首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Equine FSH (eFSH) and eCG are members of the glycoprotein hormone family. These proteins are heterodimeric, composed of noncovalently associated alpha and beta subunits. We have previously reported that recombinant eCG has potent LH- and FSH-like activities and that the oligosaccharide at Asn(56) of the alpha subunit plays an indispensable role in expressing LH- but not FSH-like activity. In the present study, we cloned eFSH beta subunit cDNA and expressed wild-type recombinant eFSH and a partially deglycosylated mutant FSH (eFSH alpha56/beta) to investigate the biological role of the oligosaccharide at Asn(56) in FSH activity. The wild-type eFSH and eCG stimulated estradiol production in a dose-dependent manner in the primary cultures of rat granulosa cells, indicating that these equine gonadotropins have FSH activity. Partially deglycosylated eCG (eCG alpha56/beta) also stimulated estradiol production, confirming that the FSH-like activity of eCG is resistant to the removal of the N-linked oligosaccharide. Partially deglycosylated eFSH (eFSH alpha56/beta), however, did not show any FSH activity, indicating that the oligosaccharide at Asn(56) was necessary for eFSH. Thus, FSH-like activities of two gonadotropins, eCG and eFSH, are evoked through the distinct molecular mechanisms regarding the biological role of oligosaccharide at Asn(56) of the alpha subunit.  相似文献   

2.
Hao P  Ren Y  Xie Y 《PloS one》2010,5(11):e15096
Different glycoforms of some proteins have been identified as differential spots for certain diseases in 2-DE, indicating disease-related glycosylation changes. It is routine to determine the site-specific glycosylation of nonsialylated N-glycoproteins from a single gel spot, but some obstacles still exist in analyzing sialylated glycoproteins due to the lability and higher detection limit of acid glycans in MALDI-TOF/TOF analysis. Thus, we present an improved protocol here. Tryptic glycopeptides were separated and subjected to MALDI-TOF/TOF analysis, resulting in the identification of site-specific glycosylation of high-intensity glycopeptides. Sequential deglycosylation and desialylation were used to improve the identification of glycosylation sites and desialylated glycans. The site-specific glycosylation of large glycopeptides and low-intensity glycopeptides was deduced based on the masses of glycopeptides, deglycosylated peptides and desialylated glycans. By applying it to 2-DE separated human serum, the difference of N-glycosylation was successfully determined for α1-antitrypsin between different gel spots.  相似文献   

3.
Analysis of the glycosylation of human serum IgD and IgE indicated that oligomannose structures are present on both Igs. The relative proportion of the oligomannose glycans is consistent with the occupation of one N-linked site on each heavy chain. We evaluated the accessibility of the oligomannose glycans on serum IgD and IgE to mannan-binding lectin (MBL). MBL is a member of the collectin family of proteins, which binds to oligomannose sugars. It has already been established that MBL binds to other members of the Ig family, such as agalactosylated glycoforms of IgG and polymeric IgA. Despite the presence of potential ligands, MBL does not bind to immobilized IgD and IgE. Molecular modeling of glycosylated human IgD Fc suggests that the oligomannose glycans located at Asn(354) are inaccessible because the complex glycans at Asn(445) block access to the site. On IgE, the additional C(H)2 hinge domain blocks access to the oligomannose glycans at Asn(394) on one H chain by adopting an asymmetrically bent conformation. IgE contains 8.3% Man(5)GlcNAc(2) glycans, which are the trimmed products of the Glc(3)Man(9)GlcNAc(2) oligomannose precursor. The presence of these structures suggests that the C(H)2 domain flips between two bent quaternary conformations so that the oligomannose glycans on each chain become accessible for limited trimming to Man(5)GlcNAc(2) during glycan biosynthesis. This is the first study of the glycosylation of human serum IgD and IgE from nonmyeloma proteins.  相似文献   

4.
Glycans serve as important regulators of antibody activities and half-lives. IgE is the most heavily glycosylated antibody, but in comparison to other antibodies little is known about its glycan structure function relationships. We therefore describe the site specific IgE glycosylation from a patient with a novel hyper IgE syndrome linked to mutations in PGM3, which is an enzyme involved in synthesizing UDP-GlcNAc, a sugar donor widely required for glycosylation. A two-step method was developed to prepare two IgE samples from less than 1 mL of serum collected from a patient with PGM3 mutation and a patient with atopic dermatitis as a control subject. Then, a glycoproteomic strategy was used to study the site-specific glycosylation. No glycosylation was found at Asn264, whilst high mannose glycans were only detected at Asn275, tri-antennary glycans were exclusively observed at Asn99 and Asn252, and non-fucosylated complex glycans were detected at Asn99. The results showed similar glycosylation profiles between the two IgE samples. These observations, together with previous knowledge of IgE glycosylation, imply that IgE glycosylation is similarly regulated among healthy control, allergy and PGM3 related hyper IgE syndrome.  相似文献   

5.
Follicle-stimulating hormone (FSH) glycosylation is regulated by feedback from the gonads, resulting in an array of glycans associated with FSH preparations derived from pools of pituitary or urine extracts. FSH glycosylation varies due to inhibition of FSHbeta N-glycosylation, elaboration of 1-4 branches possessed by mature N-glycans, and the number and linkage of terminal sialic acid residues. To characterize FSH glycosylation, FSH isoforms in pituitary gland extracts and a variety of physiological fluids are commonly separated by chromatofocusing. Variations in the ratios of immunological and biological activities in the resulting FSH isoform preparations are generally attributed to changes in glycosylation, which are most often defined in terms of sialic acid content. Using Western blotting to assess human FSHbeta glycosylation inhibition revealed 30-47% nonglycosylated hFSHbeta associated with four of six hFSH isoform preparations derived by chromatofocusing. Glycopeptide mass spectrometry assessment of glycan branching in these isoforms extensively characterized two N-glycosylation sites, one at alphaAsn52, the critical glycan for FSH function, and the other at betaAsn24. With two to four N-glycans per FSH molecule, many combinations of charges distributed over these sites can provide the same isoelectric point. Indeed, several glycans were common to all isoform fractions that were analyzed. There was no trend showing predominantly monoantennary glycans associated with the high-pI fractions, nor were predominantly tri- and tetra-antennary glycans associated with low-pI fractions. Thus, differences in receptor binding activity could not be associated with any specific glycan type or location in the hormone. FSH aggregation was associated with reduced receptor binding activity but did not affect immunological activity. However, as gel filtration indicated sufficient heterodimer was present in each isoform preparation to generate complete inhibition curves, the near total loss of receptor binding activity in several preparations could not be explained by aggregation alone, and the mechanism remains unknown.  相似文献   

6.
Abnormal glycosylation of proteins is known to be either resultant or causative of a variety of diseases. This makes glycoproteins appealing targets as potential biomarkers and focal points of molecular studies on the development and progression of human ailment. To date, a majority of efforts in disease glycoproteomics have tended to center on either determining the concentration of a given glycoprotein, or on profiling the total population of glycans released from a mixture of glycoproteins. While these approaches have demonstrated some diagnostic potential, they are inherently insensitive to the fine molecular detail which distinguishes unique and possibly disease relevant glycoforms of specific proteins. As a consequence, such analyses can be of limited sensitivity, specificity, and accuracy because they do not comprehensively consider the glycosylation status of any particular glycoprotein, or of any particular glycosylation site. Therefore, significant opportunities exist to improve glycoproteomic inquiry into disease by engaging in these studies at the level of individual glycoproteins and their exact loci of glycosylation. In this concise review, the rationale for glycoprotein and glycosylation site specificity is developed in the context of human disease glycoproteomics with an emphasis on N-glycosylation. Recent examples highlighting disease-related perturbations in glycosylation will be presented, including those involving alterations in the overall glycosylation of a specific protein, alterations in the occupancy of a given glycosylation site, and alterations in the compositional heterogeneity of glycans occurring at a given glycosylation site. Each will be discussed with particular emphasis on how protein-specific and site-specific approaches can contribute to improved discrimination between glycoproteomes and glycoproteins associated with healthy and unhealthy states.  相似文献   

7.
Donkey gonadotropins (donkey luteinizing hormone, dLH; donkey follicle-stimulating hormone, dFSH) have been isolated in purified form from 191 donkey pituitaries using essentially the same procedures previously employed for the purification of equine gonadotropins. Chemically, dLH and dFSH were observed to be similar to equine LH (eLH) and FSH (eFSH) in fractionation behavior and glycoprotein nature. Two forms of the dFSH molecule were observed, as is the case for eFSH. Donkey LH had significantly less total carbohydrate (13.5%) and sialic acid (1.9%) than eLH (26.7% and 5.8%, respectively). Carbohydrate (17-21%) and sialic acid (2.4%) content of the two dFSH preparations closely resembled that of eFSH. A slightly higher tyrosine content in the donkey gonadotropins was noted in a comparison of amino acid compositions. Immunologically, in a heterologous FSH radioimmunoassay (RIA), dFSH preparations were equal to or twice as active as eFSH preparations. However, in homologous RIAs for equine chorionic gonadotropin (eCG), eFSH and eLH, both the dLH and dFSH preparations were considerably less active than the equine gonadotropins, and their inhibition curves were all nonparallel. Biologically, in the Steelman-Pohley assay both dFSH preparations were equipotent and as potent as eFSH (approximately 40 times NIH-FSH-S12). In the Sertoli cell assay for cAMP (FSH assay) and the Leydig cell assay for testosterone (LH assay), both dFSH and dLH were 2- or 6-fold more active than eFSH and eLH, respectively. In rat and equine testis FSH homologous radioreceptor assays, dFSH preparations were as active and up to 6-fold more active than eFSH. In contrast, dLH was 10-fold less active than eLH in the equine LH homologous radioreceptor assay. Unlike eLH, dLH was found to possess little intrinsic FSH activity or FSH inhibitory activity, and the small amount of FSH activity observed was most likely due to FSH contamination. Therefore, eLH behaves much like eCG (pregnant mare's serum gonadotropin, PMSG) which also possesses both LH and FSH activity. In contrast, dLH behaves more like donkey chorionic gonadotropin (dCG) which possesses only a low degree of FSH activity.  相似文献   

8.
Here a mass spectrometry-based platform for the analysis of glycoproteins is presented. Glycopeptides and released glycans are analyzed, the former by quadrupole orthogonal time-of-flight liquid chromatography/mass spectrometry (QoTOF LC/MS) and the latter by permethylation analysis using matrix-assisted laser desorption/ionization (MALDI)–TOF MS. QoTOF LC/MS analysis reveals the stochastic distribution of glycoforms at occupied sequons, and the latter provides a semiquantitative assessment of overall protein glycosylation. Hydrophilic interaction chromatography (HILIC) was used for unbiased enrichment of glycopeptides and was validated using five model N-glycoproteins bearing a wide array of glycans, including high-mannose, complex, and hybrid subtypes such as sulfo and sialyl forms. Sialyl and especially sulfated glycans are difficult to analyze because these substitutions are labile. The conditions used here allow detection of these compounds quantitatively, intact, and in the context of overall glycosylation. As a test case, we analyzed influenza B/Malaysia/2506/2004 hemagglutinin, a component of the 2006–2007 influenza vaccine. It bears 11 glycosylation sites. Approximately 90% of its glycans are high mannose, and 10% are present as complex and hybrid types, including those with sulfate. The stochastic distribution of glycoforms at glycosylation sites is revealed. This platform should have wide applications to glycoproteins in basic sciences and industry because no apparent bias for any glycoforms is observed.  相似文献   

9.
Site-specific N-glycan characterization of human complement factor H   总被引:1,自引:0,他引:1  
Human complement factor H (CFH) is a plasma glycoprotein involved in the regulation of the alternative pathway of the complement system. A deficiency in CFH is a cause of severe pathologies like atypical haemolytic uraemic syndrome (aHUS). CFH is a 155-kDa glycoprotein containing nine potential N-glycosylation sites. In the current study, we present a quantitative glycosylation analysis of CFH using capillary electrophoresis and a complete site-specific N-glycan characterization using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) and liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESIMS/MS). A 17.9-kDa mass decrease, observed after glycosidase treatment, indicated that N-glycosylation is the major post-translational modification of CFH. This mass difference is consistent with CFH glycosylation by diantennary disialylated glycans of 2204 Da on eight sites. CFH was not sensitive to endoglycosidase H (Endo H) deglycosylation, indicating the absence of hybrid and oligomannose structures. Quantitative analysis showed that CFH is mainly glycosylated by complex, diantennary disialylated, non-fucosylated glycans. Disialylated fucosylated and monosialylated non-fucosylated oligosaccharides were also identified. MS analysis allowed complete characterization of the protein backbone, verification of the glycosylation sites and site-specific N-glycan identification. The absence of glycosylation at Asn199 of the NGSP sequence of CFH is shown. Asn511, Asn700, Asn784, Asn804, Asn864, Asn893, Asn1011 and Asn1077 are glycosylated essentially by diantennary disialylated structures with a relative distribution varying between 45% for Asn804 and 75% for Asn864. Diantennary monosialylated glycans and triantennary trisialylated fucosylated and non-fucosylated structures have also been identified. Interestingly, the sialylation level along with the amount of triantennary structures decreases from the N- to the C-terminal side of the protein.  相似文献   

10.
The asparagine-linked oligosaccharides on the pituitary glycoprotein hormones lutropin (LH), follitropin (FSH), and thyrotropin (TSH) consist of a heterogeneous array of neutral, sulfated, sialylated, and sulfated/sialylated structures. In the accompanying paper (Green, E.D., and Baenziger, J.U. (1987) J. Biol. Chem. 262, 25-35), we elucidated the structures of the anionic asparagine-linked oligosaccharides found on the bovine, ovine, and human pituitary glycoprotein hormones. In this study, we determined the relative quantities of the various asparagine-linked oligosaccharides on LH, FSH, and TSH from these three animal species. The proportions of sulfated versus sialylated oligosaccharides varied markedly among the different hormones. Both hormone- and animal species-specific differences in the types and distributions of sulfated, sialylated, and sulfated/sialylated structures were evident. In particular, LH and FSH, which are synthesized in the same pituitary cell and bear alpha-subunits with the identical amino acid sequence, contained significantly different distributions of sulfated and sialylated oligosaccharides. For all three animal species, the ratio of sialylated to sulfated oligosaccharides differed by greater than 10-fold for LH and FSH, with sulfated structures dominating on LH and sialylated structures on FSH. Sialylated oligosaccharides were also heterogeneous with respect to sialic acid linkage (alpha 2,3 versus alpha 2,6). In addition to differences in the proportion of sulfated and sialylated structures on LH and FSH, there were site-specific variations in the amount of mono- and disulfated oligosaccharides at different glycosylation sites on LH alpha-beta dimers. The differences in oligosaccharide structures among the various pituitary glycoprotein hormones as well as among the various glycosylation sites within a single hormone support the hypothesis that glycosylation may serve important functional roles in the expression and/or regulation of hormone bioactivity.  相似文献   

11.
The ability of two-dimensional gel electrophoresis (2-DE) to separate glycoproteins was exploited to separate distinct glycoforms of kappa-casein that differed only in the number of O-glycans that were attached. To determine where the glycans were attached, the individual glycoforms were digested in-gel with pepsin and the released glycopeptides were identified from characteristic sugar ions in the tandem mass spectrometry (MS) spectra. The O-glycosylation sites were identified by tandem MS after replacement of the glycans with ammonia / aminoethanethiol. The results showed that glycans were not randomly distributed among the five potential glycosylation sites in kappa-casein. Rather, glycosylation of the monoglycoform could only be detected at a single site, T152. Similarly the diglycoform appeared to be modified exclusively at T152 and T163, while the triglycoform was modified at T152, T163 and T154. While low levels of glycosylation at other sites cannot be excluded the hierarchy of site occupation between glycoforms was clearly evident and argues for an ordered addition of glycans to the protein. Since all five potential O-glycosylation sites can be glycosylated in vivo, it would appear that certain sites remain latent until other sites are occupied. The determination of glycosylation site occupancy in individual glycoforms separated by 2-DE revealed a distinct pattern of in vivo glycosylation that has not been recognized previously.  相似文献   

12.
The gonadotropin known as follicle-stimulating hormone (FSH) plays a key role in regulating reproductive processes. Physiologically active FSH is a glycoprotein that can accommodate glycans on up to four asparagine residues, including two sites in the FSHα subunit that are critical for biochemical function, plus two sites in the β subunit, whose differential glycosylation states appear to correspond to physiologically distinct functions. Some degree of FSHβ hypo-glycosylation seems to confer advantages toward reproductive fertility of child-bearing females. In order to identify possible mechanistic underpinnings for this physiological difference we have pursued computationally intensive molecular dynamics simulations on complexes between the high affinity site of the gonadal FSH receptor (FSHR) and several FSH glycoforms including fully-glycosylated (FSH24), hypo-glycosylated (e.g., FSH15), and completely deglycosylated FSH (dgFSH). These simulations suggest that deviations in FSH/FSHR binding profile as a function of glycosylation state are modest when FSH is adorned with only small glycans, such as single N-acetylglucosamine residues. However, substantial qualitative differences emerge between FSH15 and FSH24 when FSH is decorated with a much larger, tetra-antennary glycan. Specifically, the FSHR complex with hypo-glycosylated FSH15 is observed to undergo a significant conformational shift after 5–10 ns of simulation, indicating that FSH15 has greater conformational flexibility than FSH24 which may explain the more favorable FSH15 kinetic profile. FSH15 also exhibits a stronger binding free energy, due in large part to formation of closer and more persistent salt-bridges with FSHR.  相似文献   

13.
Hui JP  White TC  Thibault P 《Glycobiology》2002,12(12):837-849
Mass spectrometric techniques combined with enzymatic digestions were applied to determine the glycosylation profiles of cellobiohydrolase (CBH II) and endoglucanases (EG I, II) purified from filamentous fungus Trichoderma reesei. Electrospray mass spectrometry (ESMS) analyses of the intact cellulases revealed the microheterogeneity in glycosylation where glycoforms were spaced by hexose units. These analyses indicated that glycosylation accounted for 12-24% of the molecular mass and that microheterogeneity in both N- and O-linked glycans was observed for each glycoprotein. The identification of N-linked attachment sites was carried out by MALDI-TOF and capillary liquid chromatography-ESMS analyses of tryptic digests from each purified cellulase component with and without PNGase F incubation. Potential tryptic glycopeptide candidates were first detected by stepped orifice-voltage scanning and the glycan structure and attachment site were confirmed by tandem mass spectrometry. For purified CBH II, 74% of glycans found on Asn310 were high mannose, predominantly Hex(7-9)GlcNAc(2), whereas the remaining amount was single GlcNAc; Asn289 had 18% single GlcNAc occupancy, and Asn14 remained unoccupied. EG I presented N-linked glycans at two out of the six potential sites. The Asn56 contained a single GlcNAc residue, and Asn182 showed primarily a high-mannose glycan Hex(8)GlcNAc(2) with only 8% being occupied with a single GlcNAc. Finally, EG II presented a single GlcNAc residue at Asn103. It is noteworthy that the presence of a single GlcNAc in all cellulase enzymes investigated and the variability in site occupancy suggest the secretion of an endogenous endo H enzyme in cultures of T. reesei.  相似文献   

14.
A method has been developed for the purification of equine lutropin (eLH) and equine follitropin (eFSH) from horse pituitary glands which attains high yields of both hormones in contrast to previous methods that were devoted to one or the other with inferior recovery of the hormones. Two-pass chromatography over CM-Sephadex was used to separate eLH from eFSH. Subsequent steps employing QAE (quaternary amino-ethyl)-Sephadex chromatography and gel filtration on Sephacryl S-200 produced highly purified hormone preparations. Yields of purified eLH and eFSH were 110 and 60 mg/kg of frozen pituitaries, respectively. Subunits were prepared by dissociation in 8 M guanidine HCl followed by either gel filtration (eLH) or gel filtration followed by QAE-Sephadex chromatography (eFSH). The hormones and their subunits were characterized by sodium dodecyl sulfate-gel electrophoresis, amino acid analysis, NH2-terminal analysis, and by LH and FSH radioligand receptor assays.  相似文献   

15.
Protein structure and tissue type are known to influence glycosylationof proteins. We have previously investigated the N-glycans ateach of the three glycosylation sites of the cell surface glycoproteinThy-1 when isolated from rat brain and thymocytes. Here we reporta comparative analysis of the site-specific N-glycosylationpatterns from rat (Asn 23, 74, 98), mouse (Asn 23, 75, 99) andhuman (Asn 23, 60, 100) neural Thy-1. Despite considerable differencesin amino acid sequence, the results show a remarkable conservationof the pattern of N-glycans at corresponding sites between thethree species, as judged by chromatographic comparisons andglycosidase susceptibility. This is particularly marked forsites at Asn 74/75 in rat/mouse and the equivalent site at 60in human Thy-1, as well as for sites at Asn 98/99 and 100, respectively.The sites at Asn 23 in rat/mouse also contained almost identicalglycosylation paterns, but at this site human Thy-1 showed significantlydifferent glycosylation patterns. These site glycosylation patternsare discussed in relation to the likely accessibility of theoligosaccharides for processing. It is known that within a species,the glycosylation of Thy-1 is tissue specific; therefore, thisdegree of conservation of glycosylation of Thy-1 expressed inthe same tissue in different species is all the more striking,given the known variation between species in the amino acidsequence of Thy-1. It is therefore proposed that neural cellshave a particular requirement for specific surface carbohydratesand that the Thy-1 polypep-tide serves as an appropriate carrierfor these structures. glycosylation site-specific Thy-1  相似文献   

16.
An original, nonradiometric method has been developed for studying the binding parameters of native follicle-stimulating hormone (FSH) to its specific receptors in human ovarian granulosa cells. After binding and washing of the cells, hFSH was desorbed from its receptors and quantitatively measured by a specific enzyme immunoassay (EIA) in which nonspecific binding was estimated in the presence of an excess of equine chorionic gonadotropin (eCG/PMSG), which binds to human FSH receptors but does not interfere in the hFSH EIA. This method makes use of native nonmodified hFSH molecules (in contrast to radiometric methods) and permits direct estimation of the binding parameters (Kd and total number of sites). The Kd of hFSH for its human granulosa receptors measured by this technique (4.8 +/- 0.3 x 10(-10) M) is close to that determined by other methods. However, we found a total number of specific FSH receptors per granulosa cell (1 to 6 x 10(4) higher than that reported by others by Scatchard analysis of competition dose-response curves in radioreceptor assays. The method is also sensitive enough to measure the in vivo occupancy of receptors by endogenous hFSH, which was found to be less than 6% in women undergoing hormonal treatment for in vitro fertilization.  相似文献   

17.
In humans, regulation of reproductive functions are carried out mainly by glycoprotein hormones namely follicle stimulating hormone (FSH), thyroid stimulating hormone (TSH), luteinizing hormone (LH) and chorionic gonadotropin (CG). Since glycans play an important role in binding of gonadotropins with their respective receptors, it is important to identify associated glycans and their pharmacological properties not only for the disease manipulation but also for making more efficacious and safer recombinant versions. With the advancement of mass spectrometry, it is possible to identify minute quantity of associated glycans. Here, we studied the N-glycans of the FSH based on mass spectrometry and report one more complex glycan species in addition to twenty four previously reported glycans. The new glycan was a tetra antennary species that may have important role in binding of FSH with receptor with higher biological activity as well as lower clearance rate and higher half-life.  相似文献   

18.
The severity of SARS-CoV-2 infection is highly variable and yet the molecular basis for this effect remains elusive. One potential contribution are differences in the glycosylation of target human cells, particularly as SARS-CoV-2 has the capacity to bind sialic acid which is a common, and highly variable, terminal modification of glycans. The viral spike glycoprotein (S) of SARS-CoV-2 and the human cellular receptor, angiotensin-converting enzyme 2 (ACE2) are both densely glycosylated. We therefore sought to investigate whether the glycosylation state of ACE2 impacts the interaction with SARS-CoV-2 viral spike. We generated a panel of engineered ACE2 glycoforms which were analyzed by mass spectrometry to reveal the site-specific glycan modifications. We then probed the impact of ACE2 glycosylation on S binding and revealed a subtle sensitivity with hypersialylated or oligomannose-type glycans slightly impeding the interaction. In contrast, deglycosylation of ACE2 did not influence SARS-CoV-2 binding. Overall, ACE2 glycosylation does not significantly influence viral spike binding. We suggest that any role of glycosylation in the pathobiology of SARS-CoV-2 will lie beyond its immediate impact of receptor glycosylation on virus binding.  相似文献   

19.
Human protein C (hPC) is glycosylated at three Asn‐X‐Ser/Thr and one atypical Asn‐X‐Cys sequons. We have characterized the micro‐ and macro‐heterogeneity of plasma‐derived hPC and compared the glycosylation features with recombinant protein C (tg‐PC) produced in a transgenic pig bioreactor from two animals having approximately tenfold different expression levels. The N‐glycans of hPC are complex di‐ and tri‐sialylated structures, and we measured 78% site occupancy at Asn‐329 (the Asn‐X‐Cys sequon). The N‐glycans of tg‐PC are complex sialylated structures, but less branched and partially sialylated. The porcine mammary epithelial cells glycosylate the Asn‐X‐Cys sequon with a similar efficiency as human hepatocytes even at these high expression levels, and site occupancy at this sequon was not affected by expression level. A distinct bias for particular structures was present at each of the four glycosylation sites for both hPC and tg‐PC. Interestingly, glycans with GalNAc in the antennae were predominant at the Asn‐329 site. The N‐glycan structures found for tg‐PC are very similar to those reported for a recombinant Factor IX produced in transgenic pig milk, and similar to the endogenous milk protein lactoferrin, which may indicate that N‐glycan processing in the porcine mammary epithelial cells is more uniform than in other tissues.  相似文献   

20.
The main objective of this study was to characterize the N-linked glycosylation profiles of recombinant hemagglutinin (HA) proteins expressed in either insect or plant hosts, and to develop a mass spectrometry based workflow that can be used in quality control to assess batch-to-batch reproducibility for recombinant HA glycosylation. HA is a surface glycoprotein of the influenza virus that plays a key role in viral infectivity and pathogenesis. Characterization of the glycans for plant recombinant HA from the viral strain A/California/04/09 (H1N1) has not yet been reported. In this study, N-linked glycosylation patterns of the recombinant HAs from both insect and plant hosts were characterized by precursor ion scan-driven data-dependent analysis followed by high-resolution MS/MS analysis of the deglycosylated tryptic peptides. Five glycosylation sites (N11, N23, N276, N287, and N481) were identified containing high mannose type glycans in plant-expressed HAs, and complex type glycoforms for the insect-expressed HA. More than 95% site occupancy was observed for all glycosylation sites except N11, which was 60% occupied. Multiple-reaction monitoring based quantitation analysis was developed for each glycopeptide isoform and the quantitative results indicate that the Man(8) GlcNAc(2) is the dominant glycan for all sites in plant-expressed HAs. The relative abundance of the glycoforms at each specific glycosylation site and the relative quantitation for each glycoform among three HAs were determined. Few differences in the glycosylation profiles were detected between the two batches of plant HAs studied, but there were significant differences between the glycosylation patterns in the HAs generated in plant and insect expression hosts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号