首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The paraventricular nucleus (PVN) of the hypothalamus is a central site known to modulate sympathetic outflow. Excitatory and inhibitory neurotransmitters within the PVN dictate final outflow. The goal of the present study was to examine the role of the interaction between the excitatory neurotransmitter glutamate and the inhibitory neurotransmitter GABA in the regulation of sympathetic activity. In alpha-chloralose- and urethane-anesthetized rats, microinjection of glutamate and N-methyl-D-aspartate (NMDA; 50, 100, and 200 pmol) into the PVN produced dose-dependent increases in renal sympathetic nerve activity, blood pressure, and heart rate. These responses were blocked by the NMDA receptor antagonist DL-2-amino-5-phosphonovaleric acid (AP-5). Microinjection of bicuculline, a GABA(A) receptor antagonist, into the PVN (50, 100, and 200 pmol) also produced significant, dose-dependent increases in renal sympathetic nerve activity, blood pressure, and heart rate; AP-5 also blocked these responses. Using microdialysis and HPLC/electrochemical detection techniques, we observed that bicuculline infusion into the PVN increased glutamate release. Using an in vitro hypothalamic slice preparation, we found that bicuculline increased the frequency of glutamate-mediated excitatory postsynaptic currents in PVN-rostral ventrolateral medullary projecting neurons, supporting a GABA(A)-mediated tonic inhibition of this excitatory input into these neurons. Together, these data indicate that 1) glutamate, via NMDA receptors, excites the presympathetic neurons within the PVN and increases sympathetic outflow and 2) this glutamate excitatory input is tonically inhibited by a GABA(A)-mediated mechanism.  相似文献   

2.
Activation of forelimb flexor reflex afferents (FRA) exerted a facilitating effect upon the reciprocal 1a IPSP recorded in extensor motoneurones of lumbosacral segments. The latency of this spatial facilitation was 18-20 ms, duration up to 60 ms, the amplitude of the test disynaptic 1a IPSP being several times greater than in the control. Facilitation of the 1a IPSP occurs against the background of the IPSP evoked by descending interlimb impulses. Therefore the facilitation of synaptic transmission in the 1a inhibitory pathway to extensor motoneurones induced by the descending interlimb volleys, favours more pronounced reciprocal interrelations between flexor and extensor spinal motor centres.  相似文献   

3.
1. The first part of this study looks at spontaneously active neurons located in the rostral ventrolateral medulla (RVLM) with projections to the thoracic spinal cord. Sixteen neurons were intracellularly recorded in vivo. Four out of 16 neurons were antidromically activated from the thoracic spinal cord (axonal conduction velocities varied from 1.8 m/s to 9.5 m/s).2. The simultaneous averages of the neuronal membrane potential and arterial blood pressure triggered by the pulsatile arterial wave or the EKG-R wave demonstrated changes in membrane potential (hyperpolarization or depolarization) locked to the cardiac cycle in four neurons in this group. These neurons (three of them bulbospinal) were further tested for barosensitivity by characterizing the responses to electrical stimulation of the aortic depressor nerve. Four neurons responded with inhibitory hyperpolarizing responses characterized as inhibitory postsynaptic potentials (IPSP) to aortic nerve stimulation (onset latency: 32.3 ± 5.0 ms; mean ± SEM).3. In two neurons in the RVLM, one of them characterized as barosensitive, electrical stimulation of the opposite RVLM (0.5 Hz, 1.0 ms pulse duration, 25–100 A) elicited excitatory postsynaptic potentials (EPSPs) with latencies of 9.07 and 10.5 ms. At resting membrane potential, the onset latency of the evoked EPSPs did not change with increasing stimulus intensities. Some of the recorded neurons were intracellularly labelled with biocytin for visualization. They were found in the RVLM.4. These experiments in vivo would support the idea of a functional commissural pathway between the RVLM of both sides.5. Anatomical data have shown that some of those commissural bundle fibers originate in the C1 adrenergic neuronal group in the RVLM. In the second part of this study, we used an intracellular recording technique in vitro to investigate the effects of the indirect adrenergic agonist tyramine on neurons in the RVLM with electrophysiological properties similar to premotor sympathetic neurons in vivo.6. Tyramine (0.5–1 mM) produced a pronounced inhibitory effect with hyperpolarization and increase in membrane input resistance on two neurons characterized as regularly firing (R), and on one neuron characterized as irregularly firing (I). This effect was preceded by a transient depolarization with increases in firing rate.7. These results would indicate that neurons in the RVLM recorded in vitro and with properties similar to premotor sympathetic neurons can be modulated by catecholamines released from terminals probably making synaptic contacts.  相似文献   

4.
Neurons in the rostral medullary raphe/parapyramidal region regulate cutaneous sympathetic nerve discharge. Using focal electrical stimulation at different dorsoventral raphe/parapyramidal sites in anesthetized rabbits, we have now demonstrated that increases in ear pinna cutaneous sympathetic nerve discharge can be elicited only from sites within 1 mm of the ventral surface of the medulla. By comparing the latency to sympathetic discharge following stimulation at the ventral raphe site with the corresponding latency following stimulation of the spinal cord [third thoracic (T3) dorsolateral funiculus] we determined that the axonal conduction velocity of raphe-spinal neurons exciting ear pinna sympathetic vasomotor nerves is 0.8 +/- 0.1 m/s (n = 6, range 0.6-1.1 m/s). Applications of the 5-hydroxytryptamine (HT)(2A) antagonist trans-4-((3Z)3-[(2-dimethylaminoethyl)oxyimino]-3-(2-fluorophenyl)propen-1-yl)-phenol, hemifumarate (SR-46349B, 80 microg/kg in 0.8 ml) to the cerebrospinal fluid above thoracic spinal cord (T1-T7), but not the lumbar spinal cord (L2-L4), reduced raphe-evoked increases in ear pinna sympathetic vasomotor discharge from 43 +/- 9 to 16 +/- 6% (P < 0.01, n = 8). Subsequent application of the excitatory amino acid (EAA) antagonist kynurenic acid (25 micromol in 0.5 ml) substantially reduced the remaining evoked discharge (22 +/- 8 to 6 +/- 6%, P < 0.05, n = 5). Our conduction velocity data demonstrate that only slowly conducting raphe-spinal axons, in the unmyelinated range, contribute to sympathetic cutaneous vasomotor discharge evoked by electrical stimulation of the medullary raphe/parapyramidal region. Our pharmacological data provide evidence that raphe-spinal neurons using 5-HT as a neurotransmitter contribute to excitation of sympathetic preganglionic neurons regulating cutaneous vasomotor discharge. Raphe-spinal neurons using an EAA, perhaps glutamate, make a substantial contribution to the ear sympathetic nerve discharge evoked by raphe stimulation.  相似文献   

5.
The electrophysiological responses of neurons in the canine area postrema (AP) to ionophoretic application of neuropeptides and transmitters were studied and correlated with the presence or absence of an emetic response on systemic administration. Of 17 common neuropeptides 11 were emetic when applied systemically at doses of 0.03-0.35 mg/kg. The emesis was dose dependent and was no longer observed in animals with chronic ablation of the AP. The responses of 122 AP single units were recorded. Neurons were silent at rest, and most were excited by glutamate, apomorphine, and dopamine. Excitatory responses to each of eight emetic peptides were recorded in 22-65% of cells studied; no responses were found to two peptides that were not emetic. The response to glutamate was always a brief, high-frequency discharge; the responses to all 13 other excitatory substances were of long latency, low frequency, and long duration. With high ionophoretic current or multiple applications, units would frequently become spontaneously active for many minutes or longer. The similarity of response of so many substances on small neurons suggests a common ionic or metabolic mechanism underlying the response. The direct correlation between the occurrence of emesis on systemic administration and the presence of excitatory receptors on AP neurons provides strong support for the proposed role of the AP as the chemoreceptor trigger zone for emesis.  相似文献   

6.
Responses of upper cervical inspiratory neurons (UCINs) to abdominal visceral or cardiopulmonary sympathetic stimulation were studied using extracellular recordings from 213 UCINs in 54 pentobarbital sodium-anesthetized and paralyzed rats. Phrenic nerve activity was used to assess inspiration. The UCINs discharging during inspiration only were mainly in the C(1) segment, whereas phase-spanning UCINs were mostly in the C(2) segment. Phase-spanning activity was typically retained after overventilation or vagotomy. When greater splanchnic nerve (GSN) or cardiopulmonary sympathetic afferent (CPSA) fibers were electrically stimulated, augmented UCIN activity was observed in 65% of cells responding to CPSA stimulation but in only 17% of cells responding to GSN. Response latencies were 10.7 +/- 0.5 and 20.6 +/- 1.5 (SE) ms, respectively. Many augmented responses to CPSA stimulation (64%) and all augmented responses to GSN stimulation were followed by suppression of UCIN discharge (biphasic response). Phrenic nerve activity was suppressed by both GSN and CPSA stimulation, but with shorter latency for the latter (29 +/- 0.7 vs. 14.0 +/- 0.7 ms). Excitation of UCINs using CPSA stimulation occurs more often and by a more direct pathway than for GSN input.  相似文献   

7.
During baroreceptor unloading, sympathoexcitation is attenuated in near-term pregnant compared with nonpregnant rats. Alterations in balance among different excitatory and inhibitory inputs within central autonomic pathways likely contribute to changes in regulation of sympathetic outflow in pregnancy. Both baroreflex-dependent and baroreflex-independent GABAergic inputs inhibit sympathoexcitatory neurons within rostral ventrolateral medulla (RVLM). The present experiments tested the hypothesis that influence of baroreflex-independent GABAergic inhibition of RVLM is greater in pregnant compared with nonpregnant rats. Afferent baroreceptor inputs were eliminated by bilateral sinoaortic denervation in inactin-anesthetized rats. In pregnant compared with nonpregnant rats, baseline mean arterial pressure (MAP) was lower (pregnant = 75 +/- 6 mmHg, nonpregnant = 115 +/- 7 mmHg) and heart rate was higher (pregnant = 381 +/- 10 beats/min, nonpregnant = 308 +/- 10 beats/min). Pressor and sympathoexcitatory [renal sympathetic nerve activity, (RSNA)] responses due to bilateral GABA(A) receptor blockade (bicuculline, 4 mM, 100 nl) of the RVLM were greater in pregnant rats (delta MAP: pregnant = 101 +/- 4 mmHg, nonpregnant = 80 +/- 6 mmHg; delta RSNA: pregnant = 182 +/- 23% control, nonpregnant = 133 +/- 10% control). Unexpected transient sympathoexcitatory effects of angiotensin AT(1) receptor blockade in the RVLM were greater in pregnant rats. Although excitatory responses to bicuculline were attenuated by prior RVLM AT1 receptor blockade in both groups, pressor responses to disinhibition of the RVLM remained augmented in pregnant rats. Increased influence of baroreflex-independent GABAergic inhibition in RVLM could contribute to suppressed sympathoexcitation during withdrawal of arterial baroreceptor input in pregnant animals.  相似文献   

8.
Extracellular spikes were recorded from cell bodies of sympathetic preganglionic neurones in spinal segments T1-T3 of the cat. Each neurone was identified by its antidromic response to electrical stimulation of the sympathetic chain and was found in histological sections to lie within the intermediolateral nucleus. Physiological properties studied in detail included basal activity, spike configuration, and latency of antidromic activation. Also studied, in tests with paired stimuli, were the threshold interstimulus interval evoking two responses, as well as changes in amplitude and latency of the second spike which occurred at intervals near this threshold. Approximately 60% of the units studied were spontaneously active, the rest were silent. Spontaneous activity was characterized by a slow (mean = 3.1 +/- 2.6 (SD) spikes/s), irregular pattern of discharge. With approximately one-third of the cases there was a periodic pattern of discharge in phase with oscillations in blood pressure. This correlation of phasic activity suggests that many of the units studied were involved specifically in cardiovascular function. Silent and spontaneously active units could not be differentiated on the basis of latency of antidromic activation or threshold interstimulus interval; mean latency for the two groups was 7.2 +/- 4.9 ms, mean threshold interval was 6.4 +/- 4.7 ms. Thus, with the exception of basal activity, the physiological properties studied failed to indicate more than a single population of neurones. These results therefore suggest that the sympathetic preganglionic neurones in the intermediolateral nucleus subserving varied autonomic functions share overlapping physiological properties, and that functional differentiation of these neurones may be based on differences in synaptic inputs.  相似文献   

9.
We determined the effects of bilateral microinjection of muscimol and excitatory amino acid receptor antagonists into the medullary lateral tegmental field (LTF) on changes in sympathetic nerve discharge (SND), mean arterial pressure (MAP), and phrenic nerve activity (PNA; artificially ventilated cats) or intratracheal pressure (spontaneously breathing cats) elicited by right atrial administration of phenylbiguanide (PBG; i.e., the Bezold-Jarisch reflex) in dial-urethane anesthetized cats. The PBG-induced depressor response (-66 +/- 8 mmHg; mean +/- SE) was converted to a pressor response after muscimol microinjection in two of three spontaneously breathing cats and was markedly reduced in the other cat; however, the duration of apnea (20 +/- 3 vs. 17 +/- 7 s) was essentially unchanged. In seven paralyzed, artificially ventilated cats, muscimol microinjection significantly (P < 0.05) attenuated the PBG-induced fall in MAP (-39 +/- 7 vs. -4 +/- 4 mmHg) and the magnitude (-98 +/- 1 vs. -35 +/- 13%) and duration (15 +/- 2 vs. 3 +/- 2 s) of the sympathoinhibitory response. In contrast, the PBG-induced inhibition of PNA was unaffected (3 cats). Similar results were obtained by microinjection of an N-methyl-D-aspartate (NMDA) receptor antagonist, D(-)-2-amino-5-phosphonopentanoic acid, into the LTF. In contrast, neither the cardiovascular nor respiratory responses to PBG were altered by blockade of non-NMDA receptors with 1,2,3,4-tetrahydro-6-nitro-2,3-dioxobenzo[f]quinoxaline-7-sulfonamide. We conclude that the LTF subserves a critical role in mediating the sympathetic and cardiovascular components of the Bezold-Jarisch reflex. Moreover, these data show separation of the pathways mediating the respiratory and cardiovascular responses of this reflex at a level central to bulbospinal outflows to phrenic motoneurons and preganglionic sympathetic neurons.  相似文献   

10.
In urethane-anesthetized rabbits, 209 spontaneously active neurons that responded to stimulation of aortic nerve A fibers were found within the ventrolateral medulla (VLM). The neurons, termed barosensory VLM neurons, were inhibited, except for three instances, by stimulation of A fibers. Forty-seven percent of barosensory VLM neurons tested (74 of 159) were activated antidromically by electrical stimulation of the dorsolateral funiculus at the C2 level. Activity of barosensory VLM neurons was enhanced by stimulation of carotid body chemoreceptors or the posterior hypothalamic area, whereas it was diminished by increases in arterial pressure elicited by injection of phenylephrine. Barosensory VLM neurons responded variously to stimulation, with two to three pulses at 40 or 100 Hz, of spinal afferents of cutaneous and muscle origins and the spinal trigeminal complex. Although stimulation of one group of somatosensory fibers could evoke different patterns of neuronal responses consisting of excitatory and inhibitory components, the following responses were most often encountered. Group II cutaneous afferents caused an inhibition. Recruitment of group III afferents brought about a brief excitatory component preceding it. Activation of group IV cutaneous fibers added a long latency excitatory component. Excitation of groups III and IV muscle afferents most often resulted in an inhibition, whereas stimulation of the spinal trigeminal complex elicited various combinations of excitatory and inhibitory components. These results are consistent with the view that neurons in the ventrolateral medulla receive barosensory and nonbarosensory inputs from various peripheral and central sources and participate in the control of sympathetic vasomotor activity and arterial pressure.  相似文献   

11.
本工作记录家免肾神经冲动和动脉血压,观察电刺激腓深神经的效应。在用减少通气量、切断双侧迷走神经、切断双侧缓冲神经等方法使交感中枢活动水平升高时,刺激腓深神经(3V、10Hz、0.3ms 持续15min)对血压无明显影响,但可以抑制肾神经的发放。相反,用过度通气或刺激一侧降压神经的方法使交感中枢活动水平降低时,同样的参数刺激腓深神经,则使肾神经发放增加。刺激腓深神经对肾神经发放的抑制效应,可为静脉注射纳洛酮阻断,而兴奋效应则被静脉注射东莨菪碱阻断。上述结果表明:低频低强度刺激腓深神经可引起肾神经发放的抑制或增强,其效应取决于交感中枢的活动状态。躯体传入对肾神经发放的抑制效应有内源性阿片样物质参与,而躯体传入对肾神经发放的兴奋效应则和中枢胆碱能系统的激活有关。  相似文献   

12.
The responses of 122 neurons in the area postrema of anesthetized dogs to 17 common transmitters and peptides were determined. Recordings were made from one barrel of a seven-barrel ionophoretic electrode. All neurons were silent at rest, but most could be detected and excited by the application of glutamate. The glutamate response was a brief, high-frequency response of less than 1-sec duration. Excitatory responses were also found to histamine, norepinephrine, serotonin, dopamine, apomorphine, angiotensin II, neurotensin, leucine enkephalin, vasoactive intestinal polypeptide, thyrotropin releasing hormone, gastrin, vasopressin, and substance P. While most neurons tested were excited by dopamine and apomorphine, approximately half of those studied were also excited by each of the other substances. Inhibitory responses were found to norepinephrine (6 of 15 cells) and histamine (3 of 45 cells). No responses were found to acetylcholine, somatostatin, or cholecystokinin. The responses to all 13 excitatory substances other than glutamate were similar. Typically these responses had a latency of 2-20 sec and lasted for 30 sec to 5 min on their first application. The frequency of discharge was usually low (approximately 0.5 Hz). Multiple applications of these agents often induced a maintained spontaneous discharge of low frequency. Each application also induced a transient incremental discharge at a frequency that rarely exceeded 2 Hz. The area postrema has been proposed to be the "chemoreceptor trigger zone" for emesis (Borison and Wang, 1953). All of the agents which excite area postrema neurons, with the exception of serotonin and norepinephrine, are emetic, while none of the three agents without excitatory effects is known to be emetic. Thus these results provide strong support for the central role of the area postrema in emesis. The similarity of response to so many substances on small neurons suggests a common ionic and/or metabolic mechanism underlying the response. The prolonged nature of the response to brief administration of these agents would seem to be appropriate for neurons which subserve a sensation and behavior such as nausea and vomiting.  相似文献   

13.
Extensive studies in the adult have demonstrated that the sympathetic nervous system plays a central role in cardiovascular control. The maturation of the sympathetic nervous system before birth is poorly understood. In the present study, we directly recorded renal sympathetic nerve activity (renal SNA) in five preterm fetal sheep (99 +/- 1 days gestation; term is 147 days). Recordings were performed in utero using a telemetry-based technique to alleviate movement artifact without anesthesia or paralysis. The preterm fetuses exhibited a coordinated discharge pattern in renal SNA, indicating many individual neurons active at approximately the same time. This is consistent with that observed previously in adult animals, although the frequency of the bursts was relatively low (0.5 +/- 0.1 Hz). The discharges in renal SNA were entrained to the cardiac cycle (average delay between diastolic pressure and maximum renal SNA 319 +/- 1 ms). The entrainment of the sympathetic discharges to the cardiac cycle indicates phasic baroreceptor input and that the underlying circuits controlling SNA within the central nervous system are active in premature fetuses.  相似文献   

14.
Stimulation of either A- or C-fibres in the aortic nerve inhibits sympathetic nerve discharge (SND) recorded from the renal nerve in rabbits anaesthetized with urethane. When the test inhibition of SND to stimulation of A-fibres is preceded by conditioning stimulation of the same afferents, the test response is depressed at shorter and facilitated at longer testing intervals. Facilitation of the inhibition of SND reaches 120% of control at a testing interval of 10 s. The recovery curve of inhibition of SND to activation of A-fibres has a time course of 17 s. Following conditioning activation only depression of the test inhibition of SND to stimulation of C-fibres is seen. It reaches 46% of control at an interval of 2 s and the recovery curve of inhibition of SND to stimulation of C-fibres has a time course of about 30 s. In other series of experiments the duration of the conditioning stimulation was varied while the testing intervals were fixed. At a testing interval of 2 s the reductions of the test responses are deeper and the durations of conditioning at which plateaus of depression are reached are longer with stimulation of C- than of A-fibres. Taken together with a longer recovery curve these findings suggest a more effective control of the test inhibition of SND by C-fibres. Opposite changes in the patterns of inhibition of SND to activation of either A- or C-fibres are explained by frequency-dependent post-tetanic effects of the conditioning stimulation.  相似文献   

15.
Aseptic inflammation of tissues surrounding large meningeal blood vessels, e.g. the superior sagittal sinus, underlies pathogenesis of migraine. This inflammation develops due to antidromic activation of sensory trigeminal nerve endings and is followed by changes in responses of the spinal nucleus of the trigeminal nerve neurons to electrical stimulation of the superior sagittal sinus. However, characteristics of these reactions are still unclear. In experiments ou urethane-anesthetized rats, responses of 387 neurons of the spinal nucleus of the trigeminal nerve to electrical stimulation of the superior sagittal sinus, were recorded. It was tial discharge with the latency 7 to 19 ms (11.4 +/- 0.17 ms) and a subsequent long-lasting discharge with the latency 20 to 50 ms (34.2 +/- 0.8 ms). It is presumed that the first phase reflects orthodromic activation of prevascular A delta and C-fibers of the trigeminal nerve while the second phase is connected with activation of meningeal C-fibers which have low conduction velocity, and/or with a secondary activation of perivascular sensory endings of trigeminal nerve by releasing algogenic and vasoactive substances. These changes could be used as an indicator of efficacy of some antimigraine substances in animal experiments.  相似文献   

16.
The effects of nonlinear interactions between different sound frequencies on the responses of neurons in primary auditory cortex (AI) have only been investigated using two-tone paradigms. Here we stimulated with relatively dense, Poisson-distributed trains of tone pips (with frequency ranges spanning five octaves, 16 frequencies /octave, and mean rates of 20 or 120 pips /s), and examined within-frequency (or auto-frequency) and cross-frequency interactions in three types of AI unit responses by computing second-order “Poisson-Wiener” auto- and cross-kernels. Units were classified on the basis of their spectrotemporal receptive fields (STRFs) as “double-peaked”, “single-peaked” or “peak-valley”. Second-order interactions were investigated between the two bands of excitatory frequencies on double-peaked STRFs, between an excitatory band and various non-excitatory bands on single-peaked STRFs, and between an excitatory band and an inhibitory sideband on peak-valley STRFs. We found that auto-frequency interactions (i.e., those within a single excitatory band) were always characterized by a strong depression of (first-order) excitation that decayed with the interstimulus lag up to ~200 ms. That depression was weaker in cross-frequency compared to auto-frequency interactions for ~25% of dual-peaked STRFs, evidence of “combination sensitivity” for the two bands. Non-excitatory and inhibitory frequencies (on single-peaked and peak-valley STRFs, respectively) typically weakly depressed the excitatory response at short interstimulus lags (<50 ms), but weakly facilitated it at longer lags (~50–200 ms). Both the depression and especially the facilitation were stronger for interactions with inhibitory frequencies rather than just non-excitatory ones. Finally, facilitation in single-peaked and peak-valley units decreased with increasing stimulus density. Our results indicate that the strong combination sensitivity and cross-frequency facilitation suggested by previous two-tone-paradigm studies are much less pronounced when using more temporally-dense stimuli.  相似文献   

17.
1. Somatic action potentials of Lymnaea neurons are modified by excitatory or inhibitory synaptic inputs and have been studied using phase-plane techniques and an action potential duration monitor. 2. Excitatory synaptic inputs increase the rate of neuronal discharge, cause action potential broadening, a decrease in the maximum rate of depolarization (Vd) and a decrease in the maximum rate of repolarization (Vr). 3. Inhibitory synaptic inputs decrease the discharge rate and cause narrowing of action potentials, an increase in Vd and an increase in Vr. 4. The effects reported above outlast the original synaptic inputs by many seconds and, if the somatic action potentials are similar to those in the axon terminals, they may have far-reaching effects on transmitter release.  相似文献   

18.
实验在氯醛糖和氨基甲酸乙酯麻醉猫上进行,用箭毒制动。以玻璃微电极记录背海马CA1区神经元放电。观察刺激中缝核(NR)对伤害性刺激内脏大神经引起的海马单位放电的影响。在记录的104个单位中,对伤害性刺激发生显著反应的82个。其中伤害性兴奋单位(NEU)38个;伤害性抑制单位(NIU)44个。伤害性无关单位(NUU)22个。刺激NR后,检测了63个单位,其中NEU的自发放电和伤害性放电出现抑制效应的,分别占单位数的40%和60%。26个NIU出现抑制加强的占60%;出现脱抑制的占25%。12个NUU,有的转变为NEU,有的转变为NIU,有的则维持原状。结果表明,海马CA1区存在内脏伤害性相关单位,该神经元分为NEU和NIU两类,刺激NR对它们中的多数均起抑制作用,并对其机制进行了讨论。  相似文献   

19.
The periaqueductal gray (PAG) is an important integrative region in the regulation of autonomic outflow and cardiovascular function and may serve as a regulatory center as part of a long-loop pathway during somatic afferent stimulation with acupuncture. Because the ventrolateral PAG (vlPAG) provides input to the rostral ventrolateral medulla (rVLM), an important area for electroacupuncture (EA) regulation of sympathetic outflow, we hypothesized that the vlPAG plays a role in the EA-related modulation of rVLM premotor sympathetic neurons activated during visceral afferent stimulation and autonomic excitatory reflexes. Cats were anesthetized and ventilated, and heart rate and mean blood pressure were monitored. Stimulation of the splanchnic nerve by a pledget of filter paper soaked in bradykinin (BK, 10 mug/ml) every 10 min on the gallbladder induced consistent cardiovascular reflex responses. Bilateral stimulation with EA at acupoints over the pericardial meridian (P5-6) situated over the median nerve reduced the increases in blood pressure from 34 +/- 3 to 18 +/- 5 mmHg for a period of time that lasted for 60 min or more. Unilateral inactivation of neuronal activity in the vlPAG with 50-75 nl of kainic acid (KA, 1 mM) restored the blood pressure responses from 18 +/- 3 to 36 +/- 5 mmHg during BK-induced gallbladder stimulation, an effect that lasted for 30 min. In the absence of EA, unilateral microinjection of the excitatory amino acid dl-homocysteic acid (DLH, 4 nM) in the vlPAG mimicked the effect of EA and reduced the reflex blood pressure responses from 35 +/- 6 to 14 +/- 5 mmHg. Responses of 21 cardiovascular sympathoexcitatory rVLM neurons, including 12 that were identified as premotor neurons, paralleled the cardiovascular responses. Thus splanchnic nerve-evoked neuronal discharge of 32 +/- 4 spikes/30 stimuli in six neurons was reduced to 10 +/- 2 spikes/30 stimuli by EA, which was restored rapidly to 28 +/- 4 spikes/30 stimuli by unilateral injection of 50 nl KA into the vlPAG. Conversely, 50 nl of DLH in the vlPAG reduced the number of action potentials of 5 rVLM neurons from 30 +/- 4 to 18 +/- 4 spikes/30 stimuli. We conclude that the inhibitory influence of EA involves vlPAG stimulation, which, in turn, inhibits rVLM neurons in the EA-related attenuation of the cardiovascular excitatory response during visceral afferent stimulation.  相似文献   

20.
The superior and inferior colliculi are believed to generate immediate and highly coordinated defensive behavioral responses to threatening visual and auditory stimuli. Activation of neurons in the superior and inferior colliculi have been shown to evoke increases in cardiovascular and respiratory activity, which may be components of more generalized stereotyped behavioral responses. In this study, we examined the possibility that there are "command neurons" within the colliculi that can simultaneously drive sympathetic and respiratory outputs. In anesthetized rats, microinjections of bicuculline (a GABA(A) receptor antagonist) into sites within a circumscribed region in the deep layers of the superior colliculus and in the central and external nuclei of the inferior colliculus evoked a response characterized by intense and highly synchronized bursts of renal sympathetic nerve activity (RSNA) and phrenic nerve activity (PNA). Each burst of RSNA had a duration of ~300-400 ms and occurred slightly later (peak to peak latency of 41 ± 8 ms) than the corresponding burst of PNA. The bursts of RSNA and PNA were also accompanied by transient increases in arterial pressure and, in most cases, heart rate. Synchronized bursts of RSNA and PNA were also evoked after neuromuscular blockade, artificial ventilation, and vagotomy and so were not dependent on afferent feedback from the lungs. We propose that the synchronized sympathetic-respiratory responses are driven by a common population of neurons, which may normally be activated by an acute threatening stimulus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号