首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Vegetative nuclear division in Ceratocystis fagacearum (Bretz) Hunt was found to differ from classical mitosis in that: (1) division always occurs perpendicular to the longitudinal axis of the cell, (2) anaphase movement is unilateral and unsynchronized, (3) a spindle occurs only between separating chromatids. Interphase and prophase nuclei and nucleoli are morphologically similar to those in higher plants. At metaphase the associated chromosomes form a bar of chromatin and lie against the hyphal wall. Spindle fibers appear between separating chromatids, perhaps pushing them apart. When nuclear division is complete the nuclei become attenuated and migrate. Vegetative nuclear division in C. fagacearum may be an evolutionary form of classical mitosis.  相似文献   

3.
J. Burgess 《Protoplasma》1970,71(1-2):77-89
Summary The relationships between microtubules and the nuclear membrane have been studied during the cell division cycle in adventitious roots ofDryopteris filixmas. At prophase, the equatorial band of microtubules hitherto only reported for higher plant cells is present in the cytoplasm. The occurrence of the band is correlated with a striking change in the shape of the nucleus. Microtubules leave the peripheral cytoplasmic band in groups and are found to partially encircle the nucleus. At the same time pole-to-pole fibres also lie close to the nuclear envelope. A specific function for some of these fibres is proposed, and the results are discussed in the light of previous work on the cytoplasmic features of prophase. The behaviour of the nuclear membrane during mitosis and its reformation around the daughter nuclei are described. These results are related to the concept of microtubule organizing centres.  相似文献   

4.
Mitosis is described in the flagellate Oxyrrhis marina Dujardin and is compared in related genera. Dense plaques develop in the nuclear envelope at prophase and give rise to an intranuclear spindle. Some of the microtubules associate with the chromosomes while others extend across the nucleus. The basal bodies migrate toward the poles early in division and retain a position lateral to the nuclear poles throughout mitosis. Microtubules are not present between the nucleus and the basal bodies. The nucleolus is persistent and elongates throughout anaphase and telophase. Chromosomal separation is accomplished by sliding of non-chromosomal microtubules and by elongation of the nuclear envelope rather than by shortening of the spindle microtubules. The nuclear envelope begins to constrict in the center early in anaphase. Continued constriction of the envelope and elongation of the nucleus leads to the formation of a dumbbell-shaped nucleus by late telophase. Mitosis culminates by the constriction of the nucleus into two daughter nuclei. The taxonomic position of Oxyrrhis marina is discussed in light of these findings.  相似文献   

5.
At the ultrastructural level, cell division in Ochromonas danica exhibits several unusual features. During interphase, the basal bodies of the 2 flagella replicate and the chloroplast divides by constriction between its 2 lobes. The rhizoplast, which is a fibrous striated root attached to the basal body of the long flagellum, extends under the Golgi body to the surface of the nucleus in interphase cells. During proprophase, the Golgi body replicates, apparently by division, and a daughter rhizoplast, appears. During prophase, the 2 pairs of flagellar basal bodies, each with their accompanying rhizoplast and Golgi body, begin to separate. Three or 4 flagella are already present at this stage. At the same time, there is a proliferation of microtubules outside the nuclear envelope. Gaps then appear in the nuclear envelope, admitting the microtubules into the nucleus, where they form a spindle. A unique feature of mitosis in O. danica is that the 2 rhizoplasts form the poles of the spindle, spindle microtubules inserting directly onto the rhizoplasts. Some of the spindle microtubules extend from pole to pole; others appear to attach to the chromosomes. Kinetochores, however, are not present. The nuclear envelope breaks down, except, in the regions adjacent, to the chloroplasts; chloroplast ER remains intact throughout mitosis. At late anaphase the chromosomes come to lie against part of the chloroplast ER. This segment of the chloroplast ER appears to be incorporated as part of the reforming nuclear envelope, thus reestablishing the characteristic nuclear envelope—chloroplast ER association of the interphase cell.  相似文献   

6.
通过Giemsa染色观察禾谷镰孢菌Fusarium graminearum分生孢子萌发过程中的核相变化及有丝分裂过程。观察表明,分生孢子细胞为单核,细胞核在分生孢子细胞内分裂后进入芽管,在芽管内进行多次分裂,使芽管内细胞核数目不断变化。禾谷镰孢菌有丝分裂过程可以分为4个时期,前期染色体逐渐浓缩变短,中期染色体清晰可见,后期染色单体发生分离并向相反的两极移动,末期形成新的子核。有丝分裂过程中染色体的分离同步或不同步,不同步分离中的滞后染色体形成后期桥的现象更为普遍。  相似文献   

7.
Summary Changes in the pattern of microtubules during the cell cycle of the hepaticReboulia hemisphaerica (Bryophyta) were studied by indirect immunofluorescence using conventional and confocal laser scanning microscopy (CLSM). The first indication that a cell is preparing for division is fusiform shaping of the nucleus accompanied by the appearance of well-defined polar organizers (POs) at the future spindle poles. Microtubules emanating from the POs ensheath the nucleus and eventually develop into the half-spindles of mitosis. Some of the microtubules from each PO pass tangential to the nucleus and interact in the region of the future mitotic equator. A preprophase band (PPB) forms in this region later in prophase and coexists with the prophase spindle. Thus, the plane of division appears to be determined by interaction of opposing arrays of microtubules emanating from POs. Prometaphase is marked by disappearance of the POs, loss of astral microtubules, and conversion of the fusiform spindle of prophase to a truncated, barrel-shaped spindle more typical of higher plants. Restoration of cortical microtubules in daughter cell occurs on the cell side distal to the new cell plate, but nucleation of microtubules is associated with the nuclear envelope and not with organized POs. At the next division POs appear at opposite poles of preprophase nuclei with no evidence of division and migration that is characteristic of cells with centriolar centrosomes. These data lend additional support for the view that mitosis in hepatics is transitional between green algae and higher plants.Abbreviations AMS axial microtubule system - CLSM confocal laser scanning microscopy - MTOC microtubule organizing center - PO polar organizer - PPB preprophase band of microtubules - QMS quadripolar microtubule system - TEM transmission electron microscopy  相似文献   

8.
Role of spindle microtubules in the control of cell cycle timing   总被引:14,自引:10,他引:4       下载免费PDF全文
Sea urchin eggs are used to investigate the involvement of spindle microtubules in the mechanisms that control the timing of cell cycle events. Eggs are treated for 4 min with Colcemid at prophase of the first mitosis. No microtubules are assembled for at least 3 h, and the eggs do not divide. These eggs show repeated cycles of nuclear envelope breakdown (NEB) and nuclear envelope reformation (NER). Mitosis (NEB to NER) is twice as long in Colcemid-treated eggs as in the untreated controls. Interphase (NER to NEB) is the same in both. Thus, each cycle is prolonged entirely in mitosis. The chromosomes of treated eggs condense and eventually split into separate chromatids which do not move apart. This "canaphase" splitting is substantially delayed relative to anaphase onset in the control eggs. Treated eggs are irradiated after NEB with 366-nm light to inactivate the Colcemid. This allows the eggs to assemble normal spindles and divide. Up to 14 min after NEB, delays in the start of microtubule assembly give equal delays in anaphase onset, cleavage, and the events of the following cell cycle. Regardless of the delay, anaphase follows irradiation by the normal prometaphase duration. The quantity of spindle microtubules also influences the timing of mitotic events. Short Colcemid treatments administered in prophase of second division cause eggs to assemble small spindles. One blastomere is irradiated after NEB to provide a control cell with a normal-sized spindle. Cells with diminished spindles always initiate anaphase later than their controls. Telophase events are correspondingly delayed. This work demonstrates that spindle microtubules are involved in the mechanisms that control the time when the cell will initiate anaphase, finish mitosis, and start the next cell cycle.  相似文献   

9.
Cell division in the marine red algae Polysiphonia harveyi Bailey and P. denudata (Dillwyn) Kutzing was studied with the electron microscope. Cells comprising the compact spermatangial branches of male plants were used exclusively because of their small size, large numbers and the ease with which the division planes can be predetermined. Some features characterizing mitosis in Polysiphonia confirm earlier electron microscope observations in Membranoptera, the only other florideophycean algae in which mitosis has been studied in detail. Common to both genera are a closed, fenestrated spindle, perinuclear endoplasmic reticulum, a typical metaphase plate arrangement of chromosomes, conspicuous, layered kinetochores, chromosomal and non-chromosomal microtubules, and nucleus associated organelles (NAOs) known as polar rings (PRs) located singly in large ribosome-free zones of exclusion at division poles in late prophase. However, other features, unreported in Membranoptera, were observed consistently in Polysiphonia. These include the presence of PR pairs in interphase-early prophase cells, the attachment of PRs to the nuclear envelope during all mitotic stages, the migration of a single PR to establish the division axis, a prominent, nuclear envelope protrusion (NEP) at both division poles at late prophase, the prometaphase splitting of PRs into proximal and distal portions, and the reformation of post-mitotic nuclei by the separation of an elongated interzonal nuclear midpiece at telophase. During cytokinesis, cleavage furrows impinge upon a central vacuolar region located between the two nuclei and eventually pit connections are formed in a manner basically similar to that reported for other red algae. Diagrammatic sequences of proposed PR behavior during mitosis are presented which can account for events known to occur during cell division in Polysiphonia. Mitosis is compared with that reported in several other lower plants and it is suggested that features of cell division are useful criteria to aid in the assessment of phylogenetic relationships of red algae.  相似文献   

10.
Double labeling of microtubules and actin filaments revealed that in prophase subsidiary mother cells of Zea mays a monopolar prophase microtubule "half-spindle" is formed, which lines the nuclear hemisphere distal to the inducing guard mother cell. The nuclear hemisphere proximal to the guard mother cell is lined by an F-actin cap, consisting of a cortical F-actin patch and actin filaments originating from it. The microtubules of the "half-spindle" decline from the nuclear surface and terminate to the preprophase microtubule band. After disintegration of the latter, a bipolar metaphase spindle is organized. The polar F-actin cap persists during mitosis and early cytokinesis, extending to the chromosomes and the subsidiary cell daughter nucleus. In oryzalin treated subsidiary mother cells the prophase nuclei move away from the polar site. Cytochalasin B and latrunculin-B block the polar migration of subsidiary mother cell nuclei, but do not affect those already settled to the polar position. The prophase nuclei of latrunculin-B treated subsidiary mother cells are globally surrounded by microtubules, while the division plane of latrunculin-B treated subsidiary mother cells is misaligned. The prophase nuclei of brick 1 mutant Zea mays subsidiary mother cells without F-actin patch are also globally surrounded by microtubules. The presented data show that the prophase microtubule "half-spindle"-preprophase band complex anchors the subsidiary mother cell nucleus to the polar cell site, while the polar F-actin cap stabilizes the one metaphase spindle pole proximal to the inducing guard mother cell.  相似文献   

11.
Cell division in Chlamydomonas moewusii is described. The cells become immobile with flagellar abscission prior to mitosis. The basal bodies migrate toward the nucleus and become intimately associated with the nuclear membrane which is devoid, of ribosomes where adjacent to the basal bodies. The basal bodies replicate at preprophase. The nucleolus fragments at this stage. By prophase the basal body pairs have migrated, to the nuclear poles. Spindle fibers become prominent in the nucleus. The nuclear membrane does not fragment. The nucleus assumes a crescent-form by metaphase. Polar fenestrae are absent. Kinetochores appear at anaphase. An interzonal spindle elongates as the chromosomes move to the nuclear poles. Daughter nuclei become abscised by an ingrowth of nuclear membrane, leaving behind a separated, degenerating interzonal spindle. Ribosomes reappear on the outer nuclear membrane at late telophase. Nucleoli reform early in cytokinesis. The cleavage furrow, associated microtubules, and endoplasmic reticulum comprise the phycoplast. Cytokinesis proceeds rapidly after the completion of telophase. The basal body-nucleus relationship becomes reorganized into the typical interphase condition late in cytokinesis. Specific and predictable organelle rearrangements during mitosis have been described. Cell division in C. moewusii is compared with other algae, especially C. reinhardi.  相似文献   

12.
The structure of centric, intranuclear mitosis and of organelles associated with nuclei are described in developing zoosporangia of the chytrid Rhizophydium spherotheca. Frequently dictyosomes partially encompass the sides of diplosomes (paired centrioles). A single, incomplete layer of endoplasmic reticulum with tubular connections to the nuclear envelope is found around dividing nuclei. The nuclear envelope remains intact during mitosis except for polar fenestrae which appear during spindle incursion. During prophase, when diplosomes first define the nuclear poles, secondary centrioles occur adjacent and at right angles to the sides of primary centrioles. By late metaphase the centrioles in a diplosome are positioned at a 40° angle to each other and are joined by an electron-dense band; by telophase the centrioles lie almost parallel to each other. Astral microtubules radiate into the cytoplasm from centrioles during interphase, but by metaphase few cytoplasmic microtubules are found. Cytoplasmic microtubules increase during late anaphase and telophase as spindle microtubules gradually disappear. The mitotic spindle, which contains chromosomal and interzonal microtubules, converges at the base of the primary centriole. Throughout mitosis the semipersistent nucleolus is adjacent to the nuclear envelope and remains in the interzonal region of the nucleus as chromosomes separate and the nucleus elongates. During telophase the nuclear envelope constricts around the chromosomal mass, and the daughter nuclei separate from each end of the interzonal region of the nucleus. The envelope of the interzonal region is relatively intact and encircles the nucleolus, but later the membranes of the interzonal region scatter and the nucleolus disperses. The structure of the mitotic apparatus is similar to that of the chytrid Phlyctochytrium irregulare.  相似文献   

13.
Rat kangaroo (PtK2) cells were fixed and embedded in situ. Cells in mitosis were studied with the light microscope and thin sections examined with the electron microscope. Pericentriolar, osmiophilic material, rather than the centrioles, is probably involved in the formation of astral microtubules during prophase. Centriole migration occurs during prophase and early prometaphase. The nuclear envelope ruptures first in the vicinity of the asters. Nuclear pore complexes disintegrate as envelope fragments are dispersed to the periphery of the mitotic spindle. Microtubules invade the nucleus through gaps of the fragmented envelope. The number of microtubules and the degree of spindle organization increase during prometaphase and are maximal at metaphase. At this stage, chromosomes are aligned on the spindle equator, sister kinetochores facing opposite poles. Cytoplasmic organelles are excluded from the spindle. Prominent bundles of kinetochore microtubules converge towards the poles. Spindles in cold-treated cells consist almost exclusively of kinetochore tubules. Separating daughter chromosomes in early anaphase are connected by chromatin strands, possibly reflecting the rupturing of fibrous connections occasionally observed between sister chromatids in prometaphase. Breakdown of the spindle progresses from late anaphase to telophase, except for the stem bodies. Chromosomes decondense to form two masses. Nuclear envelope reconstruction, probably involving endoplasmic reticulum, begins on the lateral faces. Nuclear pores reappear on membrane segments in contact with chromatin. Microtubules are absent from reconstructed daughter nuclei.This report is to a large part based on a dissertation submitted by the author to the Graduate Council of the University of Florida in partial fulfillment of the requirements for the degree of Doctor of Philosophy.  相似文献   

14.
Some details of interphase cell structure are given. At prophase the nuclear envelope breaks down and the nucleolus disperses; very small doubled chromosomes generally form a precisely aligned, metaphase plate with normal spindle microtubules present; 2 plates of chromatids separate during anaphase, the spindle becoming invaded, by (mucilage) vesicles. Telophase nuclei arc initially very hard to discern, until they increase in volume. Microtubules collect at each pole, becoming increasingly focused on one small region containing fine granular malarial, the microtubule center (MC). The septum, an annular ingrowth, begins forming at prophase and partitions the cell by telophase. At no stage were microtubules involved in this initial cross-wall formation. At telophase the spindle collapses and as the nuclei move back to the septum, increasing numbers of microtubules appear near this cross wall, all transversely aligned. An annular split deepens down the middle of the wall material in the septum, and the daughter cells begin to expand, stretching the new wall; the microtubules appearing near the septum now are transformed steadily into typical hooplike wall, microtubules, but strictly confined to the expanding wall (there are none near interphase cell walls). Meanwhile, the MC, has moved, to the side of the cell and begins migrating along one of the grooves in the chloroplast; a large number of parallel microtubules extends back to the nucleus, which becomes increasingly deformed as it begins to extend a long thin protrusion along these, microtubules. The MC keeps moving along the cell until it lodges in the cleavage developing in the chloroplast. Some microtubules extend still further up the cell, others appear in the chloroplast cleavage, but most en-sheathe the nucleus which by now is moving along the cell as a cylindrical structure tightly fitting in the chloroplast groove. The nuclear membrane is then drawn up into the deepening chloroplast constriction, and when the chloroplast is finally cut in 2, the nucleus lakes up its interphase position between the 2 halves. While all this is occurring, the whole cytoplasm is expanding into the new semicell being created by growth of the wall originally derived from the septum. Thus the interphase cell symmetry is reestablished after mitosis. These results are discussed in terms of more general phenomena of cell division and morphogenesis.  相似文献   

15.
Summary The three-dimensional ultrastructural organization of the mitotic apparatus ofDimastigella mimosa was studied by computer-aided, serial-section reconstruction. The nuclear envelope remains intact during nuclear division. During mitosis, chromosomes do not condense, whereas intranuclear microtubules are found in close association with six pairs of kinetochores. No discrete microtubule-organizing centers, except kinetochore pairs, could be found within the nucleus. The intranuclear microtubules form six separate bundles oriented at different angles to each other. Each bundle contains up to 8 tightly packed microtubules which push the daughter kinetochores apart. At late anaphase only, midzones of these bundles align along an extended interzonal spindle within the narrow isthmus between segregating progeny nuclei. The nuclear division inD. mimosa can be described as closed intranuclear mitosis with acentric and separate microtubular bundles and weakly condensed chromosomes.Abbreviation MTOC microtubule-organizing center  相似文献   

16.
Gametophyte germlings from unialgal cultures of Membranoptera platyphylla were examined with the electron microscope. The events of mitosis were observed in dividing cells near the thallus apex. In prophase the nucleus is spindle-shaped and surrounded by microtubules and a layer of endoplasmic reticulum. A unique organelle, the polar ring, is present at each pole; its junction is not clear. At metaphase the nuclear envelope is intact except for fenestrations at the poles. Spindle microtubules are attached to distinct kinetochores on the chromosomes and continuous pole-to-pole microtubules are present. The nucleolus has dispersed but, its granular components are still evident in the nucleoplasm. As the chromosomes separate, the nucleus elongates and finally constricts in the middle to produce 2 daughter nuclei.  相似文献   

17.
In a study of pollen development in Gasteria verrucosa, the changes in the spatial organization of microtubules were related to the processes of cell division, nuclear movement and cytomorphogenesis. Sections of polyethylene-glycol-embedded anthers of G. verrucosa were processed immunocytochemically to record the structure and succession of fluorescently labeled microtubular configurations. Using microspectrophotometric measurements the relative quantity of tubulin in microtubules per unit of cytoplasm was determined. Cell dimensions and nuclear positions were measured to relate changes in cell shape and nuclear movements to microtubular configurations. Microtubules were detected in the different cells during microsporogenesis and microgametogenesis. In microspore mother cells which are approximately isodiametric at interphase, microtubules were predominantly arranged in a criss-cross pattern. The microtubules probably function as a flexible cytoskeleton which sustains the integrity of the cytoplasm. Bundles of microtubules were observed in the microspores, in the generative cells and during nuclear division, where they functioned in establishing and maintaining cell and spindle shapes. Microtubules radiating from nuclear membranes appeared to fix the nucleus in position. In prophase of meiosis and after microspore mitosis, periods a high fluorescence intensity were distinguished indicating a variation in the quantity of microtubules.Abbreviation MT microtubule  相似文献   

18.
Summary The multicellular parasitic dinoflagellateHaplozoon axiothellae Siebert was studied with electron microscopy. The trophocyte (attachment cell) bears a suction apparatus with a movable protruding stylet that penetrates the epithelial cell of the host gut. The gonocytes are binucleate and divide frequently. Nuclear structure is similar to the mesokaryotic condition of other dinoflagellates although the chromosomes lack the helically coiled appearance of the DNA fibrils. During nuclear division the nucleus retains its envelope intact and cytoplasmic invaginations develop in which packets of parallel microtubules occur. The microtubules attach to the nuclear envelope opposite the site of chromosome attachment. The chromosomes remain condensed during interphase but the helically coiled DNA fibrils characteristic of the mesokaryotic condition are not evident.The theca which encloses all cells is composed of elements similar to those of typical free-living dinoflagellates, the outer cell membrane and flattened vesicles which contain either flat thin plates or larger spines. No subthecal microtubules are present. The theca grows inward following nuclear division and separates the daughter cells. Trichocysts, pusules, flagellar structures and chloroplasts are not present. The relationship ofHaplozoon to other free-living and parasitic dinoflagellates is discussed.  相似文献   

19.
Summary A unique spindle apparatus develops during mitosis in the micronucleus ofParamecium bursaria. During interphase the micronucleus contains short microtubule profiles and clumps of condensed chromatin. Throughout mitosis the nuclear envelope remains intact. During prophase, cup-shaped structures termed microlamellae develop in close association with regions of condensed chromatin. Each micromella consists of an outer sublamella, an inner sublamellae, and ring-shaped structures termed microsepta that join the two sublamellae. Microtubules elongate parallel to the division axis. During metaphase, the microlamellae appear to act as kinetochorelike structures that aid in the alignment of the chromosomes. The microlamellae appear conical and join to a meshwork of microfilaments at their apices. Further toward the polar regions the microfilaments join with microtubules that converge and terminate near the nuclear envelope. During metaphase-anaphase and anaphase the chromosomes are apparently moved by the microfilaments pulling on the kinetochorelike microlamellae. Also during metaphase-anaphase, extranuclear microtubules join the nuclear envelope of the micronucleus to microtubule elements of the cell cortex. By anaphasetelophase, microlamellae and the microfilament meshwork degenerate and microtubules represent the only spindle elements. The evidence of this report supports the hypothesis that microfilaments can participate with microtubules in the movement of chromosomes.This report is part of a Ph.D. Thesis presented by the senior author at Fordham University.  相似文献   

20.
Successful culture of the obligatorily anaerobic symbionts residing in the hindgut of the wood-eating cockroach Cryptocercus punctulatus now permits continuous observation of mitosis in individual Barbulanympha cells. In Part I of this two-part paper, we report methods for culture of the protozoa, preparation of microscope slide cultures in which Barbulanympha survived and divided for up to 3 days, and an optical arrangement which permits observation and through-focus photographic recording of dividing cells, sequentially in differential interference contrast and rectified polarized light microscopy. We describe the following prophase events and structures: development of the astral rays and large extranuclear central spindle from the tips of the elongate-centrioles; the fine structure of spindle fibers and astral rays which were deduced in vivo from polarized light microscopy and seen as a particular array of microtubules in thin-section electron micrographs; formation of chromosomal spindle fibers by dynamic engagement of astral rays to the kinetochores embedded in the persistent nuclear envelope; and repetitive shortening of chromosomal spindle fibers which appear to hoist the nucleus to the spindle surface, cyclically jostle the kinetochores within the nuclear envelope, and churn the prophase chromosomes. The observations described here and in Part II have implications both for the evolution of mitosis and for understanding the mitotic process generally.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号