulse of red light and this too may have affected the flowering response to such a pulse. Far-red light inhibited flowering when given at any time during the inductive night. After 14 h in darkness, Pfr could still be measured in the cotyledons and it was concluded that far-red light inhibited flowering by removing Pfr As red light also inhibited flowering at this time, there may be two pools of phytochrome with different kinetic properties.  相似文献   

7.
Merten Jabben 《Planta》1980,149(1):91-96
The phytochrome system is analyzed in light-grown maize (Zea mays L.) plants, which were prevented from greening by application of the herbicide SAN 9789. The dark kinetics of phytochrome are not different in the first, second or third leaf. It is concluded that in light-grown maize plants phytochrome levels are regulated by Pr formation and Pfr and Pr destruction, rather than by PfrPr dark reversion. Pr undergoes destruction after it has been cycled through Pfr. The consequences of this Pr destruction on the phytochrome system are discussed.Abbreviations SAN 9789 4-chloro-5-(methylamino)-2-(,,-trifluoro-m-tolyl)-3(2H) pyridazinone - Pfr far-red absorbing form of phytochrome - Pr red absorbing form of phytochrome - Ptot Pfr+Pr  相似文献   

8.
Abstract. Glycine max (L.) Merr. was grown under several light conditions to determine the role of red and far-red radiation in plant adaptation to vegetation shade. Neutral density,‘neutral’ density with elevated far-red radiation, and green shade treatments were used in a greenhouse, producing calculated phytochrome photostationary state (Pfr/Pr+Pfr) values of 0.68, 0.63 and 0.51, respectively. Cool-white fluorescent lamps either alone or in conjunction with far-red fluorescent lamps were used in a growth chamber, providing Pfr/Pr+Pfr of 0.79 and 0.61, respectively. Daily photo-synthetically active radiation was about 25% of daylight and was approximately equal for both greenhouse (2.15MJ m?2) and growth chamber (2.57MJ m?2). Developmental stage 4 weeks after sowing was similar for all treatments, but axillary growth and rates of leaf area and dry matter accretion differed between plants from greenhouse and growth chamber. Light conditions simulating vegetation shade (i.e. a low ratio of red to far-red radiation) significantly promoted petiole elongation and retarded the rate of stem elongation in both greenhouse and growth chamber experiments. Other aspects of growth either were not significantly altered by spectral quality or were not modified consistently in both greenhouse and growth chamber environments. Net photosynthetic rates measured under growth conditions for unifoliate and first trifoliolate (TF1) leaves of growth chamber plants between 9 and 21 d after sowing were generally unaffected by spectral quality, but supplemental FR enhanced TF1 leaf area expansion. The latter effect was not correlated with increased dry matter accumulation. The significance of spectral quality for adaptation of soybeans to canopy closure and intercropping is discussed.  相似文献   

9.
The low chlorophyll content of cotyledons of Pharbitis nil grown for 24 h in far-red light (FR) or at 18° C in white light from fluorescent lamps (WL) allows spectrophotometric measurement of phytochrome in these tissues. The (A) measurements utilize measuring beams at 730/802 nm and an actinic irradiation in excess of 90 s. The constancy of the relationship between phytochrome content and sample thickness confirms that, under these conditions of measurement, a true maximum phytochrome signal was obtained. These techniques have been used to follow changes in the form and amount of phytochrome during an inductive dark period for flowering. Following exposure to 24h WL at 18° C with a terminal 10 min red (R), Pfr was lost rapidly in darkness and approached zero in less than 1 h; during this period there was no change in the total phytochrome signal. Following exposure to 24 h FR with a terminal 10 min R, Pfr approached zero in 3 h, and the total phytochrome signal decreased by about half. The relevance of these changes to photoperiodic time measurement is discussed.Abbreviations BCJ irradiation from photographic ruby-red lamps - FR far-red light - Pfr far-red-absorbing form of phytochrome - Pr red-absorbing form of phytochrome - P total phytochrome content - R red light - WL white light from fluorescent lamps  相似文献   

10.
Summary Phytochrome photoconversions PrPfr and PfrPr can be measured by differential spectrophotometry in dry seeds (6% water content) of Pinus nigra Arn. A red light irradiation given before imbibition induces germination when the seeds are subsequently wetted and kept in darkness.In continuous darkness the phytochrome content shows a drastic increase at the beginning of moistening.The detectable pigment is entirely in the Pr form. The normal PfrPr dark reversion is observed. Pfr destruction does not take place.  相似文献   

11.
Summary In Amaranthus seedlings the disappearance of the unstable P fr form of phytochrome does not involve dark reversion to P r . The rate constant for the decay of total phytochrome under continuous illumination is directly related to the proportion in the P fr form. This relationship allows calculations to be made of the proportion of P fr under continuous far-red illumination where the amount is too low to be measured directly.  相似文献   

12.
Fluence rate-response curves were determined for the inhibition of hypocotyl growth in 54 h old dark-grownSinapis alba L. seedlings by continuous or hourly 5 min red light irradiation (24 h). In both cases a fluence rate-dependence was observed. More than 90% of the continuous light effect could be substituted for by hourly light pulses if the total fluence of the two different light regimes was the same. Measurements of the far red absorbing form of phytochrome ([P fr]) and [P fr]/[P tot] (total phytochrome) showed a strong fluence rate-dependence under continuous and pulsed light which partially paralleled the fluence rate-response curves for the inhibition of the hypocotyl growth.Abbreviations R red - HIR high irradiance response - P rfr phytochrome in its red, far-red absorbing form - [P tot]=[P r]+[P fr] =k 1/(k 1+k 2): photoequilibrium of phytochrome at wavelength , wherebyk 1,2 rate constants ofP rP fr,P frP r photoconversion - [P fr]/[P tot]  相似文献   

13.
Summary To follow changes in the status of phytochrome in green tissue and to relate these changes to the photoperiodic control of flowering, we have used a null response technique involving 1.5-min irradiations with mixtures of different ratios of R and FR radiation.Following a main photoperiod of light from fluorescent lamps that was terminated with 5 min of R light, the proportion of Pfr in Chenopodium rubrum cotyledons was high and did not change until the 3rd hour in darkness; at this time, Pfr disappeared rapidly. When the dark period began with a 5-min irradiation with BCJ or FR light to set the proportion of Pfr low Pfr gradually reappeared during the first 3 h of darkness and then disappeared again.The timing of disappearance of Pfr is consistent with the involvement of phytochrome in photoperiodic time measurement. Reappearance of Pfr after an initial FR irradiation explains why FR irradiations sometimes fail to influence photoperiodic time measurement or only slightly hasten time measurement. A R light interruption to convert Pr to Pfr delayed, the timer by 3 h but only for interruptions after and not before the time of Pfr disappearance. Such 5-min R-light interruptions did not influence the operation of the rhythmic timekeeping mechanism. Continuous or intermittent-5 min every 1.5 h-irradiations of up to 6 h in duration were required to rephase the rhythm controlling flowering. A skeleton photoperiod of 6 h that was began and terminated by 5 or 15 min of light failed to rephase the rhythm.The shape of the curves for the rhythmic response of C. rubrum to the length of the dark period are sometimes suggestive of clocks operating on the principle of a tension-relaxation mechanism. Such a model allows for separate timing action of a rhythm and of Pfr disappearance over the early hours of darkness. Separate timing action does not, however, preclude an interaction between the rhythm and phytochrome in controlling flowering.Abbreviations FR far-red - Pfr far-red-absorbing form of phytochrome - Pr red-absorbing form of phytochrome - R red - BCJ photographic ruby-red irradiation A grant in aid of research from the National Research Council of Canada to B. G. Cumming is gratefully acknowledged.  相似文献   

14.
Phytochrome is a proteinaceous pigment that acts as a photoreceptor for photomorphogenetic responses in plants. It exists as two stable absorbing forms, Pr and Pfr, which are interconvertible reversibly by irradiation with red or far-red light. The present review discusses (i) the primary and higher-order structures of phytochrome that permit the reversible photoreaction; (ii) the molecular properties which change accompanying the phototransformation; and (iii) the four-leaved shape model which has recently been proposed as a model of quaternary structure of phytochrome.  相似文献   

15.
Summary The red-absorbing form (P r ) and the far-red absorbing form (P fr ) of undergraded, high-molecular-weight phytochrome from rye (Secale cereale L.) seedlings were examined for their reactivity toward N-ethyl-[14C]maleimide ([14C]-NEM). After pre-treatment of P r with cold NEM and extensive dialysis, photoconversion to P fr and treatment with [14C]NEM resulted in an approximately 70% increase in incorporation of radioactivity over the dark control. These results are discussed in relation to the view that phytochrome undergoes a protein conformational change upon phototransformation.  相似文献   

16.
Phytochrome was examined by immunochemical and spectroscopic techniques to detect differences between the protein moieties of red- and far red-absorbing phytochrome (Pr and Pfr). No differences in the reaction of Pr and Pfr with phytochrome antibody were discernible on Ouchterlony double diffusion plates. However, the microcomplement fixation assay showed a greater degree of antibody reaction with Pfr than with Pr, indicating some difference in the surface characteristics of the two forms. Circular dichroism spectroscopy between 300 and 200 nanometers revealed differences between Pr and Pfr which may reflect differences in the protein conformation. The circular dichroism spectrum of Pr showed a negative band at 285 nanometers which was not present in the spectrum of Pfr, and the large negative circular dichroism band at 222 nanometers with Pfr, associated with the α-helical content, was shifted 2 nanometers to shorter wave length with Pr although there was no change of magnitude of this band. The absorbancy of Pr and Pfr is very nearly the same in the 280 nanometer spectral region, but sensitive difference spectra between Pr and Pfr did reveal spectra which were similar to solvent perturbation spectra obtained by others with different proteins. In total, the experiments indicate that there are conformational differences between the protein moieties of Pr and Pfr but that these differences are rather slight from a standpoint of gross structure.  相似文献   

17.
D. Marmé  B. Marchal  E. Schäfer 《Planta》1971,100(4):331-336
Summary During the first 10 min after a saturating dose of red light, 72 h dark-grown mustard cotyledons show no phytochrome decay. Within the same time interval there exists a transient form of P fr (=P fr T ) which is no longer photoconvertible at 0°C, but is at 25°C. This P fr T converts in the dark to P fr and P r . These dark reversions take about 10 min. After a lag phase of 10 min the P fr decay can be described by a single, first order kinetic curve. The time courses of these reactions are functions of the time of etiolation.Research supported by DAAD and by Deutsche Forschungsgemeinschaft (SFB 46).  相似文献   

18.
Abstract Phytochrome-mediated anthocyanin synthesis of the mustard seedling (Sinapis alba L.) was investigated. Light pre-treated and dark-grown seedlings differing in responsiveness and level of phytochrome (Ptot) were compared. The data obtained support the traditional view that a seedling measures the amount of Pfr. The alternative view that a plant measures the Pfr/Ptot ratio does not seem to be compatible with the data obtained with the mustard seedling.  相似文献   

19.
In the green algaMougeotia, the dichroic orientation of the red-absorbing form of phytochrome (Pr) is parallel of the cell surface, whereas the far-red-absorbing form (Pfr) is oriented normal to it. The time course of the change from parallel to normal was investigated by double-flash irradiation with polarized red and far-red light. The results obtained by two different methods indicate that most of the phytochrome intermediates existing in the first 5 ms after the inducing red flash are still oriented parallel to the cell surface, similar to Pr. At increasing intervals between the red and the far-red flashes, more and more phytochrome molecules turn their transition moments to the Pfr orientation. This reaction is finished after approximately 30 ms. We conclude that the change in dichroic orientation of the phytochrome molecules inMougeotia occurs during the last relaxation steps of the intermediates on the way from Pr to Pfr. It cannot be decided yet, whether the first surface-normal phytochrome species is an intermediate or Pfr itself.Abbreviations Pr red-absorbing form of phytochrome - Pfr far-red-absorbing form of phytochrome A preliminary report of this work was presented at the European Symposium on Photomorphogenesis, University of Reading, UK (Kraml et al. 1982)  相似文献   

20.
Phytochrome was studied spectrophotometrically in Avena sativa L. seedlings that had been grown for 6 d in continous white fluorescent light from lamps. Greening was prevented through the use of the herbicide San 9789. When placed in the light, phytochrome (Ptot) decreased with first order kinetics (1/2 2 h) but reached a stable low level (2.5% of the dark level) after 36 h. This concentration of phytochrome remained constant in the light and during the initial hours of a subsequent dark period, but increased significantly after a prolonged dark period. Evidence suggests that the constant pool of phytochrome in the light is achieved through an equilibrium between synthesis of the red absorbing (Pr) and destruction of the far-red absorbing form (Pfr) of phytochrome. It is concluded that the phytochrome system in light-grown oat seedlings is qualitatively the same as that known from etiolated monocotyledonous seedlings, but different than that described for cauliflower florets.Abbreviations Pfr the far-red light absorbing form of phytochroma - Pr the red light absorbing form of phytochrome - Ptot Pr+Pfr - ks rate constant of Pr synthesis - kd rate constant of Pfr destruction - MOPS N-morpholino-3-propane-sulfonic acid - IRIS Tris (hydroxymethyl) amino methane - San 9789 4-chloro-5-(methyl amino)-2-(,,-trifluoro-m-tolyl)-3(2H)pyridazinone  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号