首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Henry LK  Khare S  Son C  Babu VV  Naider F  Becker JM 《Biochemistry》2002,41(19):6128-6139
Saccharomyces cerevisiae haploid cells communicate with their opposite mating type through peptide pheromones (alpha-factor and a-factor) that activate G protein-coupled receptors (GPCRs). S. cerevisiaewas used as a model system for the study of peptide-responsive GPCRs. Here, we detail the synthesis and characterization of a number of alpha-factor (Trp-His-Trp-Leu-Gln-Leu-Lys-Pro-Gly-Gln-Pro-Met-Tyr) pheromone analogues containing the photo-cross-linkable group 4-benzoyl-L-phenylalanine (Bpa). Following characterization, one analogue, [Bpa(1), Tyr(3), Arg(7), Phe(13)]alpha-factor, was radioiodinated and used as a probe for Ste2p, the GPCR for alpha-factor. Binding of the di-iodinated probe was saturable (K(d) = 200 nM) and competable by alpha-factor. Cross-linking into Ste2p was specific for this receptor and reversed by the wild-type pheromone. Chemical and enzymatic cleavage of the receptor/radioprobe complex indicated that cross-linking occurred on a portion of Ste2p spanning residues 251-294 which encompasses transmembrane domain 6, the extracellular loop between transmembrane domains 6 and 7, and transmembrane domain 7. This fragment was verified using T7-epitope-tagged Ste2p and a biotinylated, photoactivatable alpha-factor. After cross-linking with the biotinylated photoprobe and trypsin cleavage, the cross-linked receptor fragment was revealed by both an anti T7-epitope antibody and a biotin probe. This is the first determination of a specific contact region between a Class IV GPCR and its ligand. The results demonstrate that Bpa alpha-factor probes are useful in determining contacts between alpha-factor and Ste2p and initiate mapping of the ligand binding site of this GPCR.  相似文献   

2.
Son CD  Sargsyan H  Naider F  Becker JM 《Biochemistry》2004,43(41):13193-13203
Analogues of alpha-factor, Saccharomyces cerevisiae tridecapeptide mating pheromone (H-Trp-His-Trp-Leu-Gln-Leu-Lys-Pro-Gly-Gln-Pro-Met-Tyr-OH), containing p-benzoylphenylalanine (Bpa), a photoactivatable group, and biotin as a tag, were synthesized using solid-phase methodologies on a p-benzyloxybenzyl alcohol polystyrene resin. Bpa was inserted at positions 1, 3, 5, 8, and 13 of alpha-factor to generate a set of cross-linkable analogues spanning the pheromone. The biological activity (growth arrest assay) and binding affinities of all analogues for the alpha-factor receptor (Ste2p) were determined. Two of the analogues that were tested, Bpa(1) and Bpa(5), showed 3-4-fold lower affinity than the alpha-factor, whereas Bpa(3) and Bpa(13) had 7-12-fold lower affinities. Bpa(8) competed poorly with [(3)H]-alpha-factor for Ste2p. All of the analogues tested except Bpa(8) had detectable halos in the growth arrest assay, indicating that these analogues are alpha-factor agonists. Cross-linking studies demonstrated that [Bpa(1)]-alpha-factor, [Bpa(3)]-alpha-factor, [Bpa(5)]-alpha-factor, and [Bpa(13)]-alpha-factor were cross-linked to Ste2p; the biotin tag on the pheromone was detected by a NeutrAvidin-HRP conjugate on Western blots. Digestion of Bpa(1), Bpa(3), and Bpa(13) cross-linked receptors with chemical and enzymatic reagents suggested that the N-terminus of the pheromone interacts with a binding domain consisting of residues from the extracellular ends of TM5-TM7 and portions of EL2 and EL3 close to these TMs and that there is a direct interaction between the position 13 side chain and a region of Ste2p (F55-R58) at the extracellular end of TM1. The results further define the sites of interaction between Ste2p and the alpha-factor, allowing refinement of a model for the pheromone bound to its receptor.  相似文献   

3.
The alpha-factor tridecapeptide initiates mating in Saccharomyces cerevisiae upon interaction with Ste2p, its cognate G-protein coupled receptor (GPCR). This interaction is being used as a paradigm for understanding the structure and mechanism of activation of GPCRs by medium-sized peptides. In this article, the use of fragments of Ste2p to study its structure is reviewed. Methods of synthesis of peptides corresponding to both extramembranous and transmembrane domains of Ste2p are evaluated and problems that are encountered during synthesis and purification are described. The results from conformational analyses of the peptide fragments using fluorescence spectroscopy, CD, infrared spectroscopy, and NMR spectroscopy in organic-aqueous mixtures and in the presence of detergent micelles and lipid bilayers are critically reviewed. The data obtained to date provide biophysical evidence for the structure of different domains of Ste2p and indicate that peptides corresponding to these domains have unique biophysical tendencies. The studies carried out on Ste2p fragments indicate that valuable information concerning the structure of the intact receptor can be obtained by studying peptide fragments corresponding to domains of these polytopic integral membrane proteins.  相似文献   

4.
Lee BK  Lee YH  Hauser M  Son CD  Khare S  Naider F  Becker JM 《Biochemistry》2002,41(46):13681-13689
To identify interactions between Ste2p, a G protein-coupled receptor of the yeast Saccharomyces cerevisiae, and its tridecapeptide ligand, alpha-factor (WHWLQLKPGQPMY), a variety of alpha-factor analogues were used in conjunction with site-directed mutagenesis of a targeted portion of Ste2p transmembrane domain six. Alanine substitution of residues in the 262-270 region of Ste2p did not affect pheromone binding or signal transduction, except for the Y266A mutant, which did not transduce signal yet exhibited only a small decrease in alpha-factor binding affinity. Substitutions with Ser, Leu, or Lys at Y266 also generated signaling-defective receptors. In contrast, Phe or Trp substitution at Y266 retained receptor function, suggesting that aromaticity at this position was critical. When coexpressed with WT receptor, the Y266A receptor exhibited a strong dominant-negative phenotype, indicating that this mutant bound G protein. A partial tryptic digest revealed that, in the presence of agonist, a different digestion profile for Y266A receptor was generated in comparison to that for WT receptor. The difference in trypsin-sensitive sites and their negative dominance indicated that the Y266A receptor was not able to switch into an "activated" conformation upon ligand binding. In comparison to WT Ste2p, the mutantY266A receptor showed increased binding affinity for N-terminal, alanine-substituted alpha-factor analogues (residues 1-4) and the antagonist [desW(1),desH(2)]alpha-factor. A substantial decrease in affinity was observed for alpha-factor analogues with Ala substitutions from residues 5-13. The results suggest that Y266 is part of the binding pocket that recognizes the N-terminal portion of alpha-factor and is involved in the transformation of Ste2p into an activated state upon agonist binding.  相似文献   

5.
We present an example of expression and purification of a biologically active G-protein coupled receptor (GPCR) from yeast. An expression vector was constructed to encode the Saccharomyces cerevisiae GPCR alpha-factor receptor (Ste2p, the STE2 gene product) containing a 9-amino acid sequence of rhodopsin that served as an epitope/affinity tag. In the construct, two glycosylation sites and two cysteine residues were removed to aid future structural and functional studies. The receptor was expressed in yeast cells and was detected as a single band in a western blot indicating the absence of glycosylation. Ligand binding and signaling assays of the epitope-tagged, mutated receptor showed it maintained the full wild-type biological activity. For extraction of Ste2p, yeast membranes were solubilized with 0.5% n-dodecyl maltoside (DM). Approximately 120 microg of purified alpha-factor receptor was obtained per liter of culture by single-step affinity chromatography using a monoclonal antibody to the rhodopsin epitope. The binding affinity (K(d)) of the purified alpha-factor receptor in DM micelles was 28 nM as compared to K(d)=12.7 nM for Ste2p in cell membranes, and approximately 40% of the purified receptor was correctly folded as judged by ligand saturation binding. About 50% of the receptor sequence was retrieved from MALDI-TOF and nanospray mass spectrometry after CNBr digestion of the purified receptor. The methods described will enable structural studies of the alpha-factor receptor and may provide an efficient technique to purify other GPCRs that have been functionally expressed in yeast.  相似文献   

6.
Mating in Saccharomyces cerevisiae is induced by the interaction of alpha-factor (W1H2W3L4Q5L6K7P8G9Q10P11M12Y13) with its cognate G protein-coupled receptor (Ste2p). Fifteen fluorescently labeled analogs of alpha-factor in which the 7-nitrobenz-2-oxa-1,3-diazol-4-yl (NBD) group was placed at the alphaN-terminus and in side-chains at positions 1, 3, 4, 6, 7, 12 and 13 were synthesized and assayed for biological activity and receptor affinity. Eleven of the analogs retained 6-60% of the biological activity of the alpha-factor, as judged using a growth arrest assay. The binding affinities depended on the position of NBD attachment in the peptide and the distance of the tag from the backbone. Derivatization of the positions 3 and 7 side-chains with the NBD group resulted in analogs with affinities of 17-35% compared with that of alpha-factor. None of the other NBD-containing agonists had sufficient receptor affinity or strong enough emission for fluorescence analysis. The position 3 and 7 analogs were investigated using fluorescence spectroscopy and collisional quenching by KI in the presence of Ste2p in yeast membranes. The results showed that the lambda max of NBD in the position 7 side-chain shifted markedly to the blue (510 nm) when separated by 4 or 6 bonds from the peptide backbone and that this probe was shielded from quenching by KI. In contrast, separation by 3, 5, 10 or more bonds resulted in lambda max ( approximately 540 nm) and collisional quenching constants consistent with increasing degrees of exposure. The NBD group in the position 3 side-chain was also found to be blue shifted (lambda max=520 nm) and shielded from solvent. These results indicate that the position 7 side-chain is likely interacting with a pocket formed by extracellular domains of Ste2p, whereas the side-chain of Trp3 is in a hydrophobic pocket possibly within the transmembrane region of the receptor.  相似文献   

7.
Visualization of receptor-mediated endocytosis in yeast   总被引:5,自引:0,他引:5       下载免费PDF全文
We studied the ligand-induced endocytosis of the yeast alpha-factor receptor Ste2p by immuno-electron microscopy. We observed and quantitated time-dependent loss of Ste2p from the plasma membrane of cells exposed to alpha-factor. This ligand-induced internalization of Ste2p was blocked in the well-characterized endocytosis-deficient mutant sac6Delta. We provide evidence that implicates furrow-like invaginations of the plasma membrane as the site of receptor internalization. These invaginations are distinct from the finger-like plasma membrane invaginations within actin cortical patches. Consistent with this, we show that Ste2p is not located within the cortical actin patch before and during receptor-mediated endocytosis. In wild-type cells exposed to alpha-factor we also observed and quantitated a time-dependent accumulation of Ste2p in intracellular, membrane-bound compartments. These compartments have a characteristic electron density but variable shape and size and are often located adjacent to the vacuole. In immuno-electron microscopy experiments these compartments labeled with antibodies directed against the rab5 homologue Ypt51p (Vps21p), the resident vacuolar protease carboxypeptidase Y, and the vacuolar H+-ATPase Vph1p. Using a new double-labeling technique we have colocalized antibodies against Ste2p and carboxypeptidase Y to this compartment, thereby identifying these compartments as prevacuolar late endosomes.  相似文献   

8.
Naider F  Becker JM  Lee YH  Horovitz A 《Biochemistry》2007,46(11):3476-3481
The interaction between the yeast G protein-coupled receptor (GPCR), Ste2p, and its alpha-factor tridecapeptide ligand was subjected to double-mutant cycle scanning analysis by which the pairwise interaction energy of each ligand residue with two receptor residues, N205 and Y266, was determined. The mutations N205A and Y266A were previously shown to result in deficient signaling but cause only a 2.5-fold and 6-fold decrease, respectively, in the affinity for alpha-factor. The analysis shows that residues at the amine terminus of alpha-factor interact strongly with N205 and Y266 whereas residues in the center and at the carboxyl terminus of the peptide interact only weakly if at all with these receptor residues. Multiple-mutant thermodynamic cycle analysis was used to assess whether the energies of selected pairwise interactions between residues of the alpha-factor peptide changed upon binding to Ste2p. Strong positive cooperativity between residues 1 through 4 of alpha-factor was observed during receptor binding. In contrast, no thermodynamic evidence was found for an interaction between a residue near the carboxyl terminus of alpha-factor (position 11) and one at the N-terminus (position 3). The study shows that multiple-mutant cycle analyses of the binding of an alanine-scanned peptide to wild-type and mutant GPCRs can provide detailed information on contributions of inter- and intramolecular interactions to the binding energy and potentially prove useful in developing 3D models of ligand docked to its receptor.  相似文献   

9.
Lin JC  Duell K  Saracino M  Konopka JB 《Biochemistry》2005,44(4):1278-1287
The alpha-factor receptor (Ste2p) stimulates mating of the yeast Saccharomyces cerevisiae. Ste2p belongs to the large family of G protein-coupled receptors that are characterized by seven transmembrane alpha-helices. Receptor activation is thought to involve changes in the packing of the transmembrane helix bundle. To identify residues that contribute to Ste2p activation, second-site suppressor mutations were isolated that restored function to defective receptors carrying either an F204S or Y266C substitution which affect residues at the extracellular ends of transmembrane domains 5 and 6, respectively. Thirty-five different suppressor mutations were identified. On their own, these mutations caused a range of phenotypes, including hypersensitivity, constitutive activity, altered ligand binding, and loss of function. The majority of the mutations affected residues in the transmembrane segments that are predicted to face the helix bundle. Many of the suppressor mutations caused constitutive receptor activity, suggesting they improved receptor function by partially restoring the balance between the active and inactive states. Analysis of mutations in transmembrane domain 7 implicated residues Ala281 and Thr282 in receptor activation. The A281T and T282A mutants were supersensitive to S. cerevisiae alpha-factor, but were defective in responding to a variant of alpha-factor produced by another species, Saccharomyces kluyveri. The A281T mutant also displayed 8.7-fold enhanced basal signaling. Interestingly, Ala281 and Thr282 are situated in approximately the same position as Lys296 in rhodopsin, which is covalently linked to retinal. These results suggest that transmembrane domain 7 plays a role in receptor activation in a wide range of G protein-coupled receptors from yeast to humans.  相似文献   

10.
Naider F  Becker JM 《Peptides》2004,25(9):1441-1463
Mating in Saccharomyces cerevisiae is initiated by the secretion of diffusible peptide pheromones that are recognized by G protein-coupled receptors (GPCR). This review summarizes the use of the alpha-factor (WHWLQLKPGQPMY)--GPCR (Ste2p) interaction as a paradigm to understand the recognition between medium-sized peptide hormones and their cognate receptors. Studies over the past 15 years have indicated that the alpha-factor is bent around the center of the pheromone and that residues near the amine terminus play a central role in triggering signal transduction. The bend in the center appears not to be rigid and this flexibility is likely necessary for conformational changes that occur as the receptor switches from the inactive to active state. The results of synthetic, biological, biochemical, molecular biological, and biophysical analyses have led to a preliminary model for the structure of the peptide bound to its receptor. Antagonists for Ste2p have changes near the N-terminus of alpha-factor, and mutated forms of Ste2p were discovered that appear to favor binding of these antagonists relative to agonists. Many features of this yeast recognition system are relevant to and have counterparts in mammalian cells.  相似文献   

11.
The Saccharomyces cerevisiae pheromone, alpha-factor (WHWLQLKPGQPMY), and Ste2p, its G protein-coupled receptor, were studied as a model for peptide ligand-receptor interaction. The affinities and activities of various synthetic position-10 alpha-factor analogs with Ste2p expressing mutations at residues Ser47 and Thr48 were investigated. All mutant receptors were expressed at a similar level in the cytoplasmic membrane, and their efficacies of signal transduction were similar to that of the wild-type receptor. Mutant receptors differed in binding affinity (Kd) and potency (EC50) for gene induction by alpha-factor. One mutant receptor (S47K,T48K) had dramatically reduced affinity and activity for [Lys10]- and [Orn10]alpha-factor, whereas the affinity for Saccharomyces kluyveri alpha-factor (WHWLSFSKGEPMY) was increased over 20-fold compared with that of wild-type receptor. In contrast, the affinity of [Lys10]- and [Orn10]alpha-factor was increased greatly in a S47E,T48E mutant receptor, whereas the binding of the S. kluyveri alpha-factor was abolished. The affinity of [Lys10]- and [Orn10]alpha-factor for the S47E,T48E receptor dropped 4-6-fold in the presence of 1 m NaCl, whereas the affinity of alpha-factor was not affected by this treatment. These results demonstrate that when bound to its receptor the 10th residue (Gln) of the S. cerevisiae alpha-factor is adjacent to Ser47 and Thr48 residues in the receptor and that the 10th residue of alpha-factors from two Saccharomyces species is responsible for the ligand selectivity to their cognate receptors. Based on these data, we have developed a two-dimensional model of alpha-factor binding to its receptor.  相似文献   

12.
The yeast Saccharomyces cerevisiae undergoes cell fusion during sexual conjugation to form diploid cells. The haploids participating in this process signal each other through secreted peptide-mating factors (alpha-factor and a-factor) that are recognized by G-protein-coupled receptors. The receptor (Ste2p) recognizing the tridecapeptide alpha-factor is used as a model system in our laboratory to understand various aspects of peptide-receptor interactions and receptor structure. Using chemical procedures we have synthesized peptides corresponding to the seven transmembrane domains of Ste2p and studied their structures in membrane mimetic environments. Extension of these studies requires preparation of longer fragments of Ste2p. This article discusses strategies used in our laboratory to prepare peptides containing multiple domains of Ste2p. Data are presented on the use of chemical synthesis, biosynthesis, and native chemical ligation. Using biosynthetic approaches fusion proteins have been expressed that contain single receptor domains, two transmembrane domains connected by the contiguous loop, and the tail connected to the seventh transmembrane domain. Tens of milligrams of fusion protein were obtained per liter, and multimilligram quantities of the isotopically labeled target peptides were isolated using such biosynthetic approaches. Initial circular dichroism results on a chemically synthesized 64-residue peptide containing a portion of the cytosolic tail and the complete seventh transmembrane domain showed that the tail portion and the hydrophobic core of this peptide maintained individual conformational preferences. Moreover, this peptide could be studied at near millimolar concentrations in the presence of micelles and did not aggregate under these conditions. Thus, these constructs can be investigated using high-resolution nuclear magnetic resonance techniques, and the cytosolic tail of Ste2p can be used as a hydrophilic template to improve solubility of transmembrane peptides for structural analysis.  相似文献   

13.
Analogs of the alpha-factor tridecapeptide mating pheromone (WHWLQLKPGQPMY) from Saccharomyces cerevisiae in which Tyr13 was replaced with Phe, p-F-Phe, m-F-Phe, p-NO2-Phe, p-NH2-Phe or Ser were synthesized and purified to >99% homogeneity. These analogs were bioassayed using a growth arrest assay and a gene induction assay and evaluated for their ability to compete with binding of tritiated alpha-factor to its receptor Ste2p. The results showed that the phenolic OH of Tyr13 is not required for either biological activity or receptor recognition. Analogs containing fluorine, amino, nitro or a hydrogen in place of OH had 80-120% of the biological activity of the parent pheromone in the gene induction assay and had receptor affinities from nearly equal to 6-fold lower than that of alpha-factor. In contrast, substitution of Ser or Ala at position 13 resulted in a >100-fold decrease in receptor affinity suggesting that the aromatic ring is involved in binding to the receptor. The lack of a strict requirement for Tyr13 allowed the design of several multiple replacement analogs in which Phe or p-F-Phe were substituted at position 13 and Tyr was placed in other positions of the peptide. These analogs could then be iodinated and used in the development of a highly sensitive receptor-binding assay. One potential receptor ligand [Tyr(125I)1,Nle12, Phe13] alpha-factor exhibited saturable binding with a KD of 81 nM and was competed by alpha-factor for binding in a whole-cell assay. Thus a new family of radioactive ligands for the alpha-factor receptor has been revealed. These ligands should be extremely useful in defining active site residues during mutagenesis and cross-linking studies.  相似文献   

14.
Haploid yeast cells initiate pheromone signaling upon the binding of pheromone to its receptor and activation of the coupled G protein. A regulatory process termed receptor inhibition blocks pheromone signaling when the a-factor receptor is inappropriately expressed in MATa cells. Receptor inhibition blocks signaling by inhibiting the activity of the G protein beta subunit, Ste4p. To investigate how Ste4p activity is inhibited, its subcellular location was examined. In wild-type cells, alpha-factor treatment resulted in localization of Ste4p to the plasma membrane of mating projections. In cells expressing the a-factor receptor, alpha-factor treatment resulted in localization of Ste4p away from the plasma membrane to an internal compartment. An altered version of Ste4p that is largely insensitive to receptor inhibition retained its association with the membrane in cells expressing the a-factor receptor. The inhibitory function of the a-factor receptor required ASG7, an a-specific gene of previously unknown function. ASG7 RNA was induced by pheromone, consistent with increased inhibition as the pheromone response progresses. The a-factor receptor inhibited signaling in its liganded state, demonstrating that the receptor can block the signal that it initiates. ASG7 was required for the altered localization of Ste4p that occurs during receptor inhibition, and the subcellular location of Asg7p was consistent with its having a direct effect on Ste4p localization. These results demonstrate that Asg7p mediates a regulatory process that blocks signaling from a G protein beta subunit and causes its relocalization within the cell.  相似文献   

15.
The Saccharomyces cerevisiae a-factor receptor (Ste3p) requires its C-terminal cytoplasmic tail for endocytosis. Wild-type receptor is delivered to the cell surface via the secretory pathway but remains there only briefly before being internalized and delivered to the vacuole for degradation. Receptors lacking all or part of the cytoplasmic tail are not subject to this constitutive endocytosis. We used the cytoplasmic tail of Ste3p as bait in the two-hybrid system in an effort to identify other proteins involved in endocytosis. One protein identified was Akr1p, an ankyrin repeat-containing protein. We applied three criteria to demonstrate that Akr1p is involved in the constitutive endocytosis of Ste3p. First, when receptor synthesis is shut off, akr1 delta cells retain the ability to mate longer than do AKR1 cells. Second, Ste3p half-life is increased by greater than 5-fold in akr1 delta cells compared with AKR1 cells. Third, after a pulse of synthesis, newly synthesized receptor remains at the cell surface in akr1 delta mutants, whereas it is rapidly internalized in AKR1 cells. Specifically, in akr1 delta mutants, newly synthesized receptor is accessible to exogenous protease, and by indirect immunofluorescence, the receptor is located at the cell surface. akr1 delta cells are also defective for endocytosis of the alpha-factor receptor (Ste2p). Despite the block to constitutive endocytosis exhibited by akr1 delta cells, they are competent to carry out ligand-mediated endocytosis of Ste3p. In contrast, akr1 delta cells cannot carry out ligand-mediated endocytosis of Ste2p. We discuss the implications for Akr1p function in endocytosis and suggest a link to the regulation of ADP-ribosylation proteins (Arf proteins).  相似文献   

16.
Fundamental knowledge about how G protein-coupled receptors and their ligands interact is important for understanding receptor-ligand binding and the development of new drug discovery strategies. We have used cross-linking and tandem mass spectrometry analyses to investigate the interaction of the N terminus of the Saccharomyces cerevisiae tridecapeptide pheromone, α-factor (WHWLQLKPGQPMY), and Ste2p, its cognate G protein-coupled receptor. The Trp(1) residue of α-factor was replaced by 3,4-dihydroxyphenylalanine (DOPA) for periodate-mediated chemical cross-linking, and biotin was conjugated to Lys(7) for detection purposes to create the peptide [DOPA(1),Lys(7)(BioACA),Nle(12)]α-factor, called Bio-DOPA(1)-α-factor. This ligand analog was a potent agonist and bound to Ste2p with ~65 nanomolar affinity. Immunoblot analysis of purified Ste2p samples that were treated with Bio-DOPA(1)-α-factor showed that the peptide analog cross-linked efficiently to Ste2p. The cross-linking was inhibited by the presence of either native α-factor or an α-factor antagonist. MALDI-TOF and immunoblot analyses revealed that Bio-DOPA(1)-α-factor cross-linked to a fragment of Ste2p encompassing residues Ser(251)-Met(294). Fragmentation of the cross-linked fragment and Ste2p using tandem mass spectrometry pinpointed the cross-link point of the DOPA(1) of the α-factor analog to the Ste2p Lys(269) side chain near the extracellular surface of the TM6-TM7 bundle. This conclusion was confirmed by a greatly diminished cross-linking of Bio-DOPA(1)-α-factor into a Ste2p(K269A) mutant. Based on these and previously obtained binding contact data, a mechanism of α-factor binding to Ste2p is proposed. The model for bound α-factor shows how ligand binding leads to conformational changes resulting in receptor activation of the signal transduction pathway.  相似文献   

17.
Parrish W  Eilers M  Ying W  Konopka JB 《Genetics》2002,160(2):429-443
The binding of alpha-factor to its receptor (Ste2p) activates a G-protein-signaling pathway leading to conjugation of MATa cells of the budding yeast S. cerevisiae. We conducted a genetic screen to identify constitutively activating mutations in the N-terminal region of the alpha-factor receptor that includes transmembrane domains 1-5. This approach identified 12 unique constitutively activating mutations, the strongest of which affected polar residues at the cytoplasmic ends of transmembrane domains 2 and 3 (Asn84 and Gln149, respectively) that are conserved in the alpha-factor receptors of divergent yeast species. Targeted mutagenesis, in combination with molecular modeling studies, suggested that Gln149 is oriented toward the core of the transmembrane helix bundle where it may be involved in mediating an interaction with Asn84. These residues appear to play specific roles in maintaining the inactive conformation of the protein since a variety of mutations at either position cause constitutive receptor signaling. Interestingly, the activity of many mammalian G-protein-coupled receptors is also regulated by conserved polar residues (the E/DRY motif) at the cytoplasmic end of transmembrane domain 3. Altogether, the results of this study suggest a conserved role for the cytoplasmic end of transmembrane domain 3 in regulating the activity of divergent G-protein-coupled receptors.  相似文献   

18.
F. R. Cross 《Genetics》1990,126(2):301-308
A dominant mutation (DAF2-2) resulting in resistance to the mating pheromone alpha-factor in Saccharomyces cerevisiae MATa cells was identified and characterized genetically. Whereas wild-type cells induce a high level of the FUS1 mRNA from a low baseline on exposure to alpha-factor, DAF2-2 cells were constitutive producers of an intermediate level of FUS1 RNA; the level was increased only modestly by alpha-factor. FUS1 constitutivity required STE4, STE5 and STE18, but did not require STE2, the alpha-factor receptor gene. DAF2-2 suppressed the alpha-factor supersensitivity of a STE2 C-terminal truncation, and suppressed lethality due to scg1 mutations. Thus DAF2-2 may act by uncoupling the signaling pathway from alpha-factor binding at some point in the pathway between Scg1 inactivation and the action of Ste4, Ste5 and Ste18; this uncoupling might occur at the expense of partial constitutive activation of the pathway. DAF2-2 suppressed the unconditional cell-cycle arrest phenotype of a dominant "constitutive signaling" allele of STE4 (STE4Hpl), although the constitutive FUS1 phenotype of DAF2-2 was suppressed by ste4 null mutations; therefore DAF2-2 may directly affect the performance of the STE4 step.  相似文献   

19.
Ubiquitination of the plasma membrane-localized yeast a-factor receptor (Ste3p) triggers a rapid, ligand-independent endocytosis leading to its vacuolar degradation. This report identifies two mutants that block uptake by blocking ubiquitination, these being mutant either for the ankyrin repeat protein Akr1p or for the redundant type I casein kinases Yck1p and Yck2p. While no obvious defect was seen for wild-type Ste3p phosphorylation in akr1 or yck mutant backgrounds, examination of the Delta320-413 Ste3p deletion mutant phosphorylation did reveal a clear defect in both mutants. The Delta320-413 deletion removes 18 Ser-Thr residues (possible YCK-independent phosphorylation sites) yet retains the 15 Ser-Thr residues of the Ste3p PEST-like ubiquitination-endocytosis signal. Two other phenotypes link akr1 and yck mutants: both are defective in phosphorylation of wild-type alpha-factor receptor, and while both are defective for Ste3p constitutive internalization, both remain partially competent for the Ste3p ligand-dependent uptake mode. Yck1p-Yck2p may be the function responsible in phosphorylation of the PEST-like ubiquitination-endocytosis signal. Akr1p appears to function in localizing Yck1p-Yck2p to the plasma membrane, a localization that depends on prenylation of C-terminal dicysteinyl motifs. In akr1Delta cells, Yck2p is mislocalized, showing a diffuse cytoplasmic localization identical to that seen for a Yck2p mutant that lacks the C-terminal Cys-Cys, indicating a likely Akr1p requirement for the lipid modification of Yck2p, for prenylation, or possibly for palmitoylation.  相似文献   

20.
The homothallic filamentous ascomycete Sordaria macrospora possesses genes which are thought to encode two pheromone precursors and two seven-transmembrane pheromone receptors. The pheromone precursor genes are termed ppg1 and ppg2. The putative products derived from the gene sequence show structural similarity to the alpha-factor precursors and a-factor precursors of the yeast Saccharomyces cerevisiae. Likewise, sequence similarity has been found between the putative products of the pheromone receptor genes pre2 and pre1 and the S. cerevisiae Ste2p alpha-factor receptor and Ste3p a-factor receptor, respectively. To investigate whether the alpha-factor-like pheromone-receptor pair of S. macrospora is functional, a heterologous yeast assay was used. Our results show that the S. macrospora alpha-factor-like pheromone precursor PPG1 is processed into an active pheromone by yeast MATalpha cells. The S. macrospora PRE2 protein was demonstrated to be a peptide pheromone receptor. In yeast MATa cells lacking the endogenous Ste2p receptor, the S. macrospora PRE2 receptor facilitated all aspects of the pheromone response. Using a synthetic peptide, we can now predict the sequence of one active form of the S. macrospora peptide pheromone. We proved that S. macrospora wild-type strains secrete an active pheromone into the culture medium and that disruption of the ppg1 gene in S. macrospora prevents pheromone production. However, loss of the ppg1 gene does not affect vegetative growth or fertility. Finally, we established the yeast assay as an easy and useful system for analyzing pheromone production in developmental mutants of S. macrospora.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号