首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
One of the most popular single-factor hypotheses that have been proposed to explain the naturalization and spread of introduced species is the enemy release hypothesis (ERH). One ramification of the ERH is that invasive plants sustain less herbivore damage than their native counterparts in the invaded range. However, introduced plants, invasive or not, may experience less herbivore damage than the natives. Therefore, to test the role of natural enemies in the success of invasive plants, studies should include both invasive as well as non-invasive introduced species. In this study, we employed a novel three-way comparison, in which we compared herbivore damage among native, introduced invasive, and introduced non-invasive Eugenia (Myrtaceae) in South Florida. We found that introduced Eugenia, both invasive and non-invasive, sustained less herbivore damage, especially damage by oligophagous and endophagous insects, than native Eugenia. However, the difference in insect damage between introduced invasive and introduced non-invasive Eugenia was not significant. Escape from herbivores may not account for the spread of invasive Eugenia. We would not have been able to draw this conclusion without inclusion of the non-invasive Eugenia species in the study.  相似文献   

2.
The evolution of increased competitive ability (EICA) hypothesis predicts that release from natural enemies in the introduced range favors exotic plants evolving to have greater competitive ability and lower herbivore resistance than conspecifics from the native range. We tested the EICA hypothesis in a common garden experiment with Sapium sebiferum in which seedlings from native (China) and invasive (USA) populations were grown in all pairwise combinations in the native range (China) in the presence of herbivores. When paired seedlings were from the same continent, shoot mass and leaf damage per seedling were significantly greater for plants from invasive populations than those from native populations. Despite more damage from herbivores, plants from invasive populations still outperformed those from native populations when they were grown together. Increased competitive ability and higher herbivory damage of invasive populations relative to native populations of S. sebiferum support the EICA hypothesis. Regression of biomass against percent leaf damage showed that plants from invasive populations tolerated herbivory more effectively than those from native populations. The results of this study suggest that S. sebiferum has become a faster-growing, less herbivore-resistant, and more herbivore-tolerant plant in the introduced range. This implies that increased competitive ability of exotic plants may be associated with evolutionary changes in both resistance and tolerance to herbivory in the introduced range. Understanding these evolutionary changes has important implications for biological control strategies targeted at problematic invaders.  相似文献   

3.
Lewis KC  Bazzaz FA  Liao Q  Orians CM 《Oecologia》2006,148(3):384-395
We investigated geographic patterns of herbivory and resource allocation to defense, growth, and reproduction in an invasive biennial, Alliaria petiolata, to test the hypothesis that escape from herbivory in invasive species permits enhanced growth and lower production of defensive chemicals. We quantified herbivore damage, concentrations of sinigrin, and growth and reproduction inside and outside herbivore exclusion treatments, in field populations in the native and invasive ranges. As predicted, unmanipulated plants in the native range (Hungary, Europe) experienced greater herbivore damage than plants in the introduced range (Massachusetts and Connecticut, USA), providing evidence for enemy release, particularly in the first year of growth. Nevertheless, European populations had consistently larger individuals than US populations (rosettes were, for example, eightfold larger) and also had greater reproductive output, but US plants produced larger seeds at a given plant height. Moreover, flowering plants showed significant differences in concentrations of sinigrin in the invasive versus native range, although the direction of the difference was variable, suggesting the influence of environmental effects. Overall, we observed less herbivory, but not increased growth or decreased defense in the invasive range. Geographical differences in performance and leaf chemistry appear to be due to variation in the environment, which could have masked evolved differences in allocation.  相似文献   

4.
One of the most commonly cited hypotheses explaining invasion success is the enemy release hypothesis (ERH), which maintains that populations are regulated by coevolved natural enemies where they are native but are relieved of this pressure in the new range. However, the role of resident enemies in plant invasion remains unresolved. We conducted a field experiment to test predictions of the ERH empirically using a system of native, introduced invasive, and introduced non-invasive Eugenia congeners in south Florida. Such experiments are rarely undertaken but are particularly informative in tests of the ERH, as they simultaneously identify factors allowing invasive species to replace natives and traits determining why most introduced species are unsuccessful invaders. We excluded insect herbivores from seedlings of Eugenia congeners where the native and invasive Eugenia co-occur, and compared how herbivore exclusion affected foliar damage, growth, and survival. We found no evidence to support the ERH in this system, instead finding that the invasive E. uniflora sustained significantly more damage than the native and introduced species. Interestingly, E. uniflora performed better than, or as well as, its congeners in terms of growth and survival, in spite of higher damage incidence. Further, although herbivore exclusion positively influenced Eugenia seedling survival, there were few differences among species and no patterns in regard to invasion status or origin. We conclude that the ability of E. uniflora to outperform its native and introduced non-invasive congeners, and not release from insect herbivores, contributes to its success as an invader in Florida.  相似文献   

5.
6.
During the past centuries, humans have introduced many plant species in areas where they do not naturally occur. Some of these species establish populations and in some cases become invasive, causing economic and ecological damage. Which factors determine the success of non-native plants is still incompletely understood, but the absence of natural enemies in the invaded area (Enemy Release Hypothesis; ERH) is one of the most popular explanations. One of the predictions of the ERH, a reduced herbivore load on non-native plants compared with native ones, has been repeatedly tested. However, many studies have either used a community approach (sampling from native and non-native species in the same community) or a biogeographical approach (sampling from the same plant species in areas where it is native and where it is non-native). Either method can sometimes lead to inconclusive results. To resolve this, we here add to the small number of studies that combine both approaches. We do so in a single study of insect herbivory on 47 woody plant species (trees, shrubs, and vines) in the Netherlands and Japan. We find higher herbivore diversity, higher herbivore load and more herbivory on native plants than on non-native plants, generating support for the enemy release hypothesis.  相似文献   

7.

Background and Aims

The enemy release hypothesis assumes that invasive plants lose their co-evolved natural enemies during introduction into the new range. This study tested, as proposed by the evolution of increased competitive ability (EICA) hypothesis, whether escape from enemies results in a decrease in defence ability in plants from the invaded range. Two straightforward aspects of the EICA are examined: (1) if invasives have lost their enemies and their defence, they should be more negatively affected by their full natural pre-invasion herbivore spectrum than their native conspecifics; and (2) the genetic basis of evolutionary change in response to enemy release in the invasive range has not been taken sufficiently into account.

Methods

Lythrum salicaria (purple loosestrife) from several populations in its native (Europe) and invasive range (North America) was exposed to all above-ground herbivores in replicated natural populations in the native range. The experiment was performed both with plants raised from field-collected seeds as well as with offspring of these where maternal effects were removed.

Key Results

Absolute and relative leaf damage was higher for introduced than for native plants. Despite having smaller height growth rate, invasive plants attained a much larger final size than natives irrespective of damage, indicating large tolerance rather than effective defence. Origin effects on response to herbivory and growth were stronger in second-generation plants, suggesting that invasive potential through enemy release has a genetic basis.

Conclusions

The findings support two predictions of the EICA hypothesis – a genetically determined difference between native and invasive plants in plant vigour and response to enemies – and point to the importance of experiments that control for maternal effects and include the entire spectrum of native range enemies.  相似文献   

8.
Litzgus JD  DuRant SE  Mousseau TA 《Oecologia》2004,140(4):551-558
Bergmanns rule states that, among conspecific populations, individuals are larger in cooler than in warmer environments as a consequence of selection related to heat conservation. Many of the most comprehensive assessments of Bergmanns rule to date have examined clinal patterns in body size among species assemblages. Our study is a more direct test of Bergmanns rule because we examine the pattern within a single, widely distributed species. We examined geographic variation in body and cell size in the spotted turtle (Clemmys guttata). Our analysis of 818 turtles collected from the entire range (45–28°N), indicated that body size increased with latitude; however, the relationship was driven by a population of large turtles at the northern extreme of the species range. When the northern population was removed from the analyses, Bergmanns rule was not supported, and the smallest turtles occurred near the central part of the species distribution. Recent literature has suggested that latitudinal clines in body size may simply be a physiological byproduct of the effects of temperature on cell division, resulting in larger cells, and hence larger organisms, from cooler temperatures. Measurements of the diameter of skin cells did not support the hypothesis that cell size increases with latitude and decreases with temperature in the spotted turtle, nor was there a significant relationship between body size and cell size. Our study suggests that neither Bergmanns rule nor cell size variation sufficiently explain the body size cline observed in the spotted turtle. We hypothesize that patterns in body size are related to variation in female size at maturity and reproductive cycles.  相似文献   

9.
    
Incubation of -lactoglobulin with immobilized trypsin at 5–10°C results in a time-dependent release of several fragments of the core domain in yields approaching 15%. Digests were fractionated by ion-exchange chromatography with a Mono Q HR5/5 column and analyzed after disulfide reduction by polyacrylamide gel electrophoresis in sodium dodecylsulfate. Three fragments with approximate molecular weights of 13.8, 9.6, and 6.7 kD were identified. The fraction from ion-exchange chromatography yielding the 6.7 kD fraction after disulfide reduction was further characterized because it was most homogeneous and gave the highest yield. The C-terminal cleavage site of the 6.7 kD core fragment appeared to be Lys100 or Lys101 as determined by C-terminal amino acid analysis. The exact masses, after reduction with dithiothreitol, are 6195 and 6926 as determined by laser desorption mass spectrometry, corresponding to residues 48–101 and 41–100. Prior to reduction, -lactoglobulin C-terminal residues 149–162 are connected to these core domain fragments as shown by C-terminal analysis and mass spectrometry. Structural studies indicate that these 7.9 and 8.6 kD core domain fragments released by immobilized trypsin retain much of their native structure. CD spectra indicate the presence of antiparallel -sheet structure similar to the native protein but the -helix is lost. Spectra in the aromatic region indicate the existence of tertiary structure. Moreover, structural transitions in urea are completely reversible as measured by CD spectra, although the extrapolated G D H20 and the urea concentration at the transition midpoint are lower than for the native protein. The core domain fragments also display apH-dependent binding to immobilizedtrans-retinal as does intact protein. A single endotherm is obtained for both core domain fragments and native protein upon differential scanning calorimetry, but again, the domain is less stable as indicated by a transition peak maxima of 56.9°C as compared with 81.1°C for native protein.Abbreviations used: CD, circular dichroism; CPG, controlled pore glass; DSC, differential scanning calorimetry; DTT, dithiothreitol; FPLC, fast flow liquid chromatography; HPLC, high-performance liquid chromatography; PITC, phenylisothiocyanate; SDS-PAGE, sodium dodecyl sulfate-polyacrylamide gel electrophoresis; TEA, triethylamine; UV, ultraviolet.  相似文献   

10.
Summary. The Argentine ant, Linepithema humile, severely decreases the abundance and diversity of native ant fauna in areas where it invades, but coexists with a more diverse assemblage of ants in its native range. The greater ecological dominance of L. humile in the introduced range may be associated with differences in colony structure and population density in the introduced range relative to the native range. In this study, I compared aspects of L. humiles colony structure, including density, the spatial pattern of nests and trails, and patterns of intraspecific aggression in parts of the introduced and native ranges. I also compared the number of ant species coexisting with L. humile. Introduced and native populations did not differ significantly in nest density, ant density, nest size, and nearest-neighbor distances. In three of the four study populations in the native range and all of the study populations in the introduced range, colonies were organized into supercolonies: they consisted of multiple, interconnected nests that were dense and spatially clumped, and aggression among conspecifics was rare. In one population in the native range, colonies were organized differently: they occupied single nest sites, nests were sparse and randomly dispersed, and ants from neighboring nests were aggressive toward each other. Species richness was significantly higher in the native range than in the introduced range, even in areas where L. humile formed dense supercolonies. The results suggest that differences in species coexistence between ranges may due to factors other than L. humiles colony structure. One likely factor is the superior competitive ability of other ant species in the native range.Received 23 January 2004; revised 30 March 2004; accepted 20 April 2004.  相似文献   

11.
Regino Zamora 《Oecologia》1990,84(3):376-379
Summary The taxonomic composition and size of arthropods captured by Pinguicula nevadense, an endemic carnivorous plant of the high-mountain zone of the Sierra Nevada (southern Spain), are analysed. The actual prey of P. nevadense and the available arthropods trapped by mimic-traps are compared, in order to identify the capture constraints of the plant. The results show that P. nevadense captures various arthropod taxa. Winged insects, especially Nematocera, make up the main component of the diet. The range of prey sizes in all P. nevadense populations studied is similar. The taxonomic composition of arthropods trapped by the mimic-traps is similar to that of the actual prey of P. nevadense. However, the plant captures prey only below a specific size threshold. These size constraints appear to be the principal factor determining the actual prey of this carnivorous plant.  相似文献   

12.
Vilà M  Gómez A  Maron JL 《Oecologia》2003,137(2):211-215
The evolution of increased competitive ability hypothesis predicts that introduced plants that are long liberated from their natural enemies may lose costly herbivore defense, enabling them to reallocate resources previously spent on defense to traits that increase competitive superiority. We tested this prediction by comparing the competitive ability of native St John's wort ( Hypericum perforatum) from Europe with introduced St John's wort from central North America where plants have long grown free of specialist herbivores, and introduced plants from western North America where plants have been subjected to over 57 years of biological control. Plants were grown in a greenhouse with and without competition with Italian ryegrass ( Lolium multiflorum). St John's wort from the introduced range were not better interspecific competitors than plants from the native range. The magnitude of the effect of ryegrass on St John's wort was similar for introduced and native genotypes. Furthermore, introduced plants were not uniformly larger than natives; rather, within each region of origin there was a high variability in size between populations. Competition with ryegrass reduced the growth of St John's wort by >90%. In contrast, St John's wort reduced ryegrass growth <10%. These results do not support the contention that plants from the introduced range evolve greater competitive ability in the absence of natural enemies.  相似文献   

13.
Aim Our aim in this study was to document the global biogeographic variation in the effects of soil microbes on the growth of Centaurea solstitialis (yellow starthistle; Asteraceae), a species that has been introduced throughout the world, but has become highly invasive only in some introduced regions. Location  To assess biogeographic variation in plant–soil microbe interactions, we collected seeds and soils from native Eurasian C. solstitialis populations and introduced populations in California, Argentina and Chile. Methods To test whether escape from soil‐borne natural enemies may contribute to the success of C. solstitialis, we compared the performance of plants using seeds and soils collected from each of the biogeographic regions in greenhouse inoculation/sterilization experiments. Results  We found that soil microbes had pervasive negative effects on plants from all regions, but these negative effects were significantly weaker in soils from non‐native ranges in Chile and California than in those from the non‐native range in Argentina and the native range in Eurasia. Main conclusions The biogeographic differences in negative effects of microbes in this study conformed to the enemy‐release hypothesis (ERH) overall, but the strong negative effect of soil biota in Argentina, where C. solstitialis is invasive, and weaker effects in Chile where it is not, indicated that different factors influencing invasion are likely to occur in large scale biogeographic mosaics of interaction strengths.  相似文献   

14.
Variation in C-banding was studied in seven populations ofAllium schnoprasum from eastern N. America, including populations referable to var.sibiricum, var.laurentianum, and ± intermediate. 23 bands were recognized on five pairs of chromosomes, and were treated as 23 loci. No banding site was monomorphic throughout the plants studied. The level of polymorphism per population was >60%, and the average heterozygosity values varied from 0.21 to 0.27. The various banding patterns of chromosomes were shown to depend on the random combination of individual bands. Nei's genetic distances between populations varied from 0 to 0.070 (mean: 0.033). The matrix of genetic distances was analysed by non-metric multidimensional scaling, and the results showed a significant relationship between longitude and population scores on the ordination. The chromosomal data did not clearly discriminate between the two native varieties ofA. schnoprasum, but were interpreted as a longitudinal cline. It is suggested that studies of C-banding variation in vascular plants should focus on individual banding sites, rather than on whole chromosome banding patterns.  相似文献   

15.
Enemy release of introduced plants and variation in herbivore pressure in relation to community diversity are presently discussed as factors that affect plant species invasiveness or habitat invasibility. So far few data are available on this topic and the results are inconclusive. We compared leaf herbivory between native and invasive woody plants on Mahé, the main island of the tropical Seychelles. We further investigated variation in leaf herbivory on three abundant invasive species along an altitudinal gradient (50–550 m a.s.l.). The median percentage of leaves affected by herbivores was significantly higher in native species (50%) than in invasive species (27%). In addition, the species suffering from the highest leaf area loss were native to the Seychelles. These results are consistent with the enemy release hypothesis (ERH). While the invasive species showed significant and mostly consistent variation in the amount of leaf damage between sites, this variation was not related to general altitudinal trends in diversity but rather to local variation in habitat structure and diversity. Our results indicate that in the Seychelles invasive woody plants profit from herbivore release relative to the native species and that the amount of herbivory, and therefore its effect on species invasiveness or habitat invasibility, may be dependent on local community structure and composition.  相似文献   

16.
In this study we analysed the effects of Galaxias maculatus, a landlocked small fish species, on nutrient dynamics, and the consequent effects on phytoplankton biomass of an oligotrophic North Patagonian lake. We performed field and laboratory experiments in order to explore nutrient release by G. maculatus with increasing fish biomass and body size, and the resulting phytoplankton responses. Our results showed that phytoplankton biomass was strongly enhanced in the presence of fish, and that enhancement was greater with increasing fish biomass. These algal increments were associated with higher nutrient concentrations, due to the excretion/egestion processes of fish. In our two laboratory experiments we did not observe phytoplankton increase, probably due to light conditions, but we did observe significant effects of fish on nutrient concentrations. As was expected, mass-specific nutrient release rates were higher in smaller fish than in larger ones. So, the amount of nutrients supplied to phytoplankton would be influenced by the size structure of fish population. As a consequence of different N and P release rates, an increase in the :PTDP ratio was observed in the presence of fish. The fact that G. maculatus is a species that moves in schools would determine spatial heterogeneity in nutrient release, with important effects of reducing nutrient limitation and shifting :PTDP ratios.  相似文献   

17.
The enemy release hypothesis (ERH) states that decreased regulation by natural enemies allows plants to increase in distribution, abundance and vigour following their introduction into an exotic range. Invasive plants rarely escape herbivory entirely, and for hoary cress [ Lepidium draba L. (Brassicaceae)] it has been demonstrated that generalist insect abundance is greater in its introduced North American range than in the native European range. We assessed the role of increased generalist herbivory on hoary cress using representatives of four important herbivore niches commonly found in the introduced range. We experimentally examined the density dependent impact of these herbivores individually and in combination on hoary cress in a series of greenhouse experiments. We found that defoliation of the oligophagous diamondback moth Plutella xylostella (L.) (Lep., Plutellidae) had the strongest and most consistent impact, while damage by the stem-mining weevil Ceutorhynchus americanus Buchanan (Col., Curculionidae) tended to have the highest per capita effect. Plant response to feeding by the oligophagous crucifer flea beetle Phyllotreta cruciferae (Goeze) (Col., Chrysomelidae) was minor despite obvious feeding damage, and the impact of the polyphagous tarnished plant bug Lygus hesperus Knight (Het., Miridae) was negligible. In multiple-species experiments, herbivore impacts were usually additive. In general, we found that hoary cress can tolerate high densities of oligophagous insect herbivory and effectively resisted attack by the polyphagous L. hesperus, but also the oligophagous C. americanus . Our results indicate that a combination of plant resistance and tolerance allows hoary cress to withstand increased generalist herbivore load in its introduced range, consistent with the predictions of the ERH.  相似文献   

18.
We tested the effect of two single species inocula and a mixed inoculum of the native population of arbuscular mycorrhizal (AM) fungi on the growth response of criollo maize (Zea mays L.). To determine the inocula that produced the highest response on maize growth, we conducted a greenhouse experiment at 3 levels of P fertilization (0, 40 and 80 kg ha–1). Inoculation with Glomus mosseae (Nicolson and Gerdemann) Gerd. and Trappe (LMSS) produced the greatest shoot growth rates at the two lowest P fertilization levels. Inoculation with Acaulospora bireticulata Rothwell and Trappe (ABRT) and the native population (NP) resulted in similar shoot growth rates at all P levels. These rates were higher than the non-mycorrhizal control rate at the lowest P level but lower than the control at the highest P level. Also, ABRT and NP had significantly lower shoot growth rates than the inoculation treatment with G. mosseae at all P levels. The non-mycorrhizal control had the lowest growth rate at the lowest P level but its growth rate increased linearly with increased P fertilization. Inoculation with G. mosseae and A. bireticulata produced similar colonization rates which were lower than the native population colonization rate. There was no correlation between colonization and shoot growth rates.  相似文献   

19.
Release from natural enemies may favor invasive plants evolving traits associated with reduced herbivore‐resistance and faster‐growth in introduced ranges. Given a genetic trade‐off between resistance and tolerance, invasive plants could also become more tolerant to herbivory than conspecifics in the native range. We conducted a field common garden study in the native range of Sapium sebiferum using seeds from native Chinese populations and invasive North American populations to compare their growth and herbivory resistance. We also performed a cage‐pot experiment to compare their resistance and tolerance to Bikasha collaris beetles that are specialist feeders on S. sebiferum trees in China. Results of the common garden study showed that Sapium seedlings of invasive populations relative to native populations were more frequently attacked by native herbivores. Growth and leaf damage were significantly higher for invasive populations than for native populations. Growth of invasive populations was not significantly affected by insecticide spray, but insecticide spray benefited that of native populations. In the bioassay trial, beetles preferentially consumed leaf tissue of invasive populations compared to native populations when beetles had a choice between them. Regression of percent leaf damage on biomass showed that invasive populations tolerated herbivory more effectively than native populations. Our results suggest that S. sebiferum from the introduced range had lower resistance but higher tolerance to specialist herbivores. Both defense strategies could have evolved as a response to the escape from natural enemies in the introduced range.  相似文献   

20.
The proteinaceous extracellular material (PEM) synthesized by the cells of the slime strain of Neurospora crassa (see Martinez et al. 1989) was solubilized by treatment with urea or guanidine. Removal of these chemicals by dialysis, caused reassembly of the solubilized proteins into material with the same microscopic appearance as the original PEM. Polypeptide patterns from both native and reassembled structures were identical. Dialysis-mediated reassembly of the solubilized proteins appeared to be dependent on both concentration of the soluble macromolecules and time. Gel chromatography of PEM solubilized with different agents revealed two discrete populations of complexes with molecular masses of 1,500 and 500 kDa respectively. These were able to reassemble into lamellar structures with a variable degree of efficiency.Abbreviations ConA Concanavalin A - Fe-ConA ferritin-labeled Concanavalin A - Endo H endo--N-acetylglucosaminidase H - PMSF phenyl methyl sulphonyl fluoride  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号