首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Exposure to 950 rads 60Co radiation has been reported to cause long-lasting damage to the hematopoietic stroma (HS), although the size of the CFUs population recovers to pre-irradiation levels. In these studies HS damage was detected only after subcutaneously implanting the femurs of the irradiated mice into syngeneic hosts. To exclude the possibility that what was considered to be HS damage was merely caused by artifacts due to the process of implantation in a new host, we compared the rate of regeneration of CFUs in mice which had recovered from 950 rads prior to receiving 300 rads 60Co radiation (950 + 300 rads group) with that of mice which received only 300 rads (0 + 300 rads group). The CFUs population in the 950 + 300 rads group grew exponentially for 2 weeks at a rate which did not differ significantly from that of CFUs in the 0 + 300 rads group. However, the rate of CFUs growth reached a plateau before full recovery was achieved in contrast to that in the 0 + 300 rads mice. We therefore conclude that the incomplete regeneration of CFUs in the marrows of 950 + 300 rads mice was most likely caused by X-irradiation-induced damage to the HS rather than damage to the inherent repopulating potential of the CFUs per se.  相似文献   

2.
Low dose (80 μg/kg) Actinomycin D (AD) produced a significant but transient inhibition of proliferation of the haemopoietic stem cells (CFUs) in chimaeras or in mice regenerating after sublethal irradiation. The same dose of AD had no effect on the resting CFUs population. During the period of proliferation inhibition, CFUs proved to be insensitive to the killing effect of [3H]thymidine in vitro and hydroxyurea (HU) in vivo. In Ehrlich ascites tumour (EAT) bearing mice enhanced CFUs turnover rate was found. Eighty μg/kg AD produced a selective effect in these mice: it protected the proliferating CFUs population without diminishing the effect of hydroxyurea on the tumour cells.  相似文献   

3.
Summary The present experiments are an attempt to precise the type and localization of the cells involved in the protective effect of hemopoietic suspensions against the radiation-induced thymic lymphosarcoma (TLS) of C57BL/6 mice. Inocula containing variable numbers of BM or spleen CFUs from 60-day-old and 360-day-old donors were tested. According to their origin, the suspensions differed with respect to the CFU replication rate, the CFU ability to differentiate towards the T lineage and the content of the suspensions in thymic precursors. Two levels of inhibition were observed: BM suspensions from 60-day-old donors containing 1,500 CFUs had the best protective effect: 14.5% of TLS; 1,500 CFUs from 360-day-old donors were slightly but not significantly less efficient (28.5%). The second level of inhibition (36–46% of TLS) was obtained with all the following inocula:a) 1,200 and 300 spleen CFUs or 300 and 95 BM CFUs from 60-day-old donors,b) 1,500 spleen CFUs from aged donors. Seventy-six spleen CFUs from 60-day-old donors, 120 BM or 175 spleen CFUs from aged donors had no effect. These results suggest that in addition to the high replication rate of the BM CFUs as compared with spleen CFUs, cells endowed with an optimal protective effect are present in BM suspensions and are either absent or present in very small amount in spleen suspensions. These cells which induce an early repopulation of the thymus might correspond to thymic precursors.  相似文献   

4.
The objective of our study was to assess the radioprotective effect of flavonoids extracted from Rosa roxburghii Tratt (FRT) and investigate the role of Bcl-2(Ca2+)/Caspase-3/PARP-1 pathway in radiation-induced apoptosis. Cells and mice were exposed to 60Co γ-rays at a dose of 6 Gy. The radiation treatment induced significant effects on tissue pathological changes, apoptosis, Ca2+, ROS, DNA damage, and expression levels of Bcl-2, Caspase-3 (C-Caspase-3), and PARP-1. The results showed that FRT acted as an antioxidant, reduced DNA damage, corrected the pathological changes of the tissue induced by radiation, promoted the formation of spleen nodules, resisted sperm aberration, and protected the thymus. FRT significantly reduced cell apoptosis compared with the irradiation group. The expression of Ca2+ and C-Caspase-3 was decreased after FRT treatment compared with the radiation-treated group. At the same time, expression of prototype PARP-1 and Bcl-2 increased, leading to a decrease in the percentage of apoptosis cells in FRT treatment groups. We conclude that FRT acts as a radioprotector. Apoptosis signals were activated via the Bcl-2(Ca2+)/Caspase-3/PARP-1 pathway in irradiated cells and FRT inhibited this pathway of apoptosis by down-regulation of C-Caspase-3 and Ca2+ and up-regulation of prototype PARP-1 and Bcl-2.  相似文献   

5.
The effect of mouse serum interferon (IF) in vitro and an inducer in vivo on the proliferation of a pluripotent stem cell population with high turnover rate was studied. Proliferation rate was characterized by the number of CFUs in the S phase of the cell cycle. Increased proliferation of bone marrow stem cell populations was produced either by irradiating the donor mice with 3·36 Gy (336 rad) 60Co-gamma rays 7 days before the experiment or by incubating normal bone marrow cells with 10–11 M concentration of isoproterenol. IF considerably reduced the number of CFUs in S phase in both cases without reducing the CFUs content of the samples. Injection of IF inducer (4 mg/kg poly I:C) into regenerating mice also inhibited the proliferation of CFUs without decreasing the femoral CFUs level. Regeneration kinetics of CFUs from irradiated poly I:C-treated mice ran parallel with that of irradiated untreated animals but showed a characteristic delay corresponding to approximately one CFUs doubling. A transient, non-cytotoxic proliferation inhibitory effect of IF or IF inducer is, therefore, proposed.  相似文献   

6.
The observation was made previously that the reduction in radiosensitivity in Vicia faba (as measured by postirradiation root growth) by prolonging the exposure time from about 10 minutes to 24 hours is much less marked at 3°C. than at 19°C. If chromosome damage is mainly responsible for the reduced root growth, this observation might be explained by a smaller drop in the "two-hit" aberration component, resulting from an increased time for which breaks are available for rejoining at 3°C. This hypothesis was tested by comparing chromatid aberration frequencies in root meristem cells produced by 105 rads of 60Co γ rays, given at dose rates of 19.4 and 0.073 rads per minute. Beans were maintained in aerated water at 2°C. prior to and during irradiation, and at this temperature the rate of development of cells was such that the two different exposure times both occupied a period during which the cell sensitivity was approximately constant. Immediately subsequent to irradiation, the roots were returned to 19°C. and examined cytologically. All chromatid aberrations were less frequent after low dose rate treatment, but only the chromatid interchange reduction was significant. The average time for which breaks are available for reunion, calculated from Lea's G function, was found to be 12 hours (95 per cent C.L. 6 to 24 hours).  相似文献   

7.
Chromosome damage is related to DNA damage and erroneous repair. It can cause cell dysfunction and ultimately induce carcinogenesis. Histone acetylation is crucial for regulating chromatin structure and DNA damage repair. Ionizing radiation (IR) can alter histone acetylation. However, variations in histone acetylation in response to IR exposure and the relationship between histone acetylation and IR-induced chromosome damage remains unclear. Hence, this study investigated the variation in the total acetylation levels of H3 and H4 in human lymphocytes exposed to 0–2 Gy 60Co γ-rays. Suberoylanilide hydroxamic acid (SAHA), a histone deacetylase (HDAC) inhibitor, was added to modify the histone acetylation state of irradiated cells. Then, the total acetylation level, enzyme activity, dicentric plus centric rings (dic?+?r) frequencies, and micronucleus (MN) frequencies of the treated cells were analyzed. Results indicated that the acetylation levels of H3 and H4 significantly decreased at 1 and 24 h, respectively, after radiation exposure. The acetylation levels of H3 and H4 in irradiated groups treated with SAHA were significantly higher than those in irradiated groups that were not treated with SAHA. SAHA treatment inhibited HDAC activity in cells exposed to 0–1 Gy 60Co γ-rays. SAHA treatment significantly decreased dic?+?r/cell and MN/cell in cells exposed to 0.5 or 1.0 Gy 60Co γ-rays relative to that in cells that did not receive SAHA treatment. In conclusion, histone acetylation is significantly affected by IR and is involved in chromosome damage induced by 60Co γ-radiation.  相似文献   

8.
The haemopoietic tissue of mice was damaged by different cell-cycle-stage specific and cell-cycle-stage non-specific cytostatic agents. The proliferation rate among the surviving pluripotential stem cells, i.e. those cells forming colonies in spleens of lethally irradiated mice (CFUs), was then investigated. The results suggest that, at least in the CFUs population, the cells which synthesize DNA in the S phase of the cell cycle inhibit the entry of the non-proliferating G0 cells into cell cycle. This evidence was based on the ability of three cytostatic agents, hydroxyurea, cytosine arabinoside and methotrexate, which are toxic specifically to the S phase cells to increase the proliferation in the CFUs population. This increase was quite out of proportion to the small amount of damage they caused to the population. Colchicine, which kills cells in mitosis, and ionizing irradiation, damaging cells in all stages, proved to be much weaker stimulators of proliferation. It has been suggested that a mechanism for the control of cellular proliferation might be based on the negative feedback in the cell cycle. In this feedback control loop the cells which are preparing for cell division in the S phase of the cell cycle inhibit the entry of the non-proliferating G0 cells into cell cycle.  相似文献   

9.
~(60)Co辐射对在体红细胞微观流变特性的影响   总被引:1,自引:0,他引:1  
采用^60Co大剂量全身均匀急性辐射的方法,使动物造血系统受到严重破坏,血造机能大大闰弱,在大约30天时间内,循环系统中的红细胞计数明显下降,从而造成一种辐射贫血的动物模型,以便时间内连续研究^60Co大剂量辐射对在体红细胞流变特性的影响。采用一种在低粘切变流场中能将红细胞变形指数DI分角为取向指数(DI)or和小变形指数(DI)d的新型激光衍射法,研究了^60Co大剂量辐射对在体红细胞变形性、全  相似文献   

10.
采用 60Co大剂量全身均匀急性辐射的方法,使动物造血系统受到严重破坏,造血机能大大减弱,在大约30天时间内,循环系统中的红细胞计数明显下降,从而造成一种辐射贫血的动物模型。以便较长时间内连续研究60Co大剂量辐射对在体红细胞流变特性的影响。采用一种在低粘切变流场中能将红细胞变形指数DI分解为取向指数 (DI)or和小变形指数 (DI)d的新型激光衍射法 [1],研究了 60Co大剂量辐射对在体红细胞变形性、全血粘度、沉降率和红细胞计数等血液流变学特性的影响 ,并与正常对照组红细胞的相应参数作比较 ,发现在60Co大剂量辐射后 ,开始这些参数变得明显异常 ,40天后逐渐接近于正常对照组水平。这表明 60Co大剂量急性辐射对动物体内造血系统的影响是长期的、严重的。将这种 60Co辐射造成的贫血模型与文宗曜等提出的用抗体诱导的大量同步化的球形红细胞贫血模型相比较 ,发现后者作为在体贫血动物模型具有更明显的优点。同时为研究辐射对血液流变特性的影响及正确地挑选红细胞衰老模型提供了理论与实验的基础。  相似文献   

11.
The effects of irradiation in the JRR-1 (Japan Research Reactor No. 1, a homogeneous light water nuclear reactor; max. power, 50 KW) on microorganisms such as bacterial and fungal spores and yeast cells were investigated in comparison with those of 60Co gamma radiation. As far as the lethal effect was concerned the dose rate of radiation in the experimental hole No. 16 of the JRR-1 was equivalent to 3.0×l06~3.4×l06 r/hr with 60Co gamma radiation, and a ratio of the neutron effect to the gamma radiation effect on microorganisms in this hole was estimated to be approximately 3~5.4. The results different from those with gamma radiation were obtained in experiments such as post-NaCl treatment and spore germination. The considerable contribution of fast neutrons to the total biological effect of neutrons, in comparison with the thermal neutron effect, could be presumed from the microbiological experiments with the help of physical and chemical data. Morphological changes in post-irradiation growth were observed by means of phase contrast microscopy. No specific aftereffect was found.  相似文献   

12.
The study investigates the effects of the 11+ and HarmoKnee injury prevention programmes on knee strength in male soccer players. Under-21-year-old players (n=36) were divided equally into: the 11+, HarmoKnee and control groups. The programmes were performed for 24 sessions (20-25 min each). The hamstrings and quadriceps strength were measured bilaterally at 60°·s-1, 180°·s-1 and 300°·s-1. The concentric quadriceps peak torque (PT) of the 11+ increased by 27.7% at 300°·s-1 in the dominant leg (p<0.05). The concentric quadriceps PT of HarmoKnee increased by 36.6%, 36.2% and 28% in the dominant leg, and by 31.3%, 31.7% and 20.05% at 60°·s-1, 180°·s-1 and 300°·s-1 in the non-dominant leg respectively. In the 11+ group the concentric hamstring PT increased by 22%, 21.4% and 22.1% at 60°·s-1, 180°·s-1 and 300°·s-1, respectively in the dominant leg, and by 22.3%, and 15.7% at 60°·s-1 and 180°·s-1, in the non-dominant leg. In the HarmoKnee group the hamstrings in the dominant leg showed an increase in PT by 32.5%, 31.3% and 14.3% at 60°·s-1, 180°·s-1 and 300°·s-1, and in the non-dominant leg hamstrings PT increased by 21.1% and 19.3% at 60°·s-1 and 180°·s-1 respectively. The concentric hamstrings strength was significantly different between the 11+ and control groups in the dominant (p=0.01) and non-dominant legs (p=0.02). The HarmoKnee programme enhanced the concentric strength of quadriceps. The 11+ and HarmoKnee programmes are useful warm-up protocols for improving concentric hamstring strength in young professional male soccer players. The 11+ programme is more advantageous for its greater concentric hamstring strength improvement compared to the HarmoKnee programme.  相似文献   

13.
Regulation of the proliferation of transplanted colony forming units (CFUs) was investigated in lethally irradiated mice, pretreated by methods known to accelerate hemopoietic recovery after sublethal irradiation. Prospective recipients were exposed to either hypoxia, vinblastine or priming irradiation and at different intervals thereafter lethally irradiated and transplanted with bone marrow. Repopulation of CFUs was determined by counting the number of splenic colonies in primary recipients or by retransplantation. Regeneration of grafted CFUs was greatly accelerated and their self-renewal capacity increased in mice grafted within two days after hypoxia. Also the number of splenic colonies formed by grafted syngeneic CFUs as well as by C57BL parent CFUs growing in BC3F1 hosts was significantly increased. The effect was not dependent on the seeding efficiency of CFUs and apparently resulted from hypoxia induced changes in the hosts physiological environment. Proliferative capacity of grafted CFUs increased remarkably in hosts receiving vinblastine two or four days prior to irradiation. Priming irradiation given six days before main irradiation accelerated, given two days before impaired regeneration of CFUs. The increased rate of regeneration was not related to the cellularity of hemopoietic organs at the time of transplantation. The growth of CFUs in diffusion chambers implanted into posthypoxic mice was only slightly improved which does indicate that the accelerated regeneration of CFUs in posthypoxic mice is mainly due to the changes in the hemopoietic microenvironment. A short conditioning of transplanted CFUs by host factor(s) was sufficient to improve regeneration. The results might suggest that the speed of hemopoietic regeneration depends on the number of CFUs being induced to proliferate shordy after irradiation, rather than on the absolute numbers of CFUs available to the organism.  相似文献   

14.
It is known that pretreatment of mice with bacterial endotoxin and certain stathmokinetic agents between 1 and 3 days prior to exposure to ionizing radiation reduce radiation lethality. In this communication it is shown that pretreatment with cytosine arabinoside, methotrexate, nortestosterone and chlorambucil reduces radiation (1000 rad) induced lethality. This reduction can be ascribed to enhanced regeneration of the haemopoietic system in pretreated animals and not to increased survival of colony-forming cells (CFU) in these animals. Regeneration of CFUs was underway within 24 hr after 900 rad in the pretreated mice but did not start until day 3 in mice treated with γ radiation only. Two agents, namely radiation itself (either 75 or 150 rad) and busulphan (10 mg/kg) did not reduce the lethal effects of subsequent γ irradiation nor enhance the regeneration of CFUs, even though radiation, like the protective cytosine arabinoside, induces early CFUs proliferation. The administration of nucleoside precursors of DNA enhanced regrowth of haemopoietic stem cells to an extent comparable with that of the most effective pretreatment, cytosine arabinoside. It is postulated that drugs like cytosine arabinoside operate by causing cell death, providing a source of DNA that can enhance the regrowth of surviving stem cells in the bone marrow.  相似文献   

15.
The extent of bone marrow damage caused by the administration of single or repeated doses of either hydroxyurea (1000 mg/kg b.w.) or colchicine (1 mg/kg b.w.) are comparable. This conclusion is based on serial studies of bone marrow cellularity and of the CFUc numbers in the bone marrow. the proliferation response of the pluripotential haemopoietic stem cells, determined by the cells forming colonies in the spleen of lethally irradiated mice (CFUs) markedly differs if the bone marrow damage is caused by hydroxyurea or colchicine. While hydroxyurea administration stimulates a large proportion of the resting G0 cells into the cell cycle, the damage induced by colchicine is followed by only a mild increase in the CFUs proliferation rate. The seeding efficiency of the spleen colony technique has been determined after both hydroxyurea and colchicine administration. This parameter, important for the estimation of the number of the pluripotential haemopoietic stem cells in blood forming organs, is significantly affected by hydroxyurea administration, but also by repeated injections of colchicine. Following a single dose of hydroxyurea, the time-course of the CFUs numbers, which were corrected for the change in the seeding efficiency, shows an overshoot occurring after 18–20 hr. At the other time periods, the number of pluripotential haemopoietic stem cells is little affected by a single hydroxyurea injection. This poses a question about the nature of the stimulus, which after hydroxyurea administration triggers the CFUs from the resting G0 state into the cell cycle. There is evidence that this stimulus is probably not represented by the damage caused to the various intensively proliferating cell populations of the bone marrow. This evidence is based on experiments which show that colchicine induced damage, of a degree similar to that after hydroxyurea, does not stimulate the CFUs proliferation rate to an extent comparable to hydroxyurea. The possibility that colchicine could block CFUs in the G0 state or that it could interfere with the progress of CFUs through the G1 and S phases of the cell cycle have been ruled out by experiments which demonstrated that colchicine (1 mg/kg b.w.), administered 10 min before hydroxyurea, does not reduce the number of CFUs triggered into the cell cycle as the consequence of hydroxyurea administration.  相似文献   

16.
Homogenous germlings of the marine macroalga Ulva fasciata D. (synonym, Ulva lactuca L.) were used to study hormesis effects in macroalgae grown under a low dose of 60Co γ‐ray radiation. The results of this study are the first to confirm the effects of macroalgal hormesis. Here it was demonstrated that growth of U. fasciata germlings was promoted substantially under 15 Gy of 60Co γ‐ray radiation, with an average increase of algal biomass of 47.43%. The levels of polysaccharides and lipids varied among the tested material and showed no effects from the 60Co γ‐ray radiation. However, the amount of protein was higher in the irradiated algae than in the control; the highest protein content of the irradiated algae was 3.958% (dry weight), in contrast to 2.318% in nonirradiated samples. This technique was applied to a field algal mass culture, which decreased the harvest time from 90 to 60 d. The mass culture approach may facilitate the production of macroalgae under unstable weather conditions such as typhoons in the summer or strong waves in the winter. The mass‐cultured macroalgae could be used as a source of bioenergy through the fermentation of algal simple sugars that derived from polysaccharides to produce ethanol.  相似文献   

17.
Aqueous solutions of highly stable supramolecular donor–acceptor complexes of chemically nonmodified pristine C60 fullerene molecules with H2O molecules (hydrated C60 fullerene–C60HyFn) and their labile nano-sized clusters were examined for their antioxidant effects on removal of hydroxyl radicals (OH) and protecting DNA against oxidative damage induced by ionizing radiation in vitro. The suppressing influence of C60HyFn on the formation of OH-radicals in water exposed to X-rays at doses of 1–7 Gy was assessed by determination of oxidation levels of coumarin-3-carboxylic acid. C60HyFn demonstrates apparent antiradical activity in vitro in the range of concentrations of 10−11–10−6 M. Paradoxically, the OH-removing efficacy of C60HyFn was in reverse correlation with fullerene concentration. It was hypothesized that the antiradical action of C60HyFn in water medium generally is due to a “nonstoichiometric” mechanism, supposedly to a hydrated free radical recombination (self-neutralization), which is catalyzed by specific water structures ordered by C60HyFn. With the use of 8-oxoguanine as a marker of oxidative damage to DNA, it has been demonstrated that C60HyFn in concentrations of 10−7–10−6 M protects nucleic acids against radical-induced damage. The second part of the present study was aimed to evaluate the overall radioprotective efficacy of C60HyFn in doses of 0.1 or 1 mg/kg b.w. injected intraperitoneally to mice either 1 h before or 15 min after lethal dose exposure of the X-ray (7 Gy) irradiation. Survival rate of the mice was observed at 30 day intervals after irradiation, while the weight gains of experimental animals were monitored as well. The most significant protective effect was demonstrated when 1 mg/kg dosage of C60HyFn was administered before irradiation. The outcome of the substance testing is 15% survival rate of irradiated animals at 30 days of observation, and prevention of noticeable weight loss characteristic for radiation impact, versus unprotected control animals. In conclusion, results of the study obviate that the apparent protective action of C60HyFn in vivo is determined by its considerable ability to decrease X-ray-generated reactive oxygen species. Based on the results and that neat C60 is nontoxic, actually in the hydrated form, without side effects and with sufficient radioprotective effects in low doses, C60HyFn may be considered as a novel antioxidant agent, which substantially diminishes the harmful effects of ionizing radiation.  相似文献   

18.
It was shown previously that colony formation in vitro by early erythroid progenitor cells (BFUe) requires sequential stimulation with a specific glycoprotein termed BFA and erythropoietin (EP). The action exerted by BFA was characterized as induction of proliferation in BFUe resulting after several cell divisions in EP-responsive progeny. The present study is directed at detection of EP-independent regulation of erythroid progenitor cells in vivo. Haemopoietic regeneration was induced by multiple administrations of hydroxyurea (HU). The femoral regeneration patterns of haemopoietic stem cells (CFUs), granulocyte/macrophage progenitor cells (CFUgm) and erythroid progenitor cells (BFUe, day 3 BFUe and CFUe) were studied in hypertransfused mice in comparison to nontransfused controls. The results show that (1) the phase of exponential regeneration of none of the cell populations studied is affected by hypertransfusion; (2) each of these cell populations exhibit a distinct regeneration pattern, indicating that they behave as separate functional entities; and (3) the three erythroid cell populations are suppressed by hypertransfusion in the post-exponential phase of regeneration in contrast to CFUs and CFUgm. The results support a two-regulator model of erythropoiesis.  相似文献   

19.
The signature DNA lesion induced by ionizing radiation is clustered DNA damage. Gamma radiation-induced clustered DNA damage containing base lesions was investigated in plasmid DNA under cell mimetic conditions and in two cell lines, V79-4 (hamster) and HF19 (human), using bacterial endonucleases Nth (endonuclease III) and Fpg (formamidopyrimidine DNA glycosylase). Following irradiation with 60Co γ-rays, induction of double-strand breaks (DSB) and clustered DNA damage, revealed as DSB by the proteins, was determined in plasmid using the plasmid-nicking assay and in cells by either conventional pulsed field gel electrophoresis or a hybridization assay, in which a 3 Mb restriction fragment of the X chromosome is used as a radioactive labeled probe. Enzyme concentrations (30–60 ng/µg DNA) were optimized to minimize visualization of background levels of endogenous DNA damage and DSB produced by non-specific cutting by Fpg and Nth in cellular DNA. 60Co γ- radiation produces a 1.8-fold increase in the yields of both types of enzyme sensitive sites, visualized as DSB compared with that of prompt DSB in plasmid DNA. In mammalian cells, the increase in yields of clustered DNA damage containing either Fpg or Nth sensitive sites compared with that of prompt DSB is 1.4–2.0- and 1.8-fold, respectively. Therefore, clustered DNA damage is induced in cells by sparsely ionizing radiation and their yield is significantly greater than that of prompt DSB.  相似文献   

20.
Radiation‐induced intestinal injury is one of the major side effects in patients receiving radiation therapy. There is no specific treatment for radiation enteritis in the clinic. We designed and synthesized a new compound named XH‐105, which is expected to cleave into polyphenol and aminothiol in vivo to mitigate radiation injury. In the following study, we describe the beneficial effects of XH‐105 against radiation‐induced intestinal injury. C57BL/6J mice were treated by gavage with XH‐105 1 hour before total body irradiation (TBI), and the survival rate was monitored. Histological changes were examined, and survival of Lgr5+ intestinal stem cells Ki67+ cells, villi+ enterocytes and lysozymes was determined by immunohistochemistry. DNA damage and cellular apoptosis in intestinal tissue were also evaluated. Compared to vehicle‐treated mice after TBI, XH‐105 treatment significantly enhanced the survival rate, attenuated structural damage of the small intestine, decreased the apoptotic rate, reduced DNA damage, maintained cell regeneration and promoted crypt proliferation and differentiation. XH‐105 also reduced the expression of Bax and p53 in the small intestine. These data suggest that XH‐105 is beneficial for the protection of radiation‐induced intestinal injury by inhibiting the p53‐dependent apoptosis signalling pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号