首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Forty autosomal type I loci earlier mapped in goat were comparatively FISH mapped on river buffalo (BBU) and sheep (OAR) chromosomes, noticeably extending the physical map in these two economically important bovids. All loci map on homoeologous chromosomes and chromosome bands, with the exception of COL9A1 mapping on BBU10 (homoeologous to cattle/goat chromosome 9) and OAR9 (homoeologous to cattle/goat chromosome 14). A FISH mapping control with COL9A1 on both cattle and goat chromosomes gave the same results as those obtained in river buffalo and sheep, respectively. Direct G- and R-banding comparisons between Bovinae (cattle and river buffalo) and Caprinae (sheep and goat) chromosomes 9 and 14 confirmed that a simple translocation of a small pericentromeric region occurred between the two chromosomes. Comparisons between physical maps obtained in river buffalo and sheep with those reported in sixteen human chromosomes revealed complex chromosome rearrangements (mainly translocations and inversions) differentiating bovids (Artiodactyls) from humans (Primates).  相似文献   

2.
The main goal of this study was to develop a comparative multi-colour Zoo-FISH on domestic ruminants metaphases using a combination of whole chromosome and sub-chromosomal painting probes obtained from the river buffalo species (Bubalus bubalis, 2n = 50,XY). A total of 13 DNA probes were obtained through chromosome microdissection and DOP-PCR amplification, labelled with two fluorochromes and sequentially hybridized on river buffalo, cattle (Bos taurus, 2n = 60,XY), sheep (Ovis aries, 2n = 54,XY) and goat (Capra hircus, 2n = 60,XY) metaphases. The same set of paintings were then hybridized on bovine secondary oocytes to test their potential use for aneuploidy detection during in vitro maturation. FISH showed excellent specificity on metaphases and interphase nuclei of all the investigated species. Eight pairs of chromosomes were simultaneously identified in buffalo, whereas the same set of probes covered 13 out 30 chromosome pairs in the bovine and goat karyotypes and 40% of the sheep karyotype (11 out of 27 chromosome pairs). This result allowed development of the first comparative M-FISH karyotype within the domestic ruminants. The molecular resolution of complex karyotypes by FISH is particularly useful for the small chromosomes, whose similarity in the banding patterns makes their identification very difficult. The M-FISH karyotype also represents a practical tool for structural and numerical chromosome abnormalities diagnosis. In this regard, the successful hybridization on bovine secondary oocytes confirmed the potential use of this set of probes for the simultaneous identification on the same germ cell of 12 chromosome aneuploidies. This is a fundamental result for monitoring the reproductive health of the domestic animals in relation to management errors and/or environmental hazards.  相似文献   

3.
Human chromosome specific painting probes were hybridized on sheep (Ovis aries, 2n = 54) chromosomes by FISH. The painting results on sequentially stained RBA-banded preparations demonstrated high degree of conserved regions between human and sheep genomes. A total of 48 human chromosome segments were detected in sheep chromosomes. Comparisons with sheep gene mapping data available and previous Zoo-FISH data obtained in sheep, cattle, and river buffalo were performed. Received: 13 October 1998 / Accepted: 18 February 1999  相似文献   

4.
With the development of a direct visualization of sex chromosome in a single sperm by fluorescence in situ hybridization (FISH) technique, the frequency of aberration (aneuploidy) in spermatozoa in several mammals has been investigated. However, there is no report in the incidence of X-Y aneuploidy in the sperm population of dogs. Therefore, in this study, the aneuploidy in dog spermatozoa was examined by multicolor FISH using specific molecular probes for canine sex chromosomes and autosome. Semen from eight male Labrador retrievers was used as specimen. For decondensation of sperm nuclei, the specimen was treated with 1 M NaOH for 4 minutes at room temperature. Probes for chromosomes X, Y, and 1, labeled with SpectrumGreen, Cy3 and Cy5, respectively, were hybridized with decondensed spermatozoa. Fluorescence in situ hybridization signals in sperm heads were clearly detected in each specimen, regardless of the sperm donor. The FISH signal of at least one of the three probes was detected in all sperm heads examined. There was no significant difference between the theoretical ratio (50:50) and the observed ratio of X and Y chromosomes in spermatozoa of all the eight dogs. Mean percentage of sex chromosome aneuploidy was 0.127% (ranged between 0% and 0.316%). This percentage of canine sex chromosome aneuploidy was lower than the one reported in cattle, horses, river buffalo, and goats sperm, but higher than that observed in mice and sheep.  相似文献   

5.
Sixty-four genomic BAC-clones mapping five type I (ADCYAP1, HRH1, IL3, RBP3B and SRY) and 59 type II loci, previously FISH-mapped to goat (63 loci) and cattle (SRY) chromosomes, were fluorescence in situ mapped to river buffalo R-banded chromosomes, noticeably extending the physical map of this species. All mapped loci from 26 bovine syntenic groups were located on homeologous chromosomes and chromosome regions of river buffalo and goat (cattle) chromosomes, confirming the high degree of chromosome homeologies among bovids. Furthermore, an improved cytogenetic map of the river buffalo with 293 loci from all 31 bovine syntenic groups is reported.  相似文献   

6.
Comparative FISH mapping of river buffalo (Bubalus bubalis, BBU), sheep (Ovis aries, OAR), and cattle (Bos taurus, BTA) X chromosomes revealed homologies and divergences between the X chromosomes in the subfamilies Bovinae and Caprinae. Twenty-four and 17 loci were assigned for the first time to BBU X and OAR X, respectively, noticeably extending the physical map in these two species. Seventeen loci (four of which for the first time) were also FISH mapped to BTA X and used for comparative mapping studies on the three species, which show three morphologically different X chromosomes: an acrocentric (BBU X), an acrocentric with distinct short arms (OAR X), and a submetacentric (BTA X). The same order of loci were found on BTA X and BBU X, suggesting that a centromere transposition, with loss (cattle) or acquisition (river buffalo) of constitutive heterochromatin, differentiated the X chromosomes of these two bovids. Comparison of bovine (cattle and river buffalo) and caprine (sheep) X chromosomes revealed at least five common chromosome segments, suggesting that multiple transpositions, with retention or loss of constitutive heterochromatin, had occurred during their karyotypic evolution.  相似文献   

7.
Bovine BAC clones containing the 31 genes, referred to as the Texas markers used earlier to definitively assign the 31 bovine syntenic groups (U) to cattle chromosomes, were mapped by fluorescent in situ hybridization to sheep and goat R-banded chromosomes according to ISCNDB2000. All 31 markers were localized on homoeologous chromosomes and chromosome bands of the two species in agreement with previous localizations obtained both in cattle and river buffalo, definitively confirming chromosome homoeologies between Caprinae and Bovinae. In addition, we have extended physical maps of sheep and goat as 11 genes (HSD3B1, INHBA, CSN10, IGF2R, PIGR, MAP1B, DSC1, ELN, TNFRSF6, CGN1, IGF2) and 14 genes (SOD1, HSD3B1, CSN10, IGF2R, RB1, TG, PIGR, MAP1B, IGH@, LTF, DSC1, TNFRSF6, CGN1, IGF2) were assigned for the first time to goat and sheep chromosomes, respectively.  相似文献   

8.
Sixty autosomal loci (5 type I and 55 type II) from 24 bovine syntenic groups, and previously FISH-mapped to goat and river buffalo chromosomes, were localized by fluorescence in situ on sheep (OVIS ARIES, 2n = 54) chromosomes, thereby notably extending the cytogenetic map of this economically important species. Caprine BAC clones were hybridized to R-banded chromosome preparations. FITC-signals and RBPI- banding (R-banding by late BrdU-incorporation and propidium iodide staining) were simultaneously visualized and captured by a colour CCD-camera. All mapped loci were localized on homoeologous chromosomes and chromosome regions (bands) of sheep, goat and river buffalo, further supporting chromosome and genetic (loci) homoeologies among bovids.  相似文献   

9.
Flow cytometric sperm sorting based on X and Y sperm DNA difference has been established as the only effective method for sexing the spermatozoa of mammals. The standard method for verifying the purity of sorted X and Y spermatozoa has been to reanalyze sorted sperm aliquots. We verified the purity of flow-sorted porcine X and Y spermatozoa and accuracy of DNA reanalysis by fluorescence in situ hybridization (FISH) using chromosome Y and 1 DNA probe. Eight ejaculates from 4 boars were sorted according to the Beltsville Sperm Sexing method. Porcine chromosome Y- and chromosome 1-specific DNA probes were used on sorted sperm populations in combination with FISH. Aliquots of the sorted sperm samples were reanalyzed for DNA content by flow cytometry. The purity of the sorted X-bearing spermatozoa was 87.4% for FISH and 87.0% for flow cytometric reanalysis; purity for the sorted Y-bearing spermatozoa was 85.9% for FISH and 84.8% for flow cytometric reanalysis. A total of 4,424 X sperm cells and 4,256 Y sperm cells was examined by FISH across the 8 ejaculates. For flow cytometry, 5,000 sorted X spermatozoa and 5,000 Y spermatozoa were reanalyzed for DNA content for each ejaculate. These results confirm the high purity of flow sorted porcine X and Y sperm cells and the validity of reanalysis of DNA in determining the proportions of X- and Y-sorted spermatozoa from viewing thousands of individual sperm chromosomes directly using FISH.  相似文献   

10.
A series of 31 marker genes (one per chromosome) were localized precisely to both Q- and R-banded bovine chromosomes by fluorescence in situ hybridization (FISH), as a contribution to the revised chromosome nomenclature of the three major domestic bovidae (cattle, sheep and goat). All marker genes except one (LDHA) are taken from the Texas Nomenclature of the cattle karyotype published in 1996. Homologous probes for each marker gene were obtained by screening a bovine BAC library by PCR with specific primer pairs. After labeling with biotin, each probe preparation was divided into two fractions and hybridized to bovine chromosomes identified either by Q or R banding. Clear signals and good quality band patterns were observed in all cases. Results of the two series of hybridizations are totally concordant both for Q and R band chromosome numbering and precise band localization. This work permits an unambiguous correlation between the Q/G- and R-banded 31 bovine chromosomes, including chromosomes 25, 27 and 29 which remained unresolved in the Texas Nomenclature (1996). Hybridization of the chromosome 29 marker gene to metaphase spreads from a 1;29 Robertsonian translocation bull carrier showed a positive signal on the short arm of this rearranged chromosome, confirming that the numbering of this long-known translocation in cattle is correct when referring to the Texas Nomenclature (1996). Taking into account that cattle, goat and sheep have very similar banded karyotypes, the data presented here will help to establish a definite and complete reference chromosome nomenclature for these species.  相似文献   

11.
Flow-cytometry sorting technology has been successfully used to separate the X- and Y-chromosome bearing spermatozoa for production of sex-preselected buffalo. However, an independent technique should be employed to validate the sorting accuracy. In the present study, X-chromosomes of bovine were micro-dissected from the metaphase spreads by using glass needles. Then X-chromosomes were then amplified by PCR and labelled with Cy3-dUTP for use as a probe in hybridization of the unsorted and sorted buffalo spermatozoa -chromosome. The results revealed that 47.7% (594/1246) of the unsorted buffalo spermatozoa were positive for X- chromosome probe, which was conformed to the sex ratio in buffalo (X:Y spermatozoa=1:1); 9.6% (275/2869) of the Y-sorted buffalo spermatozoa and 86.1% (1529/1776) of the X-sorted buffalo spermatozoa showed strong X-chromosome FISH signals. Flow cytometer re-analysis revealed that the proportions of X- and Y-bearing spermatozoa in the sorted X and Y semen was 89.6% and 86.7%, respectively. There were no significant differences between results assayed by flow-cytometry re-analysis and by FISH in this study. In conclusion, FISH probe derived from bovine X- chromosomes could be used to verify the purity of X and Y sorted spermatozoa in buffalo.  相似文献   

12.
X and Y specific probes were identified in order to apply the fluorescent in situ hybridization (FISH) technique to bovine spermatozoa. For Y chromosome detection, the BRY4a repetitive probe, covering three quarters of the chromosome, was used. For X chromosome detection, a goat Bacterial Artificial Chromosome (BAC) specific to the X chromosome of bovine and goats and giving a strong FISH signal was used. Each probe labeled roughly 45% of sperm cells. The hybridization method will be useful for evaluating the ratio of X- and Y- bearing spermatozoa in a sperm sample and consequently can be used to evaluate the efficiency of sperm sorting by different techniques such as flow cytometry.  相似文献   

13.
In this study, complete nucleotide as well as derived amino acid sequence characterization of water buffalo (Bubalus bubalis) kappa-casein gene has been presented. Kappa-casein cDNA clones were identified and isolated from a buffalo lactating mammary gland cDNA library. Sequence analysis of kappa-casein cDNA revealed 850 nucleotides with an open reading frame (ORF) of 573 nucleotides, encoding mature peptide of 169 amino acids. The 5' untranslated region (UTR) comprised 71 nucleotides, while 3' UTR was of 206 nucleotides. A total of 11 nucleotide and seven amino acid changes were observed in, buffalo (Bubalus bubalis) as compared to cattle (Bos taurus), sheep (Ovis aries) and goat (Capra hircus). Among these nucleotide changes, eight were unique in buffalo as they were fully conserved in cattle, sheep and goat. Majority of the nucleotide changes and all the amino acid changes; 14 (Asp-Glu), 19(Asp/Ser-Asn), 96(Ala-Thr), 126(Ala-Val), 128(Ala/Gly-Val), 156(Ala/Pro-Val) and 168(Ala/Glu-Val) were limited to exon IV. Three glycosylation sites, Thr 131, Thr 133 and Thr 142 reported in cattle and goat kappa-casein gene were also conserved in buffalo, however, in sheep Thr 142 was replaced by Ala. Chymosin hydrolysis site, between amino acids Phe 105 and Met 106, important for rennet coagulation process, were found to be conserved across four bovid species. Buffalo kappa-casein with the presence of amino acids Thr 136 and Ala 148 seems to be an intermediate of "A" and "B" variants of cattle. Comparison with other livestock species revealed buffalo kappa-casein sharing maximum nucleotide (95.5%) and amino acid (92.6%) similarity with cattle, whereas with pig it showed least sequence similarity of 76.0% and 53.2%, respectively. Phylogenetic analysis based on both nucleotide and amino acid sequence indicated buffalo kappa-casein grouping with cattle, while sheep and goat forming a separate cluster close to them. The non-ruminant species viz. camel, horse and pig were distantly placed, in separate lineages.  相似文献   

14.
Four bovine BAC clones (0494F01, 0069D07, 0060B06, and 0306A12) containing MUC1, as confirmed by mapping MUC1 on a RH3000 radiation hybrid panel, were hybridised on R-banded chromosomes of cattle (BTA), river buffalo (BBU), sheep (OAR) and goat (CHI). MUC1 was FISH-mapped on BTA3q13, BBU6q13, OAR1p13 and CHI3q13 and both chromosomes and chromosome bands were homoeologous confirming the high degree of chromosome homoeologies among bovids and adding more information on the pericentromeric regions of these species' chromosomes. Indeed, MUC1 was more precisely assigned to BTA3 and assigned for the first time to BBU6, OAR1p and CHI3. Moreover, detailed and improved cytogenetic maps of BTA3, CHI3, OAR1p and BBU6 are shown and compared with HSA1.  相似文献   

15.
A comparative study was conducted on protein tyrosine phosphorylation events of capacitating sperm of two ruminant species, cattle and buffalo. Ejaculated cattle and buffalo bull spermatozoa were suspended separately in sp-TALP medium at 50 × 106 mL−1 and incubated at 38.5 °C with 5% CO2 in air in the absence or presence of heparin for a period of 6 h. The extent of sperm capacitation after various periods of incubations was assessed by lysophosphatidyl choline-induced acrosome reaction followed by a triple-staining technique and capacitation-associated tyrosine-phosphorylated proteins were detected by immunoblotting technique using a monoclonal antiphosphotyrosine antibody. In the same media, over a time-period, a significant increase in capacitation percentage was observed even in control group of buffalo spermatozoa as compared to a non-significant increase in that of cattle sperm. In both cattle and buffalo spermatozoa, at 6 h, four proteins of molecular weight 49, 45, 32, and 20 kDa (designated as p49, p45, p32, and p20) were tyrosine phosphorylated. However, in buffalo, two additional proteins of 38 and 30 kDa were also tyrosine phosphorylated. In a time-course study, p20 appeared as early as at 0 h in capacitated buffalo spermatozoa as compared to 4 h in cattle. Further, in heparin-treated buffalo spermatozoa, with a time-dependent increase in tyrosine phosphorylation of some proteins, there was time-dependent dephosphorylation of some other proteins that was never seen in heparin-treated cattle sperm. Thus, the present findings revealed that though buffalo sperm takes more time than cattle for capacitation but its associated protein tyrosine phosphorylation event starts very early as compared to cattle.  相似文献   

16.
Molecular cloning and characterization of buffalo alpha(s1)-casein gene.   总被引:1,自引:0,他引:1  
Buffaloes in Indian subcontinent play an important role as the producer of milk and milk products. The alpha(s1)-casein constitutes 38% of the total milk proteins. The present study was carried out to characterize the gene in Murrah breed of Riverine buffalo. Buffalo alpha(s1)-casein cDNA was synthesized by RT-PCR, then cloned using pDRIVE-cloning vector and sequenced. The sequencing revealed that the size of alpha(s1)-casein cDNA was of 645 bp with GC content of 45.58%. The alpha(s1)-casein gene coded 214 amino acids precursor with a signal peptide of 15 amino acid residues. The similarity of buffalo alpha(s1)-casein mRNA sequence with that of cattle, goat, sheep, pig, camel, equine and human were estimated as 97.2, 93, 92.3, 57.2, 59.5, 55.9 and 46.6%, respectively. A similar trend was observed when compared amino acid sequences of these species. In the phylogenetic trees, constructed from the data of the alpha(s1)-casein mRNA as well as protein sequences, it has been observed that buffalo, cattle, goat and sheep formed a cluster with a closer relationship between cattle and buffalo followed by goat and sheep.  相似文献   

17.
The development of new molecular techniques (array CGH, M-FISH, SKY-FISH, etc.) has led to great advancements in the entire field of molecular cytogenetics. However, the application of these methods is still very limited in farm animals. In the present study, we report, for the first time, the production of 13 river buffalo (Bubalus bubalis, 2n?=?50) chromosome-specific painting probes, generated via chromosome microdissection and the DOP-PCR procedure. A sequential multicolor-FISH approach is also proposed on the same slide for the rapid identification of river buffalo chromosome/arms, namely, 1p-1q, 2p-2q, 3p-3q, 4p-4q, 5p-5q, 18, X, and Y, using both conventional and late-replicating banded chromosome preparations counterstained by DAPI. The provided ‘bank’ of chromosome-specific painting probes is useful for any further cytogenetic investigation not only for the buffalo breeds, but also for other species of the family Bovidae, such as cattle, sheep, and goats, for chromosome abnormality diagnosis, and, more generally, for evolutionary studies.  相似文献   

18.
The history of the abundant repeat elements in the bovine genome has been studied by comparative hybridization and PCR. The Bov-A and Bov-B SINE elements both emerged just after the divergence of the Camelidae and the true ruminants. A 31-bp subrepeat motif in satellites of the Bovidae species cattle, sheep, and goat is also present in Cervidae (deer) and apparently predates the Bovidae. However, the other components of the bovine satellites were amplified after the divergence of the cattle and the Caprinae (sheep and goat). A 23-bp motif, which as subrepeat of two major satellites occupies 5% of the cattle genome, emerged only after the split of the water buffalo and other cattle species. During the evolution of the Bovidae the satellite repeat units were shaped by recombination events involving subrepeats, other satellite components, and SINE elements. Differences in restriction sites of homologous satellites indicate a continuing rapid horizontal spread of new sequence variants. Correspondence to: J.A. Lenstra  相似文献   

19.
Ninety-nine loci have been assigned to river buffalo chromosomes, 67 of which are coding genes and 32 of which are anonymous DNA segments (microsatellites). Sixty-seven assignments were based on cosegregation of cellular markers in somatic cell hybrids (synteny), whereas 39 were based on in situ hybridization of fixed metaphase chromosomes with labeled DNA probes. Seven loci were assigned by both methods. Of the 67 assignments in somatic cell hybrids, 38 were based on polymerase chain reaction (PCR), 11 on isozyme electrophoresis, 10 on restriction endonuclease digestion of DNA, 4 on immunofluorescence, and 4 on chromosomal identification. A genetic marker or syntenic group has been assigned to each arm of the five submetacentric buffalo chromosomes as well as to the 19 acrocentric autosomes, and the X and Y chromosomes. These same markers map to the 29 cattle autosomes and the X and Y chromosomes, and without exception, cattle markers map to the buffalo chromosome or chromosomal region predicted from chromosome banding similarity.  相似文献   

20.
In 1964, Gustavsson and Rockborn first described the 1/29 Robertsonian translocation in cattle. Since then, several studies have demonstrated the negative effect of this particular chromosomal rearrangement on the fertility of carrier animals. During the last decade, meiotic segregation patterns have been studied on human males carrying balanced translocations using FISH on decondensed sperm nuclei. In this work, we have applied the 'Sperm-FISH' technique to determine the chromosomal content of spermatozoa from two bulls heterozygous for the 1/29 translocation and one normal bull (control). 5425 and 2702 sperm nuclei were scored, respectively, for the two heterozygous bulls, using whole chromosome painting probes of chromosomes 1 and 29. Very similar proportions of normal (or balanced) spermatozoa resulting from alternate segregation were observed (97.42% and 96.78%). For both heterozygous bulls, the proportions of nullisomic and disomic spermatozoa did not follow the theoretical 1:1 ratio. Indeed, proportions of nullisomic spermatozoa were higher than those of disomic sperma tozoa (1.40% vs 0.09% (bull 1) and 1.29% vs 0.15% (bull 2) for BTA1, and 0.65% vs 0.40% (bull 1) and 1.11% vs 0.63% (bull 2) for BTA29). The average frequencies of disomic and diploid spermatozoa in the normal bull were 0.11% and 0.05%, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号