共查询到20条相似文献,搜索用时 31 毫秒
1.
Trouverie J Vidal G Zhang Z Sirichandra C Madiona K Amiar Z Prioul JL Jeannette E Rona JP Brault M 《Plant & cell physiology》2008,49(10):1495-1507
In Arabidopsis thaliana suspension cells, ABA was previously shown to promote the activation of anion channels and the reduction of proton pumping that both contribute to the plasma membrane depolarization. These two ABA responses were shown to induce two successive [Ca(2+)](cyt) spikes. As reactive oxygen species (ROS) have emerged as components of ABA signaling pathways especially by promoting [Ca(2+)](cyt) variations, we studied whether ROS were involved in the regulation of anion channels and proton pumps activities. Here we demonstrated that ABA induced ROS production which triggered the second of the two [Ca(2+)](cyt) increases observed in response to ABA. Blocking ROS generation using diphenyleneiodonium (DPI) impaired the proton pumping reduction, the anion channel activation and the RD29A gene expression in response to ABA. Furthermore, H(2)O(2) was shown to activate anion channels and to inhibit plasma membrane proton pumping, as did ABA. However, ROS partially mimicked ABA's effects since H(2)O(2) treatment elicited anion channel activation but not the subsequent expression of the RD29A gene as did ABA. This suggests that expression of the RD29A gene in response to ABA results from the activation of multiple concomitant signaling pathways: blocking of one of them would impair gene expression whereas stimulating only one would not. We conclude that ROS are a central messenger of ABA in the signaling pathways leading to the plasma membrane depolarization induced by ABA. 相似文献
2.
3.
Ca2+-dependent and -independent abscisic acid activation of plasma membrane anion channels in guard cells of Nicotiana tabacum 下载免费PDF全文
Drought induces stomatal closure, a response that is associated with the activation of plasma membrane anion channels in guard cells, by the phytohormone abscisic acid (ABA). In several species, this response is associated with changes in the cytoplasmic free Ca(2+) concentration. In Vicia faba, however, guard cell anion channels activate in a Ca(2+)-independent manner. Because of potential differences between species, Nicotiana tabacum guard cells were studied in intact plants, with simultaneous recordings of the plasma membrane conductance and the cytoplasmic free Ca(2+) concentration. ABA triggered transient rises in cytoplasmic Ca(2+) in the majority of the guard cells (14 out of 19). In seven out of 14 guard cells, the change in cytoplasmic free Ca(2+) closely matched the activation of anion channels, while the Ca(2+) rise was delayed in seven other cells. In the remaining five cells, ABA stimulated anion channels without a change in the cytoplasmic Ca(2+) level. Even though ABA could activate anion channels in N. tabacum guard cells independent of a rise in the cytoplasmic Ca(2+) concentration, patch clamp experiments showed that anion channels in these cells are stimulated by elevated Ca(2+) in an ATP-dependent manner. Guard cells thus seem to have evolved both Ca(2+)-independent and -dependent ABA signaling pathways. Guard cells of N. tabacum apparently utilize both pathways, while ABA signaling in V. faba seems to be restricted to the Ca(2+)-independent pathway. 相似文献
4.
5.
6.
The role of the plasma membrane potential (delta psi p) in the commitment to differentiation of murine erythroleukemia (MEL) cells has been studied by analyzing the ionic basis and the time course of this potential in the absence or the presence of different types of inducers. delta psi p was determined by measuring the distribution of tetraphenylphosphonium (TPP+) across the plasma membrane and displayed a 22-hour depolarization phase (from -28 to +5 mV) triggered by factors contained in foetal calf serum (FCS) and followed by a nearly symmetrical repolarization phase. After measuring the electrochemical equilibrium potential of Na+, K+, and Cl-, the relative contribution of these ions to delta psi p was evaluated by means of ion substitution experiments and by the addition of ion flux inhibitors (tetrodotoxin [TTX], 4-acetoamide-4'-isothiocyanostilbene-2,2'-disulfonate [SITS]) and ionophores (Valinomycin, A23187). The Na+ contribution to delta psi p appeared negligible, the potential being essentially generated by K+ and Cl- fluxes. When evaluated by a new mathematical approach, the effects of Valinomycin and A23187 at different times of incubation provided evidence that both the depolarization and the repolarization phase were due to variations of the K+ permeability across the plasma membrane (PK) mediated by Ca2+-activated K+ channels. All the inducers tested (dimethylsulfoxide [DMSO], hexamethylen-bis-acetamide [HMBA], diazepam), although they did not modify the ionic basis of delta psi p, strongly attenuated the depolarization rate of this potential. This attenuation was not brought about when the inducers were added to noninducible MEL cell clonal sublines. Cell commitment occurred only during the depolarization phase and increased proportionally to the attenuation of this phase up to a threshold beyond which the further increase of the attenuation was associated with the inhibition of commitment. The major role of the inducers apparently consisted of the stabilization of the Ca2+-activated K+ channels, suggesting that a properly modulated delta psi p depolarization through these channels is primarily involved in the signal generation for MEL cell commitment to differentiation. 相似文献
7.
Zhang Z Ramirez J Reboutier D Brault M Trouverie J Pennarun AM Amiar Z Biligui B Galagovsky L Rona JP 《Plant & cell physiology》2005,46(9):1494-1504
Brassinosteroids (BRs) are involved in numerous physiological processes associated with plant development and especially with cell expansion. Here we report that two BRs, 28-homobrassinolide (HBL) and its direct precursor 28-homocastasterone (HCS), promote cell expansion of Arabidopsis thaliana suspension cells. We also show that cell expansions induced by HBL and HCS are correlated with the amplitude of the plasma membrane hyperpolarization they elicited. HBL, which promoted the larger cell expansion, also provoked the larger hyperpolarization. We observed that membrane hyperpolarization and cell expansion were partially inhibited by the proton pump inhibitor erythrosin B, suggesting that proton pumps were not the only ion transport system modulated by the two BRs. We used a voltage clamp approach in order to find the other ion transport systems involved in the PM hyperpolarization elicited by HBL and HCS. Interestingly, while anion currents were inhibited by both HBL and HCS, outward rectifying K+ currents were increased by HBL but inhibited by HCS. The different electrophysiological behavior shown by HBL and HCS indicates that small changes in the BR skeleton might be responsible for changes in bioactivity. 相似文献
8.
Ca2+ and nucleotide dependent regulation of voltage dependent anion channels in the plasma membrane of guard cells. 总被引:16,自引:2,他引:14 下载免费PDF全文
Using the patch-clamp technique we discovered that the voltage dependent anion channels in the plasma membrane of guard cells are activated by a rise in cytoplasmic Ca2+ in the presence of nucleotides. Upon activation, these anion channels catalyse anion currents 10-20 times higher than in the inactivated state, thus shifting the plasma membrane from a K+ conducting state to an anion conducting state. Prolonged stimulation by depolarizing voltages results in the inactivation of the anion current (t1/2 = 10-12 s). We suggest that activation of the anion channel by Ca2+ and nucleotides is a key event in the regulation of salt efflux from guard cells during stomatal closure. 相似文献
9.
Hallouin M Ghelis T Brault M Bardat F Cornel D Miginiac E Rona JP Sotta B Jeannette E 《Plant physiology》2002,130(1):265-272
Abscisic acid (ABA) plays a key role in the control of stomatal aperture by regulating ion channel activities and water exchanges across the plasma membrane of guard cells. Changes in cytoplasmic calcium content and activation of anion and outward-rectifying K(+) channels are among the earliest cellular responses to ABA in guard cells. In Arabidopsis suspension cells, we have demonstrated that outer plasmalemma perception of ABA triggered similar early events. Furthermore, a Ca(2+) influx and the activation of anion channels are part of the ABA-signaling pathway leading to the specific expression of RAB18. Here, we determine whether phospholipases are involved in ABA-induced RAB18 expression. Phospholipase C is not implicated in this ABA pathway. Using a transphosphatidylation reaction, we show that ABA plasmalemma perception results in a transient stimulation of phospholipase D (PLD) activity, which is necessary for RAB18 expression. Further experiments showed that PLD activation was unlikely to be regulated by heterotrimeric G proteins. We also observed that ABA-dependent stimulation of PLD was necessary for the activation of plasma anion current. However, when ABA activation of plasma anion channels was inhibited, the ABA-dependent activation of PLD was unchanged. Thus, we conclude that in Arabidopsis suspension cells, ABA stimulation of PLD acts upstream from anion channels in the transduction pathway leading to RAB18 expression. 相似文献
10.
Ouardouz M Nikolaeva MA Coderre E Zamponi GW McRory JE Trapp BD Yin X Wang W Woulfe J Stys PK 《Neuron》2003,40(1):53-63
The mechanisms of Ca(2+) release from intracellular stores in CNS white matter remain undefined. In rat dorsal columns, electrophysiological recordings showed that in vitro ischemia caused severe injury, which persisted after removal of extracellular Ca(2+); Ca(2+) imaging confirmed that an axoplasmic Ca(2+) rise persisted in Ca(2+)-free perfusate. However, depletion of Ca(2+) stores or reduction of ischemic depolarization (low Na(+), TTX) were protective, but only in Ca(2+)-free bath. Ryanodine or blockers of L-type Ca(2+) channel voltage sensors (nimodipine, diltiazem, but not Cd(2+)) were also protective in zero Ca(2+), but their effects were not additive with ryanodine. Immunoprecipitation revealed an association between L-type Ca(2+) channels and RyRs, and immunohistochemistry confirmed colocalization of Ca(2+) channels and RyR clusters on axons. Similar to "excitation-contraction coupling" in skeletal muscle, these results indicate a functional coupling whereby depolarization sensed by L-type Ca(2+) channels activates RyRs, thus releasing damaging amounts of Ca(2+) under pathological conditions in white matter. 相似文献
11.
H A Pershadsingh R D Gale D M Delfert J M McDonald 《Biochemical and biophysical research communications》1986,135(3):934-941
Increased membrane permeability (conductance) that is specific for K+ and directly activated by Ca2+ ions, has been identified in isolated adipocyte plasma membranes using the K+ analogue, 86Rb+. Activation of these K+ conductance pathways (channels) by free Ca2+ was concentration dependent with a half-maximal effect occurring at 32 +/- 4 nM free Ca2+ (n = 7). Addition of calmodulin further enhanced the Ca2+ activating effect on 86Rb+ uptake (K+ channel activity). Ca2+-dependent 86Rb+ uptake was inhibited by tetraethylammonium ion and low pH. It is concluded that the adipocyte plasma membrane possesses K+ channels that are activated by Ca2+ and amplified by calmodulin. 相似文献
12.
13.
Annette Stange Rainer Hedrich M. Rob G. Roelfsema 《The Plant journal : for cell and molecular biology》2010,62(2):265-276
Rapid stomatal closure is driven by the activation of S‐type anion channels in the plasma membrane of guard cells. This response has been linked to Ca2+ signalling, but the impact of transient Ca2+ signals on S‐type anion channel activity remains unknown. In this study, transient elevation of the cytosolic Ca2+ level was provoked by voltage steps in guard cells of intact Nicotiana tabacum plants. Changes in the activity of S‐type anion channels were monitored using intracellular triple‐barrelled micro‐electrodes. In cells kept at a holding potential of ?100 mV, voltage steps to ?180 mV triggered elevation of the cytosolic free Ca2+ concentration. The increase in the cytosolic Ca2+ level was accompanied by activation of S‐type anion channels. Guard cell anion channels were activated by Ca2+ with a half maximum concentration of 515 nm (SE = 235) and a mean saturation value of ?349 pA (SE = 107) at ?100 mV. Ca2+ signals could also be evoked by prolonged (100 sec) depolarization of the plasma membrane to 0 mV. Upon returning to ?100 mV, a transient increase in the cytosolic Ca2+ level was observed, activating S‐type channels without measurable delay. These data show that cytosolic Ca2+ elevation can activate S‐type anion channels in intact guard cells through a fast signalling pathway. Furthermore, prolonged depolarization to 0 mV alters the activity of Ca2+ transport proteins, resulting in an overshoot of the cytosolic Ca2+ level after returning the membrane potential to ?100 mV. 相似文献
14.
Elena Jeworutzki M. Rob G. Roelfsema Uta Anschütz Elzbieta Krol J. Theo M. Elzenga Georg Felix Thomas Boller Rainer Hedrich Dirk Becker 《The Plant journal : for cell and molecular biology》2010,62(3):367-378
The perception of microbes by plants involves highly conserved molecular signatures that are absent from the host and that are collectively referred to as microbe‐associated molecular patterns (MAMPs). The Arabidopsis pattern recognition receptors FLAGELLIN‐SENSING 2 (FLS2) and EF‐Tu receptor (EFR) represent genetically well studied paradigms that mediate defense against bacterial pathogens. Stimulation of these receptors through their cognate ligands, bacterial flagellin or bacterial elongation factor Tu, leads to a defense response and ultimately to increased resistance. However, little is known about the early signaling pathway of these receptors. Here, we characterize this early response in situ, using an electrophysiological approach. In line with a release of negatively charged molecules, voltage recordings of microelectrode‐impaled mesophyll cells and root hairs of Col‐0 Arabidopsis plants revealed rapid, dose‐dependent membrane potential depolarizations in response to either flg22 or elf18. Using ion‐selective microelectrodes, pronounced anion currents were recorded upon application of flg22 and elf18, indicating that the signaling cascades initiated by each of the two receptors converge on the same plasma membrane ion channels. Combined calcium imaging and electrophysiological measurements revealed that the depolarization was superimposed by an increase in cytosolic calcium that was indispensable for depolarization. NADPH oxidase mutants were still depolarized upon elicitor stimulation, suggesting a reactive oxygen species‐independent membrane potential response. Furthermore, electrical signaling in response to either flg22 or elf 18 critically depends on the activity of the FLS2‐associated receptor‐like kinase BAK1, suggesting that activation of FLS2 and EFR lead to BAK1‐dependent, calcium‐associated plasma membrane anion channel opening as an initial step in the pathogen defense pathway. 相似文献
15.
Here, the effects of the ethylene-releasing compound, ethephon, and the ethylene precursor, 1-aminocyclopropane-1-carboxylic acid (ACC), on ionic currents across plasma membranes and on the cytosolic Ca(2+) activity ([Ca(2+)](c)) of tobacco (Nicotiana tabacum) suspension cells were characterized using a patch-clamp technique and confocal laser scanning microscopy. Exposure of tobacco protoplasts to ethephon and ACC led to activation of a plasma membrane cation channel that was permeable to Ba(2+), Mg(2+) and Ca(2+), and inhibited by La(3+), Gd(3+) and Al(3+). The ethephon- and ACC-induced Ca(2+)-permeable channel was abolished by the antagonist of ethylene perception (1-metycyclopropene) and by the inhibitor of ACC synthase (aminovinylglycin), indicating that activation of the Ca(2+)-permeable channels results from ethylene. Ethephon elicited an increase in the [Ca(2+)](c) of tobacco suspension cells, as visualized by the Ca(2+)-sensitive probe Fluo-3 and confocal microscopy. The ethephon-induced elevation of [Ca(2+)](c) was markedly inhibited by Gd(3+) and BAPTA, suggesting that an influx of Ca(2+) underlies the elevation of [Ca(2+)](c). These results indicate that an elevation of [Ca(2+)](c), resulting from activation of the plasma membrane Ca(2+)-permeable channels by ethylene, is an essential component in ethylene signaling in plants. 相似文献
16.
M S Goligorsky 《FEBS letters》1988,240(1-2):59-64
Cytosolic Ca2+ concentration and membrane potential were monitored in individual cultured enothelial cells mechanically stimulated with a micropipette attached to the stage of a microscope. Both dimpling and poking of endothelial cells resulted in Ca2+i transients (from 63 ± 12 to 397 ± 52 nM, characterized by a refractory period of approx. 2 min) and cell depolarization. Ca2+i transients of the reduced amplitude (201 ± 41 nM) were evoked by mechanical stimulation of endothelial cells incubated in a Ca2+-free medium. Dimpling-induced Ca2+i transients were refractory to the pretreatments with pertussis toxin, colchicine, or cytochalasin B, and were not mimicked by an increase in the hydrodynamic pressure. In a co-perfusion system (endothelium: smooth muscle), both the KCl-induced depolarization and ionomycin-induced increase in Ca2+i in the endothelial cells resulted in the reduction of Ca2+i in the smooth muscle cells. The data reported are consistent with the phenomenon of vascular relaxation in response to the increased blood flow. We hypothesize that the mechanical interaction of the formed elements with the microvascular endothelium can serve as a pacemaker for the sustained relaxation of vascular smooth muscle. 相似文献
17.
Delgado-Coello B Santiago-García J Zarain-Herzberg A Mas-Oliva J 《Molecular and cellular biochemistry》2003,247(1-2):177-184
The plasma membrane calcium ATPase (PMCA) is an ubiquitous enzyme that extrudes calcium from the cytoplasm to the extracellular space. Four PMCA genes through alternative splicing produce a large diversity of isoforms of this enzyme. We reported previously that the PMCA contained in AS-30D hepatocarcinoma cells showed significant differences in activity in comparison to normal and regenerating liver. In the present study we investigate if the difference in PMCA activity could be related to differential expression of mRNAs encoding different isoforms of PMCA. Using RT-PCR we found that variants 1b, 1x, and 4b are expressed in all liver samples. The hepatoma AS-30 and liver at 2 days of regeneration express low amounts of isoforms 2w, 4b and 4x, and do not express isoforms 4a, 4d and 4z. Fetal and neonatal liver do not express variants 4a and 4d, but they do express variants 4x and 4z. Immunoblot analysis showed a higher ratio ATPase/total protein in the hepatoma AS-30D in comparison to normal liver. Our results suggest that the Ca2+-ATPase kinetic pattern previously observed by us in the AS-30D cells, could be at least partially explained by changes in the mRNA expression of several of the PMCA isoforms expressed in the liver. 相似文献
18.
Stimulant-evoked depolarization and increase in [Ca2+]
i
in insulin-secreting cells is dependent on external Na+ 总被引:1,自引:0,他引:1
M. J. Dunne D. I. Yule D. V. Gallacher O. H. Petersen 《The Journal of membrane biology》1990,113(2):131-138
Summary The patch-clamp technique and measurements of single cell [Ca2+]
i
have been used to investigate the importance of extracellular Na+ for carbohydrate-induced stimulation of RINm5F insulin-secreting cells. Using patch-clamp whole-cell (current-clamp) recordings the average cellular transmembrane potential was estimated to be –60±1 mV (n=83) and the average basal [Ca2+]
i
102±6nm (n=37). When challenged with either glucose (2.5–10mm) ord-glyceraldehyde (10mm) the cells depolarized, which led to the initiation of Ca2+ spike potentials and a sharp rise in [Ca2+]
i
. Similar effects were also observed with the sulphonylurea compound tolbutamide (0.01–0.1mm). Both the generation of the spike potentials and the increase in [Ca2+]
i
were abolished when Ca2+ was removed from the bathing media. When all external Na+ was replaced with N-methyl-d-glucamine, in the continued presence of either glucose,d-glyceraldehyde or tolbutamide, a membrane repolarization resulted, which terminated Ca2+ spike potentials and attenuated the rise in [Ca2+]
i
. Tetrodotoxin (TTX) (1–2 m) was also found to both repolarize the membrane and abolish secretagogue-induced rises in [Ca2+]
i
. 相似文献
19.
Ca2+-permeable channels in the plasma membrane of Arabidopsis pollen are regulated by actin microfilaments 下载免费PDF全文
Cytosolic free Ca2+ and actin microfilaments play crucial roles in regulation of pollen germination and tube growth. The focus of this study is to test the hypothesis that Ca2+ channels, as well as channel-mediated Ca2+ influxes across the plasma membrane (PM) of pollen and pollen tubes, are regulated by actin microfilaments and that cytoplasmic Ca2+ in pollen and pollen tubes is consequently regulated. In vitro Arabidopsis (Arabidopsis thaliana) pollen germination and tube growth were significantly inhibited by Ca2+ channel blockers La3+ or Gd3+ and F-actin depolymerization regents. The inhibitory effect of cytochalasin D (CD) or cytochalasin B (CB) on pollen germination and tube growth was enhanced by increasing external Ca2+. Ca2+ fluorescence imaging showed that addition of actin depolymerization reagents significantly increased cytoplasmic Ca2+ levels in pollen protoplasts and pollen tubes, and that cytoplasmic Ca2+ increase induced by CD or CB was abolished by addition of Ca2+ channel blockers. By using patch-clamp techniques, we identified the hyperpolarization-activated inward Ca2+ currents across the PM of Arabidopsis pollen protoplasts. The activity of Ca2+-permeable channels was stimulated by CB or CD, but not by phalloidin. However, preincubation of the pollen protoplasts with phalloidin abolished the effects of CD or CB on the channel activity. The presented results demonstrate that the Ca2+-permeable channels exist in Arabidopsis pollen and pollen tube PMs, and that dynamic actin microfilaments regulate Ca2+ channel activity and may consequently regulate cytoplasmic Ca2+. 相似文献
20.
The effects of G-protein activation were investigated on tonic, large depolarization-induced Ca2+ channel facilitation in cultured bovine adrenal chromaffin cells. Under whole-cell voltage clamp, activation of G proteins by intracellular dialysis with 200 M GTP-S did not significantly affect prepulse facilitation or whole-cell Ba2+ current (I
Ba) density. In contrast, inactivation of G proteins by intracellular GDP-S or pertussis toxin (PTX) pretreatment completely abolished or markedly attenuated facilitation of I
Ba, respectively. GDP-S dialysis resulted in nearly a threefold increase in peak I
Ba density, whereas PTX pretreatment resulted in a 50% increase. Our results indicate that under control recording conditions (200 m intracellular GTP), G proteins are tonically activated and suppress high-voltage-activated (HVA) Ca2+ channels in a voltage-dependent and voltage-independent manner. Local superfusion of chromaffin cells with normal bath solution produced a rapid and reversible increase (50%) in I
Ba amplitudes that also abolished prepulse facilitation. Together, these results demonstrate that tonic facilitation of HVA Ca2+ channels in bovine chromaffin cells involves the voltage-dependent relief of a G-protein-mediated suppression, imposed by chromaffin cell secretory products that feedback and activate G-protein-coupled autoreceptors.This work was supported by a National Science Foundation grant (DCB-8812562), American Heart Association-Ohio Affiliate grant (SW-91-18), and an American Parkinson's Disease Association grant. C.A.D. was supported by a predoctoral National Research Service Award (National Institutes of Health training grant HL07571-08). The authors thank Kluener's Packing Co. for their generous supply of adrenal glands. 相似文献