首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The activity of eukaryotic elongation factor 2 is regulated by phosphorylation catalysed by a highly specific Ca2+/calmodulin-dependent protein kinase. Phosphorylated EF2 binds to ribosomes with decreased affinity. The present evidence indicates that EF2 prebound to ribosomes is protected from phosphorylation, just as earlier evidence indicated that ribosome-bound EF2 is protected from ADP-ribosylation catalysed by diphtheria toxin. Ribosome-inactivating proteins ricin and gelonin, by interfering with the EF2-ribosome interaction, allow full phosphorylation of EF2.  相似文献   

2.
alpha-Sarcin from Aspergillus giganteus and the ribosome-inactivating proteins (RIPs) from higher plants inactivate the 60 S ribosomal subunit. The former is an RNAase, whereas RIPs are N-glycosidases. The site of cleavage of RNA and that of N-glycosidic depurinization are at one nucleotide distance in 28 S rRNA [Endo & Tsurugi (1987) J. Biol. Chem. 262, 8128-8130]. The effect of alpha-sarcin and that of RIPs on the interaction of elongation factors with Artemia salina (brine shrimp) ribosomes have been investigated. alpha-Sarcin inhibits both the EF1 (elongation factor 1)-dependent binding of aminoacyl-tRNA and the GTP-dependent binding of EF2 (elongation factor 2) to ribosomes, whereas two of the RIPs tested, ricin from Ricinus communis (castor bean) and volkensin from Adenia volkensii (kilyambiti), inhibit only the latter reaction. EF2 protects ribosomes from inactivation by both alpha-sarcin and ricin. The EF1-binding site is affected only by alpha-sarcin. The sensitivity of this site to alpha-sarcin is increased by pretreatment of ribosomes with ricin. A. salina ribosomes were highly resistant to the third RIP tested, namely gelonin from Gelonium multiflorum. All four proteins tested have, however, a comparable activity on the rabbit reticulocyte-lysate system.  相似文献   

3.
Modeccin inhibits polypeptide-chain elongation catalysed by Artemia salina (brine shrimp) ribosomes by inactivating the 60 S ribosomal subunit. Among the individual steps of elongation, peptide-bond formation, catalysed by 60 S peptidyltransferase, is unaffected by the toxin, whereas the binding of EF 2 (elongation factor 2) to ribosomes is strongly inhibited. Modeccin does not affect the poly(U)-dependent non-enzymic binding of either deacylated tRNAPhe or phenylalanyl-tRNA to ribosomes. The inhibitory effect of modeccin on the EF 1 (elongation factor 1)-dependent binding of phenylalanyl-tRNA is discussed, since it is decreased by tRNAPhe, which stimulates the binding reaction. The analysis of the distribution of ribosome-bound radioactivity during protein synthesis shows that modeccin consistently inhibits the radioactivity bound as long-chain peptides, but depending on the experimental conditions, can leave unchanged or even greatly stimulates the radioactivity bound as phenylalanyl-tRNA and/or short-chain peptides. It is concluded that, during the complete elongation cycle, modeccin does not affect the binding of the first aminoacyl-tRNA to ribosomes, but inhibits some step in the subsequent repetitive activity of either EF 1 or EF 2. The results obtained indicate that the mechanism of action of modeccin is very similar to that of ricin and related plant toxins such as abrin and crotin.  相似文献   

4.
1. The effect of elongation factor 2 (EF 2) and of adenosine diphosphate-ribosylated elongation factor 2 (ADP-ribosyl-EF 2) on the shift of endogenous peptidyl-tRNA from the A to the P site of rat liver ribosomes (measured by the peptidyl-puromycin reaction) and on the release of deacylated tRNA (measured by aminoacylation) was investigated. 2. Limiting amounts of EF2, pre-bound or added to ribosomes, catalyse the shift of peptidyl-tRNA in the presence of GPT; when the enzyme is added in substrate amounts GMP-P(CH2)P [guanosine (beta, gamma-methylene)triphosphate] can partially replace GTP. ADP-ribosyl-EF 2 has no effect on the shift of peptidyl-tRNA when present in catalytic amounts, but becomes almost as effective as EF 2 when added in substrate amounts together with GTP; GMP-P(CH2)P cannot replace GTP. 3. The release of deacylated tRNA is induced only by substrate amounts of added EF 2 and also occurs in the absence of guanine nucleotides. In this reaction ADP-ribosyl-EF 2 is only 25% as effective as EF 2 in the absence of added nucleotide, but becomes 60-80% as effective in the presence of GTP or GMP-P(CH2)P. 4.The results obtained on protein-synthesizing systems are consistent with the hypothesis that ADP-ribosyl-EF 2 can operate a single round of translocation followed by binding of aminoacyl-tRNA and peptide-bond formation. 5. From the data obtained with the native enzyme it is concluded that the two moments of translocation require different conditions of interaction of EF 2 with ribosomes; it is suggested that the shift of peptidyl-tRNA is catalysed by EF 2 pre-bound to ribosomes, and that the release of tRNA is induced by a second molecule of interacting EF 2. The hydrolysis of GTP would be required for the release of pre-bound EF 2 from ribosomes. 5. The inhibition of the utilization of limiting amounts of EF 2 on ADP-ribosylation is very likely the consequence of a concomitant decrease in the rate of association and dissociation of the enzyme from ribosomes.  相似文献   

5.
1. Ricin (a toxic protein from the seeds of Ricinus communis) is a powerful inhibitor of the poly(U)-directed incorporation of phenylalanine into polypeptides catalysed by isolated rat liver ribosomes and elongation factors 1 and 2 (EF 1 and EF 2). The inhibition can be largely overcome by increasing the concentration of ribosomes. 2. The toxin does not affect the binding of phenylalanyl-tRNA to ribosomes catalysed by EF 1, nor does it inhibit the puromycin reaction used as a test for peptide-bond formation catalysed by ribosomes. 3. Ricin inhibits the ribosome-linked GTP hydrolysis catalysed by EF 2. 4. Ribosomes treated with ricin and washed through sucrose gradients containing 0.6m-NH(4)Cl are functionally inactive in those assay systems that are sensitive to the presence of added toxin. 5. It is suggested that ricin brings about an irreversible modification of ribosomes which impairs their ability to interact with EF 2. Since ricin inhibits at a molar concentration much lower than that of ribosomes it probably acts catalytically. No added cofactor is necessary for the inhibitory action of the toxin.  相似文献   

6.
The elongation factor 1- and elongation factor 2-dependent GTPase (guanosine triphosphatase) activities of ribosomes are inhibited by ricin, a toxic protein known to inactivate the 60S ribosomal subunit. It is suggested that also in eukaryotic ribosomes a "GTPase site', located on the larger subunit, is common to the two elongation factors.  相似文献   

7.
The effects of crotin I and crotin II on the partial reactions of polypeptide chain elongation were investigated and compared with the known effects of ricin. Crotin II was a more powerful inhibitor than crotin I, but no qualitative differences between the two crotins were found. Rat liver ribosomes, preincubated with crotins and washed through sucrose gradients, remained inactive in protein synthesis. Among the individual steps of elongation, the peptidyltransferase reaction was unaffected by crotins, but some of the reactions that involve the interaction of elongation factors 1 and 2 with ribosomes were modified. A strong inhibition of the binding of elongation factor 2 to ribosomes and a stimulation of the elongation factor2-dependent GTP hydrolysis were observed; this indicates the formation of a very unstable elongation factor 2--GDP--ribosome complex, which, however, allows a single round of translocation to take place in the presence ofelongation factor 2 and added GTP. The elongation factor 1-dependent GTP hydrolysis was inhibited by crotins, whereas the enzymic binding of aminoacyl-tRNA, to both rat liver and Artemia salina ribosomes, was scarcely affected. In a protein-synthesizing system the inhibition by crotins and by ricin leads to a block of the nascent peptides on the ribosomal aminoacyl-tRNA site, an effect consistent with inhibition at the level of translocation. The mechanism of action of crotins appears to be very similar to that of ricin.  相似文献   

8.
1. The amino acid composition of wheat germ EF2 differs to some extent from that of elongation factors from mammals and bacteria. 2. The purified wheat germ EF2, similarly as the factors from other sources, is active in the: EF1-dependent polymerization of phenylalanine; ribosome-dependent GTP hydrolysis; binding of guanosine nucleotides; and ADP-ribosylation in the presence of diphtheria toxin. Fusidic acid at a concentration of 1 mM inhibits all these EF2-dependent reactions. 3. Diphtheria toxin in the presence of NAD+ inhibits polymerization of phenylalanine but does not effect GTP binding to EF2. 4. Binding of GDP to wheat germ EF2 is inhibited by ribosomes. During interaction with ribosomes, GTP in EF2-GTP complex is rapidly hydrolysed to GDP. Both GTP and 5'-guanylmethylenediphosphonate competitively inhibit formation of the ribosome-EF2-GDP complex due to the replacement of GDP from the complex. The latter is stabilized by fusidic acid.  相似文献   

9.
The modes of action of a Vero toxin (VT2 or Shiga-like toxin II) from Escherichia coli, of ricin, and of alpha-sarcin were compared. Elongation factor 1 (EF1) and GTP-dependent Phe-tRNA binding to ribosomes in the presence of poly(U) was inhibited by these three toxins, but EF1 and guanylyl (beta, gamma-methylene)-diphosphate-dependent Phe-tRNA binding was inhibited by alpha-sarcin only. EF1- and Phe-tRNA-dependent GTPase activity was inhibited by these toxins, but nonenzymatic binding of Phe-tRNA was not. The turnover rate of EF1 binding to ribosomes during Phe-tRNA binding was also decreased by these three toxins. The addition of EF1 recovered the inhibition of Phe-tRNA binding to ribosomes by VT2 and ricin but not by alpha-sarcin. The formation of and EF2- and GTP-dependent puromycin derivative of phenylalanine was inhibited slightly by the three toxins, indicating that translocation is not influenced significantly by them. EF2-dependent GTPase activity was stimulated by these toxins, and especially by VT2 and ricin. In contrast, the binding of EF2 to ribosomes was inhibited strongly by VT2 and ricin, and slightly by alpha-sarcin. The stimulation of EF2-dependent GTPase activity by the toxins may compensate for the decrease of EF2 binding to ribosomes which they caused during translocation. In total, these results indicate that VT2 and ricin inhibit protein synthesis through the disturbance of the turnover of EF1 binding to ribosomes during aminoacyl-tRNA binding to ribosomes, and that alpha-sarcin inhibits the synthesis through the inhibition of the binding of the complex of Phe-tRNA, EF1, and GTP to ribosomes.  相似文献   

10.
The functional significance of the post-translocation interaction of eukaryotic ribosomes with EF-2 was studied using the translational inhibitor ricin. Ribosomes treated with ricin showed a decreased rate of elongation accompanied by altered proportions of the different ribosomal phases of the elongation cycle. The content of ribosome-bound EF-2 was diminished by approximately 65% while that of EF-1 was unaffected. The markedly reduced content of EF-2 was caused by an inability of the ricin-treated ribosomes to form high-affinity pre-translocation complexes with EF-2. However, the ribosomes were still able to interact with EF-2 in the form of a low-affinity post-translocation complex. Ricin-treated ribosomes showed an altered ability to stimulate the GTP hydrolysis catalysed by either EF-1 or EF-2. The EF-1-catalysed hydrolysis was reduced by approximately 70%, resulting in a decreased turnover of the quaternary EF-1 X GTP X aminoacyl-tRNA X ribosome complex. In contrast, the EF-2-catalysed hydrolysis was increased by more than 400%, despite the lack of pre-translocation complex formation. The effect was not restricted to empty reconstituted ribosomes since gently salt-washed polysomes also showed an increased rate of GTP hydrolysis. The results indicate that the EF-1- and EF-2-dependent hydrolysis of GTP was activated by a common center on the ribosome that was specifically adapted for promoting the GTP hydrolysis of either EF-1 or EF-2. Furthermore, the results suggest that the GTP hydrolysis catalysed by EF-2 occurred in the low-affinity post-translocation complex.  相似文献   

11.
The interaction between eukaryotic elongation factor eEF-2 and reconstituted 80 S ribosomes was investigated by analyzing the accessibility of 5 S ribosomal RNA for chemical and enzymatic modification. Ribosomes reconstituted from derived subunits were modified, and the positions of the modified sites were identified by primer extension using a 5 S rRNA-specific probe. All reactive sites were located between nucleotides 38 and 99, and most of them were found in putative single-stranded regions of the 5 S rRNA. Conversion of the ribosomes to the post-translocation type of particles by treatment with the translational inhibitor ricin resulted in the exposure of 3 additional bases for chemical modification, suggesting that the 5 S rRNA was more exposed in this type of ribosome. After binding of eEF-2 in complex with the non-hydrolyzable GTP analogue guanosine 5'-(beta, gamma-methylene)-triphosphate, most of the exposed bases in the 5 S rRNA were protected against both chemical and enzymatic modification.  相似文献   

12.
The formation of phenylalanyl puromycin from phenylalanyl-tRNA, bound nonenzymically or enzymically to reticulocyte ribosomes, requires the peptide-chain elongation factor, EF22, and GTP. However the GTP analogue, GDPCP, may replace GTP to a significant extent in this reaction. Other purine or pyrimidine nucleotides have little or no activity. Multistep experiments with either GTP or GDPCP indicate that binding of EF2 to the ribosome for subsequent peptide formation may be a portion of the activity of the EF2 (independent of the translocation reaction) during the elongation process. Neomycin inhibits the formation of phenylalanyl puromycin using either GTP or GDPCP in this system.  相似文献   

13.
Studies on elongation factor II from calf brain   总被引:4,自引:0,他引:4  
Elongation factor II (EF2) has been purified from calf brain, and its reactions with guanosine nucleotides and ribosomes have been studied. Its behavior is, in general, similar to that observed with EF2 from other eukaryote sources. Thus, in the presence of GTP or GDP, EF2 interacts with ribosomes to form a ribosome-EF2-GDP complex. Fusidic acid has little effect on the stability of this complex, which suggests that it is more stable than the corresponding complex from prokaryote systems. As assayed by a nitrocellulose filter technique, only GTP, GDP, dGTP and GDPCP are bound to ribosomes dependent on EF2. In the absence of ribosomes, an EF2-GTP or EF2-GDP complex can be detected. Fusidic acid at relatively high concentrations inhibits their formation, but diphtheria toxin in the presence of NAD does not. The EF2-GTP complex has been separated from unbound GTP by gel filtration, and the reactivity of the complex with ribosomes has been investigated. When EF2-GTP is incubated with ribosomes, GTP hydrolysis occurs, and evidence for a ribosome-EF2-GDP complex has been obtained. The results thus suggest that the EF2-GTP complex may be an intermediate in the binding of EF2 to ribosomes. Based on molecular sieve chromatography, it appears that the stability of these complexes is ribosome-EF2-GDP > EF2-GTP > EF2-GDP.  相似文献   

14.
Animal mitochondrial protein synthesis factors elongation factor (EF) Tu and EF-Ts have been purified as an EF-Tu.Ts complex from crude extracts of bovine liver mitochondria. The mitochondrial complex has been purified 10,000-fold to near homogeneity by a combination of chromatographic procedures including high performance liquid chromatography. The mitochondrial EF-Tu.Ts complex is very stable and cannot be dissociated even in the presence of high concentrations of guanine nucleotides. No guanine nucleotide binding to this complex can be observed in the standard nitrocellulose filter binding assay. Mitochondrial EF-Ts activity can be detected by its ability to facilitate guanine nucleotide exchange with Escherichia coli EF-Tu. The EF-Tumt exhibits similar levels of activity on isolated mammalian mitochondrial and E. coli ribosomes, but displays minimal activity on Euglena gracilis chloroplast 70 S ribosomes and has no detectable activity on wheat germ cytoplasmic ribosomes. In contrast to the bacterial EF-Tu and the EF-Tu from the chloroplast of E. gracilis, the ability of the mitochondrial factor to catalyze polymerization is not inhibited by the antibiotic kirromycin.  相似文献   

15.
The antibiotic sensitivity of the archaebacterial factors catalyzing the binding of aminoacyl-tRNA to ribosomes (elongation factor Tu [EF-Tu] for eubacteria and elongation factor 1 [EF1] for eucaryotes) and the translocation of peptidyl-tRNA (elongation factor G [EF-G] for eubacteria and elongation factor 2 [EF2] for eucaryotes) was investigated by using two EF-Tu and EF1 [EF-Tu(EF1)]-targeted drugs, kirromycin and pulvomycin, and the EF-G and EF2 [EF-G(EF2)]-targeted drug fusidic acid. The interaction of the inhibitors with the target factors was monitored by using polyphenylalanine-synthesizing cell-free systems. A survey of methanogenic, halophilic, and sulfur-dependent archaebacteria showed that elongation factors of organisms belonging to the methanogenic-halophilic and sulfur-dependent branches of the "third kingdom" exhibit different antibiotic sensitivity spectra. Namely, the methanobacterial-halobacterial EF-Tu(EF1)-equivalent protein was found to be sensitive to pulvomycin but insensitive to kirromycin, whereas the methanobacterial-halobacterial EF-G(EF2)-equivalent protein was found to be sensitive to fusidic acid. By contrast, sulfur-dependent thermophiles were unaffected by all three antibiotics, with two exceptions; Thermococcus celer, whose EF-Tu(EF1)-equivalent factor was blocked by pulvomycin, and Thermoproteus tenax, whose EF-G(EF2)-equivalent factor was sensitive to fusidic acid. On the whole, the results revealed a remarkable intralineage heterogeneity of elongation factors not encountered within each of the two reference (eubacterial and eucaryotic) kingdoms.  相似文献   

16.
Crude extracts from Artemia salina undeveloped embryos do not contain detectable elongation-factor-2 (EF2) kinase and endogenous ADP-ribosylating activities. Accordingly, EF2 purified from this source is an enzyme relatively free from phosphorylated and ADP-ribosylated forms. Endogenous ADP-ribosyltransferase activity appears only after purification of EF2. The affinities of EF2 and of ADP-ribosyl-EF2 for ribosomes from A. salina undeveloped embryos have been calculated by measuring the ability of the factors to inhibit the N-glycosidase activity of ricin on ribosomes.  相似文献   

17.
F Klink  H Schümann  A Thomsen 《FEBS letters》1983,155(1):173-177
Polyphenylalanine synthesis with ribosomes and two separated, partially purified elongation factors (EF) was measured in cell-free systems from the archaebacteria Thermoplasma acidophilum and Methanococcus vannielii, in an eukaryotic system from rat liver and an eubacterial one with Escherichia coli ribosomes and factors from Thermus thermophilus. By substitution of heterologous EF-2 or EF-G, respectively, for the homologous factors, ribosome specificity was shown to be restricted to factors from the same kingdom. In contrast, EF-1 from T. thermophilus significantly cooperated with ribosomes from T. acidophilum.  相似文献   

18.
The effects of ricin on the different steps of the elongation cycle of protein synthesis in a rabbit reticulocyte cell-free system are studied in this paper. The toxin most probably acts by catalytically inactivating the ribosomes, since a single molecule of the toxin can inactivate 300 ribosomes for poly(U)-directed phenylalanine incorporation. The effect of the toxin on the ribosome is irreversible. Ricin specifically inhibits elongation-factor-1-dependent aminoacyl-tRNA binding to ribosomes but has no effect on the non-enzymic binding of aminoacyl-tRNA. Ricin also inhibits formation of the complex elongation-factor-2 - ribosome - nucleotide with GTP, GDP or GMP-P(CH2)P. However, the toxin has no effect on translocation. These apparently conflicting results are discussed in this study.  相似文献   

19.
We have isolated a cDNA clone that encodes the Drosophila melanogaster elongation factor 2 (EF2), a protein involved in the elongation step of protein synthesis. This identification was based on the high degree of its amino acid sequence identity (greater than 80%) to that of hamster EF2. The gene encoding Drosophila EF2 is found at position 39E-F of the 2L chromosomal arm and maybe identical to the M(2)H locus, which produces a Minute phenotype when mutated. The genomic organization of the locus includes four exons. Conserved sequence segments shared with a variety of GTP binding proteins are found in the amino terminal third of the protein, and segments unique to EF2 and its prokaryotic functional homolog, EF-G, are in the carboxy terminal half; these two regions are segregated in two respective exons.  相似文献   

20.
Elongation factor EF1 was found in a low salt homogenate of wheat embryos, either in the 100 000 X g supernatant or in the ribosome pellet. The ribosome-linked EF1 (EF1R), deteched by high salt washing, was purified to electrophoretical homogenetiy and its molecular and functional properties compared to those of a purified high molecular weight species of EF1 obtained from cytoplasm (EF1H). The two forms are associations of different polypeptides having in common only the polypeptide which can form the ternary complex with aminoacyl-tRNA and GTP. Whereas EF1R is able to fulfill all the EF1 functions, EF1H, incubated with ribosomes completely deprived of elongation factors, can catalyze the aminoacyl-tRNA binding to ribosomes, but, in the presence of EF2, forms only a very small amount of poly(Phe).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号