首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An HPLC assay for etoposide in human serum was developed. Serum, spiked with podophyllotoxin (internal standard), was treated with sodium dodecyl sulphate prior to solid phase extraction. Analysis was performed on a 300×3.9 mm Bondclone 10 C18 column coupled with a fluorometric detector (λex 230 nm, λem 330 nm). The retention times for etoposide and podophyllotoxin were 14 and 28 min respectively. The range of assay was 0.5 to 20 μg/ml with a detection limit of 0.2 μg/ml. This assay is suitable for use in clinical studies with etoposide.  相似文献   

2.
A rapid and selective high-performance liquid chromatographic (HPLC) assay for the quantitative determination of ketoconazole, an orally active antifungal agent, in human plasma is described. After extraction of the drug from plasma, the compound is separated by HPLC using a reversed-phase column and detected by UV light at 205 nm. Quantitation is accomplished by external standardization and the determination of peak areas is performed with the aid of an integrating computer. The average recovery of ketoconazole over a concentration range of 0.1–20.0 μg/ml was 88.2 ± 4.07% S.D. The maximum sensitivity of the assay is less than 0.1 μg/ml. The assay is suitable for use in pharmacokinetic studies following the administration of therapeutic doses of ketoconazole to humans.  相似文献   

3.
Automated procedures for the determination of CGP 33 101 in plasma and the simultaneous determination of CGP 33 101 and its carboxylic acid metabolite, CGP 47 292, in urine are described. Plasma was diluted with water and urine with a pH 2 buffer prior to extraction. The compounds were automatically extracted on reversed-phase extraction columns and injected onto an HPLC system by the automatic sample preparation with extraction columns (ASPEC) automate. A Supelcosil LC-18 (5 μm) column was used for chromatography. The mobile phase was a mixture of an aqueous solution of potassium dihydrogen phosphate, acetonitrile and methanol for the assay in plasma, and of an aqueous solution of tetrabutylammonium hydrogen sulfate, tripotassium phosphate and phosphoric acid and of acetonitrile for the assay in urine. The compounds were detected at 230 nm. The limit of quantitation was 0.11 μml/l (25 ng/mol) for the assay of CGP 33 101 in plasma, 11 μmol/l (2.5 μg/ml) for its assay in urine and 21 μmol/l (5 μg/ml) for the assay of CGP 47 292 in urine.  相似文献   

4.
A rapid, selective and sensitive HPLC assay has been developed for the routine analysis of metronidazole in small volumes of rat plasma, gastric aspirate and gastric tissue. The extraction procedure involves liquid–liquid extraction and a protein precipitation step. A microbore Hypersil ODS 3 μm (150×2.1 mm I.D.) column was used with a mobile phase consisting of acetonitrile–aqueous 0.05 M potassium phosphate buffer (pH 7) containing 0.1% triethylamine (10:90). The column temperature was at 25°C and the detection was by UV absorbance at 317 nm. The limit of detection was 0.015 μg ml−1 for gastric juice aspirate and plasma and 0.010 μg g−1 for gastric tissue (equivalent to 0.75 ng on-column). The method was linear up to a concentration of 200 μg ml−1 for plasma and gastric juice aspirate and up to 40 μg g−1 for tissue, with inter- and intra-day relative standard deviations less than 14%. The measured recovery was at least 78% in all sample matrices. The method proved robust and reliable when applied to the measurement of metronidazole in rat plasma, gastric juice aspirate and gastric tissue for pharmacokinetic studies in individual rats.  相似文献   

5.
A reversed-phase high-performance liquid chromatographic assay for the simultaneous determination of phenytoin and fosphenytoin, a prodrug for phenytoin, in human plasma and plasma ultrafiltrate is described. For plasma, the method involves simple extraction of drugs with diethyl ether and evaporation of solvent, followed by injection of the reconstituted sample onto a reversed-phase C18 column. Plasma ultrafiltrate is injected directly into the HPLC column. Compounds are eluted using an ion-pair mobile phase containing 20% acetonitrile. The eluent is monitored by UV absorbance at 210 nm. The fosphenytoin standard curves are linear in the concentration range 0.4 to 400 μg/ml for plasma and 0.03 to 80 μg/ml for ultrafiltrate. Phenytoin standard curves are linear from 0.08 to 40 μg/ml for plasma and from 0.02 to 5.0 μg/ml for ultrafiltrate. No interferences with the assay procedure were found in drug-free blank plasma or plasma ultrafiltrate. Relative standard deviation for replicate plasma or ultrafiltrate samples was less than 5% at concentrations above the limit of quantitation for both within- and between-run calculations.  相似文献   

6.
A reliable high-performance liquid chromatographic method has been validated for determination of gallamine in rat plasma, muscle tissue and microdialysate samples. A C18 reversed-phase column with mobile phase of methanol and water containing 12.5 mM tetrabutyl ammonium (TBA) hydrogen sulphate (22:78, v/v) was used. The flow-rate was 1 ml/min with UV detection at 229 nm. Sample preparation involved protein precipitation with acetonitrile for plasma and muscle tissue homogenate samples. Microdialysate samples were injected into the HPLC system without any sample preparation. Intra-day and inter-day accuracy and precision of the assay were <13%. The limit of quantification was 1 μg/ml for plasma, 1.6 μg/g for muscle tissue and 0.5 μg/ml for microdialysate samples. The assay was applied successfully to analysis of samples obtained from a pharmacokinetic study in rats using the microdialysis technique.  相似文献   

7.
A rapid, specific, sensitive and economical method has been developed and validated for the determination of grepafloxacin in human plasma and urine. The assay consisted of reversed-phase HPLC with UV detection. Plasma proteins were removed by a fast and efficient procedure that has eliminated the need for costly extraction and evaporation. For the urine samples, the only required sample preparation was dilution. Separation was achieved on a reversed-phase TSK gel column with an isocratic mobile system. The method had a quantification limit of 0.05 μg/ml in plasma and 0.5 μg/ml in urine. The coefficients of variation (C.V.) were less than 4% for within- and between-day analyses. The method was successfully applied to a pharmacokinetic study, and was proved to be simple, fast and reproducible.  相似文献   

8.
A HPLC assay and solid-phase extraction technique from human plasma has been developed and validated for the novel anticancer agent CT2584, 1-(11-dodecylamino-10-hydroxyundecyl)-3,7-dimethylxanthine, which has recently completed a phase I trial at the Christie Hospital, Manchester under the auspices of the CRC phase I/II committee. Following addition of CT2576, 1-(11-octylamino-10-hydroxylundecyl)-3,7-dimethylxanthine, as internal standard, a solid-phase extraction cartridge (100 mg cyanopropyl) was used to isolate the drug CT2584 from human plasma. Analysis was performed by reversed-phase chromatography. CT2576 was used as internal standard at a concentration of 4 μg ml−1 for the quantification of CT2584 from plasma for the duration of this work. The lower limit of quantification for the drug CT2584 in buffer using this assay was found to be 0.0122 μM (0.008 μg ml−1) and 0.048 μM (0.027 μg ml−1) when extracted from human plasma.  相似文献   

9.
Sensitive high-performance liquid chromatographic assays have been developed for the quantification of stavudine (2′,3′-didehydro-3′-deoxythymidine, d4T) in human plasma and urine. The methods are linear over the concentration ranges 0.025–25 and 2–150 μg/ml in plasma and urine, respectively. An aliquot of 200 μl of plasma was extracted with solid-phase extraction using Oasis® cartridges, while urine samples were simply diluted 1/100 with HPLC water. The analytical column, mobile phase, instrumentation and chromatographic conditions are the same for both methods. The methods have been validated separately, and stability tests under various conditions have been performed. The detection limit is 12 ng/ml in plasma for a sample size of 200 μl. The bioanalytical assay has been used in a pharmacokinetic study of pregnant women and their newborns.  相似文献   

10.
7-[(2,2-Dimethyl)propyl)]-1-methylxanthine (I, Lab code MX2/120) is a new potent antibronchospastic agent. A rapid and simple HPLC assay for I in guinea pig plasma has been developed. Compound I was extracted from plasma with dichloromethane by a solid-phase extraction procedure, after adding 1,3-dimethyl-7-pentylxanthine at a concentration of 5 μg/ml as the internal standard (I.S.). The extraction residue was redissolved in water—acetonitrile and chromatographed on a RP-18 reversed-phase column. The eluate was monitored by spectrophotometric detection at 280 nm. The method showed good linearity over the range 0.1–20 μg/ml (r = 0.9998) and is precise (C.V. × Student's T-TEST = 1.84%) and accurate (mean recovery ± limit of CONFIDENCE = 100.25 ± 0.34). The HPLC assay was successfully applied to the determination of the pharmacokinetic profile of I after intravenous and oral administration in guinea pigs. The main pharmacokinetic parameters are presented.  相似文献   

11.
A method is described for the determination of celecoxib in human plasma. Samples were extracted using 3M Empore membrane extraction cartridges and separated under normal-phase HPLC conditions using a Nucleosil-NO2 (150×4.6 mm, 5 μm) column. Detection was accomplished using UV absorbance at 260 nm. The HPLC method included a column switching procedure, in which late eluting compounds were diverted to waste, to reduce run-time to 12 min. The assay was linear in the concentration range of 25–2000 ng/ml when 1-ml aliquots of plasma were extracted. Recoveries of celecoxib were greater than 91% over the calibration curve range. Intraday precision and accuracy for this assay were 5.7% C.V. or better and within 2.3% of nominal, respectively. The assay was used to analyze samples collected during human clinical studies.  相似文献   

12.
A high-performance liquid chromatography (HPLC) method was developed that can separate and quantify dipalmitoylphosphatidylcholine and its degradation product, palmitic acid from various phospholipids contained in a porcine lung surfactant used in the treatment of respiratory distress syndrome, which was recently approved for use by the FDA. The method used a C8 reversed-phase HPLC column with a (50:45:10) acetonitrile/methanol/acetic acid mobile phase, and refractive index detection. The active component of the lung surfactant, dipalmitoylphosphatidylcholine (DPPC) and palmitic acid (PA), could be quantified following a liquid-liquid extraction procedure along with an internal standard, dimyristoylphosphatidylcholine (DMPC). The assay was validated for linearity, accuracy, precision, reproducibility and ruggedness. Column stability was measured by performing the assay over time and monitoring the system suitability parameters. The extraction procedure has a 90% recovery and the assay is linear over a range of 5 μg/ml to 300 μg/ml. The assay is used to release commercial product and monitor stability of existing lots of material.  相似文献   

13.
A column-switching, reversed-phase high-performance liquid chromatographic (HPLC) method for the determination of a new carbapenem antibiotic assay using ultraviolet detection has been developed for a new carbapenem antibiotic L-749,345 in human plasma and urine. A plasma sample is centrifuged and then injected onto an extraction column using 25 mM phosphate buffer, pH 6.5. After 3 min, using a column-switching valve, the analyte is back-flushed with 10.5% methanol–phosphate buffer for 3 min onto a Hypersil 5 μm C18 BDS 100×4.6 mm analytical column and then detected by absorbance at 300 nm. The sample preparation and HPLC conditions for the urine assay are similar, except for a longer analytical column 150×4.6 mm. The plasma assay is specific and linear from 0.125 to 50 μg/ml; the urine assay is linear from 1.25 to 100 μg/ml.  相似文献   

14.
A rapid and sensitive method for the assay of zonisamide in serum was developed using a solid-phase extraction technique followed by high-performance liquid chromatography. A 20-μl volume of human serum was first purified with a Bond-Elut cartridge column. Then, the methanol eluate was injected onto a reversed-phase HPLC column with a UV detector. The mobile phase was acetonitrile—methanol—distilled water (17:20:63, v/v) and the detection wavelength was 246 nm. The detection limit was 0.1 μg/ml in serum. The coefficients of variation were 4.2–5.6% and 5.1–9.1% for the within-day and between-day assays, respectively. This method can be used for clinical pharmacokinetic studies of zonisamide in serum even in infant patients with epilepsy.  相似文献   

15.
A column-switching high-performance liquid chromatographic method has been developed for the simple and sensitive analysis of BO-2727 (I) in human plasma and urine. Plasma samples were diluted with an equal volume of a stabilizer, and the mixture was directly injected onto the HPLC system. The analyte was enriched in a pre-treatment column, while endogenous components were eluted to waste. The analyte was then backflushed onto an analytical column and quantified with ultraviolet detection. Urinary concentrations were determined in a similar way except that the enriched analyte was eluted in the foreflush mode to a cation-exchange column used for chromatographic separation. The standard curves for the drug were linear in the range of 0.05–50 μg/ml in plasma and 0.5–100 μg/ml in urine. The limits of quantification for plasma and urine were found to be 0.05 μg/ml and 0.5 μg/ml, respectively. This method was used to support Phase I clinical pharmacokinetic studies.  相似文献   

16.
A column-switching high-performance liquid chromatography (HPLC) method is described for the determination of asiaticoside in rat plasma and bile using column-switching and ultraviolet (UV) absorbance detection. Plasma was simply deproteinated with acetonitrile prior to injection and bile was directly injected onto the HPLC system consisting of a clean-up column, a concentrating column, and an analytical column, which were connected with two six-port switching valves. Detection of asiaticoside was accurate and repeatable, with a limit of quantification of 0.125 μg/ml in plasma and 1 μg/ml in bile. The calibration curves were linear in a concentration range of 0.125–2.5 μg/ml and 1–20 μg/ml for asiaticoside in rat plasma and bile, respectively. This method has been successfully applied to determine the level of asiaticoside in rat plasma and bile samples from pharmacokinetics and biliary excretion studies.  相似文献   

17.
A high-performance liquid chromatographic method using column switching was applied to the direct determination of two local anaesthetics, ropivacaine and bupivacaine, in human plasma. The method is intended to be used in a combined LC—GC system; here only the LC-part is described. After addition of internal standard, the samples were filtered and directly injected into a semipermeable surface (SPS) pre-column where the analytes were strongly retained and separated from many endogenous compounds by a short washing step. The retained analytes were transferred by a buffered methanol phase from the pre-column into a carbonaceous HPLC column and they were detected by UV detection at 254 nm. The SPS pre-column could withstand numerous (> 200) direct injections of plasma samples (10 μl). The method has a detection limit of 8.2 ng and requires a total assay time of 15 min per plasma sample. Quantitative recoveries were obtained over the range 3.3–114 μg/ml with inter-day precisions of 1.6–5.2% (C.V.).  相似文献   

18.
A high-performance liquid chromatographic (HPLC) method for the simultaneous determination of flumequine and its metabolite 7-hydroxyflumequine in sheep plasma was described. The two compounds were extracted from 100 μl of plasma by liquid–liquid extraction. Aliquots (100 μl) were injected onto the HPLC system and separated on a LiChrospher Select B column with an isocratic system. The compounds were detected by fluorimetric detection for concentrations below 500 μg/l and by UV detection for the concentrations exceeding 500 μg/l. The range of the validated concentrations were 50 000 to 5 μg/l and 500 to 10 μg/l with mean recovery rates of 87±3% and 60±1% for flumequine and 7-hydroxyflumequine, respectively.  相似文献   

19.
A sensitive and quantitative reversed-phase HPLC method for the analysis of -sotalol in human atria, ventricles, blood and plasma was developed. Sotalol was determined in about 100 mg of human right atria, left ventricles, and in 500 μl of blood and plasma samples of patients undergoing coronary bypass surgery or heart transplantation. Patients were taking 80–160 mg of sotalol as an antiarrhythmic agent. Atenolol was used as an internal standard certifying high precision of measurement. Sotalol blood and plasma concentrations correlated linearly to the obtained signals from 26.5 ng/ml to 2.12 μg/ml. Sotalol tissue concentrations showed linearity between 0.27 ng/mg and 10.6 ng/mg wet weight. The limit of quantitation was 0.27 ng/mg at a signal-to-noise ratio of 10. Sotalol was extracted from homogenized tissue with a buffer solution (pH 9) and the remaining pellet was extracted with methanol. The methanol extract was evaporated under nitrogen and reconstituted in buffer (pH 3). The whole extract was cleaned by solid-phase column extraction, eluted with methanol, evaporated again, reconstituted in the mobile phase (acetonitrile-15 mM potassium phosphate buffer pH 3, 17:83, v/v) and injected onto the HPLC column (Spherisorb C6 column, 5 μm,, 150×4.6 mm I.D). For the detection of sotalol, the UV wavelength was set to 230 nm. Recoveries of sotalol and atenolol in atria and ventricles were 65.6 and 75.0%, respectively. Intra- and inter-assay coefficients of variation for tissue concentrations were 3.38 and 6.14%, respectively. Intra- and inter-assay accuracy for determined tissue sotalol concentrations were 94.9±6.3 and 99.6±4.1%.  相似文献   

20.
We describe a novel sensitive and simplified gradient HPLC assay for quantification of the immunosuppressant mycophenolic acid (MPA) in rat and human plasma. In contrast to previously reported MPA assays, our method used a single step extraction comprising addition of acetonitrile, which contained phenolphthalein glucoronic acid as internal standard, for protein precipitation. Linearity: 0.1–100 μg/ml (r2>0.999), mean recoveries: MPA 98.0%, internal standard 105.2%, mean intra-day precision: 4.3%, mean day-to-day precision: 4.3%, mean day-to-day accuracy: −1.5%. Sensitivity was sufficient to allow for quantification of mycophenolic acid in as little as 50 μl plasma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号