首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
To assess whether and how specifically contact influences the functioning of differentiated cells, we have studied the secretion of adult pancreatic B-cells as a function of aggregation to either homologous B-cells or other heterologous endocrine islet cell types, all present in a mixed cell suspension. Using an immunological plaque assay for insulin, we have quantitated the proportion of single and aggregated B-cells inducing the formation of a hemolytic plaque (a reflection of the size of the secreting cell population) and the area of these plaques (a reflection of the hormonal output of individual cells or aggregates) after a 30-min stimulation by 16.7 mM glucose. By taking into account the number of B-cells within the aggregates, we have calculated from these data the insulin output on a per B-cell basis. We show here that the homologous contact between companion B-cells promotes the recruitment of secreting B-cells and increases their individual secretion of insulin twofold over that of single B-cells. By contrast, heterologous B- to non-B-cell contact was not effective in enhancing the recruitment of secreting B-cells and in promoting their individual secretion. These findings show that a highly differentiated cell function, such as insulin secretion, is controlled specifically by homologous cell to cell contacts.  相似文献   

2.
Sustained, 60-minute perfusion of glibenclamide (0.5, 1.5 and 10 mug/ml) elicits a one-phase insulin release profile, formed by a rapid secretion peak followed by a second peak with lower insulin levels than the former. Basal insulin secretion values are observed during the period comprised between 13 and 60 minutes of perfusion. Concurrent stimulation with glucose (100, 150, 200 and 300 mg%) plus glibenclamide (1 mug/ml) causes a marked rise in both phases of insulin secretion. The addition of glibenclamide does not modify the biphasic secretion pattern caused by maximal glucose concentration (400 mg%). The maximal values of both phases of secretion in the dose-response curve elicited by different glucose concentrations shift to the left when glibenclamide is added to the perfusate. The increase in insulin secretion caused by glibenclamide is not inhibited by puromycin. Both theophylline and phentolamine modify and increase the glibenclamide-induced insulin release pattern. Propranolol and imidazole inhibit glibenclamide-induced insulin release. Our results suggest that: 1. Glibenclamide increases beta cell sensitivity to glucose stimulation. 2. Glibenclamide and glucose induce secretion of insulin originating in the same compartment. 3. Modification of alpha and beta adrenergic receptors may modify glibodulate the beta cell response to glibenclamide.  相似文献   

3.
Muscarinic stimulation of pancreatic B-cells markedly amplifies insulin secretion through complex mechanisms which involve changes in membrane potential and ionic fluxes. In this study, normal mouse islets were used to evaluate the role of Cl- ions in these effects of acetylcholine (ACh). Whatever the concentration of glucose, the rate of 36Cl- efflux from islet cells was unaffected by ACh. Replacement of Cl- by impermeant isethionate in a medium containing 15 mM glucose did not affect, or only slightly decreased, the ability of ACh to depolarize the B-cell membrane and increase electrical activity, to accelerate 45Ca2+ and 86Rb+ efflux from islet cells, and to amplify insulin release. In the absence of extracellular Ca2+, a high concentration of ACh (100 microM) mobilized intracellular Ca2+ and caused a transient release of insulin and a sustained acceleration of 86Rb+ efflux. None of these effects was affected by Cl- omission or by addition of furosemide, a blocker of the Na+, K+, 2Cl- cotransport. Isethionate substitution for Cl- in a medium containing a nonstimulatory concentration of glucose (3 mM) barely reduced the depolarization of B-cells by ACh, but inhibited the concomitant increase in 86Rb+ efflux. We have no explanation for the latter effect that was not mimicked by furosemide. In conclusion, ACh stimulation of pancreatic B-cells, unlike that of exocrine acinar cells, is largely independent of Cl- and is insensitive to furosemide. The acceleration of ionic fluxes produced by ACh does not involve the Na+, K+, 2Cl- cotransport system.  相似文献   

4.
Neonatal STZ (nSTZ) treatment results in damage of pancreatic B-cells and in parallel depletion of insulin and TRH in the rat pancreas. The injury of B-cells is followed by spontaneous regeneration but dysregulation of the insulin response to glucose persists for the rest of life. Similar disturbance in insulin secretion was observed in mice with targeted TRH gene disruption. The aim of present study was to determine the role of the absence of pancreatic TRH during the perinatal period in the nSTZ model of impaired insulin secretion. Neonatal rats were injected with STZ (90 microg/g BW i.p.) and the effect of exogenous TRH (10 ng/g BW/day s.c. during the first week of life) on in vitro functions of pancreatic islets was studied at the age 12-14 weeks. RT-PCR was used for determination of prepro-TRH mRNA in isolated islets. Plasma was assayed for glucose and insulin, and isolated islets were used for determination of insulin release in vitro. The expression of prepro-TRH mRNA was only partially reduced in the islets of adult nSTZ rats when compared to controls. nSTZ rats had normal levels of plasma glucose and insulin but the islets of nSTZ rats failed to response by increased insulin secretion to stimulation with 16.7 mmol/l glucose or 50 mmol/l KCl. Perinatal TRH treatment enhanced basal insulin secretion in vitro in nSTZ animals of both sexes and partially restored the insulin response to glucose stimulation in nSTZ females.  相似文献   

5.
Cells of almost all solid tissues are connected with gap junctions which permit the direct transfer of ions and small molecules, integral to regulating coordinated function in the tissue. The pancreatic islets of Langerhans are responsible for secreting the hormone insulin in response to glucose stimulation. Gap junctions are the only electrical contacts between the beta-cells in the tissue of these excitable islets. It is generally believed that they are responsible for synchrony of the membrane voltage oscillations among beta-cells, and thereby pulsatility of insulin secretion. Most attempts to understand connectivity in islets are often interpreted, bottom-up, in terms of measurements of gap junctional conductance. This does not, however, explain systematic changes, such as a diminished junctional conductance in type 2 diabetes. We attempt to address this deficit via the model presented here, which is a learning theory of gap junctional adaptation derived with analogy to neural systems. Here, gap junctions are modelled as bonds in a beta-cell network, that are altered according to homeostatic rules of plasticity. Our analysis reveals that it is nearly impossible to view gap junctions as homogeneous across a tissue. A modified view that accommodates heterogeneity of junction strengths in the islet can explain why, for example, a loss of gap junction conductance in diabetes is necessary for an increase in plasma insulin levels following hyperglycemia.  相似文献   

6.
In the perfused pancreas from normal SD rats, AD-4610 (0.01-0.1 mM) potentiated biphasic insulin secretion induced by 7.5 mM of glucose. The concentration-response curve of insulin secretion to glucose was shifted leftwards with AD-4610 (0.1 mM) without altering either the threshold concentration of glucose to induce insulin secretion or the maximal insulin response to glucose, indicating increased sensitivity of the pancreatic B-cells to glucose. On the other hand, AD-4610 was 10-fold less effective in altering insulin secretion induced by arginine and glyceraldehyde. The effect of AD-4610 on insulin secretion and glucose metabolism was compared with that of tolbutamide in vivo. AD-4610 (100 mg/kg) potentiated insulin secretion induced by an intravenous glucose load, and also accelerated glucose metabolism without altering basal insulin secretion in normal rats. On the other hand, tolbutamide (20 mg/kg) increased basal insulin secretion, but slightly decreased glucose-induced insulin secretion. In yellow KK mice with hyperglycemia, AD-4610 (10-100 mg/kg) had a dose-dependent hypoglycemic action, but tolbutamide did not. Thus, AD-4610 stimulated insulin secretion in a glucose-dependent fashion and enhanced glucose metabolism in vivo. These results suggest that AD-4610 selectively potentiates glucose-induced insulin secretion by increasing the sensitivity of pancreatic B-cells to glucose and may be useful for treating human NIDDM through a different mechanism than that of tolbutamide.  相似文献   

7.
Lipotoxicity is associated with a high level of fatty acid accumulation in pancreatic β-cells. An overload of free fatty acids contributes to pancreatic β-cell apoptosis and dysfunction. Insulin secretion involves sequential ionic events upon glucose stimulation. ATP sensitive potassium (KATP) channels serve as glucose sensors and effectively initiate glucose-stimulated insulin secretion. This study investigated the effects of lipotoxicity on the trafficking of KATP channels in pancreatic β cells using chronic palmitic acid –injected mice and treated insulinoma cells. The chronic palmitic acid -injected mice displayed type II diabetic characteristics. The pancreatic sections of these mice exhibited a decrease in the expression of KATP channels. We then tested the time and dose effects of palmitic acid on the cell viability of INS-1 cells. We observed a significant decrease in the surface expression of KATP channels after 72 h of treatment with 0.4 mM palmitic acid. In addition, this treatment induced pancreatic β-cell apoptosis by increasing cleaved caspase 3 protein level. Our results demonstrated cotreatment with glibenclamide, the sulfonylurea compounds for type II diabetes mellitus, in palmitic acid -treated cells reduces cell death and recovers the glucose stimulated insulin secretion through increasing the surface expression of KATP channels. Importantly, glibenclamide also improved glucose tolerance, triglyceride concentration, and insulin sensitivity in the palmitic acid-injected mice. In conclusion, an increase in the surface expression of KATP channels restores insulin secretion, reduces pancreatic β-cell’s apoptosis, highlighting correct trafficking of KATP channels is important in survival of β-cells during lipotoxicity.  相似文献   

8.
Understanding mechanisms by which glibenclamide stimulates insulin release is important, particularly given recent promising treatment by glibenclamide of permanent neonatal diabetic subjects. Antidiabetic sulfonylureas are thought to stimulate insulin secretion solely by inhibiting their high-affinity ATP-sensitive potassium (K(ATP)) channel receptors at the plasma membrane of beta-cells. This normally occurs during glucose stimulation, where ATP inhibition of plasmalemmal K(ATP) channels leads to voltage activation of L-type calcium channels for rapidly switching on and off calcium influx, governing the duration of insulin secretion. However, growing evidence indicates that sulfonylureas, including glibenclamide, have additional K(ATP) channel receptors within beta-cells at insulin granules. We tested nonpermeabilized beta-cells in mouse islets for glibenclamide-stimulated insulin secretion mediated by granule-localized K(ATP) channels by using conditions that bypass glibenclamide action on plasmalemmal K(ATP) channels. High-potassium stimulation evoked a sustained rise in beta-cell calcium level but a transient rise in insulin secretion. With continued high-potassium depolarization, addition of glibenclamide dramatically enhanced insulin secretion without affecting calcium. These findings support the hypothesis that glibenclamide, or an increased ATP/ADP ratio, stimulates insulin secretion in part by binding at granule-localized K(ATP) channels that functionally contribute to sustained second-phase insulin secretion.  相似文献   

9.
Glucose caused a sustained and dose-related increase in the fructose 2,6-bisphosphate content of isolated pancreatic islets, as well as of purified pancreatic B-cells. With isolated B-cells, the glucose saturation curve was sigmoidal and superimposable on that obtained with hepatocytes isolated from unfed rats. However, the response to glucose was notably faster in purified B-cells than in isolated hepatocytes. In contrast again with the situation prevailing in the liver, glucagon failed to decrease significantly the concentration of fructose 2,6-bisphosphate in either islets or purified B-cells. It is proposed that, in the process of glucose-stimulated insulin secretion, an early increase in fructose 2,6-bisphosphate formation may, by causing activation of 6-phosphofructo-1-kinase, allow glycolysis to keep pace with the rate of glucose phosphorylation.  相似文献   

10.

Background

Gap junctions between β-cells participate in the precise regulation of insulin secretion. Adherens junctions and their associated proteins are required for the formation, function and structural maintenance of gap junctions. Increases in the number of the gap junctions between β-cells and enhanced glucose-stimulated insulin secretion are observed during pregnancy. In contrast, protein restriction produces structural and functional alterations that result in poor insulin secretion in response to glucose. We investigated whether protein restriction during pregnancy affects the expression of mRNA and proteins involved in gap and adherens junctions in pancreatic islets. An isoenergetic low-protein diet (6% protein) was fed to non-pregnant or pregnant rats from day 1–15 of pregnancy, and rats fed an isocaloric normal-protein diet (17% protein) were used as controls.

Results

The low-protein diet reduced the levels of connexin 36 and β-catenin protein in pancreatic islets. In rats fed the control diet, pregnancy increased the levels of phospho-[Ser279/282]-connexin 43, and it decreased the levels of connexin 36, β-catenin and beta-actin mRNA as well as the levels of connexin 36 and β-catenin protein in islets. The low-protein diet during pregnancy did not alter these mRNA and protein levels, but avoided the increase of levels of phospho-[Ser279/282]-connexin 43 in islets. Insulin secretion in response to 8.3 mmol/L glucose was higher in pregnant rats than in non-pregnant rats, independently of the nutritional status.

Conclusion

Short-term protein restriction during pregnancy prevented the Cx43 phosphorylation, but this event did not interfer in the insulin secretion.  相似文献   

11.
Gap junctions between pancreatic B-cells are modulated by cyclic AMP   总被引:1,自引:0,他引:1  
Gap junction morphology was studied on freeze fracture replicas of pancreatic islet tissue, using morphometric techniques. In rat islets in situ, 60 percent of the connexions were polygonally packed in gap junctions, whereas the remaining part occurred in linear strands. After collagenase isolation, the islets presented similar numbers of gap junctions but contained virtually no linear strands. The distribution of connexions over polygonal or linear arrays also varied with the culture conditions: at 11.2 mM glucose, a higher percentage of particles occurred in gap junctions than at 5.6 mM glucose; this was also the case in other conditions with elevated cellular cyclic AMP levels. The total number of connexions increased when islets were cultured with dibutyryl cyclic AMP or with a phosphodiesterase inhibitor; conditions with an augmented number of gap junctions also displayed an elevated islet cyclic AMP content. A similar association was noted in newly formed aggregates of pancreatic B-cells purified by autofluorescence-activated. cell sorting. These results indicate that the number of classically defined gap junctions is not only dependent on the total number of connexions but also on their organization within the membrane. It is suggested that the distribution of connexions over polygonal and linear arrays follows a dynamic equilibrium varying with the extracellular conditions. Cyclic AMP appears to modulate the number of gap junctions between pancreatic B-cells both through an induction of new connexions and through an assembly of linearly organized particles into polygonal arrays.  相似文献   

12.
7B2 is a neuroendocrine protein, and in the pancreatic islets the presence of 7B2 in A- and B-cells was immunohistochemically demonstrated. In order to examine 7B2 secretion by A- and B-cells of pancreatic islets, we prepared isolated hamster pancreatic islet cells as well as an A-cell-rich culture, and studied 7B2 secretion under certain stimulations. 7B2 was secreted by isolated hamster pancreatic islet cells. This secretion was stimulated by theophylline and arginine, but glucose had a weak effect on the 7B2 secretion. Such a response of 7B2 to the stimulations was different from that of insulin or glucagon. 7B2 secretion was also noted in the A-cell-rich culture. These results suggest that 7B2 is secreted by both A- and B-cells of the hamster pancreatic islets and its secretion is regulated under certain conditions.  相似文献   

13.
The effect of tetracaine and lidocaine on insulin secretion and glucose oxidation by islets of ob/ob-mice was measured. Tetracaine, at a concentration of 1 microM to 0.1 mM, did not markedly influence the basal (3 mM glucose) insulin secretion, whereas 0.5-3.5 mM induced a marked increase. At 7 mM glucose, there was a dose-dependent increase with 0.1-2.5 mM tetracaine. Insulin release induced by 20 mM glucose was potentiated by 0.1 mM and 0.5 mM tetracaine, but this effect disappeared at 1 mM tetracaine. The stimulatory effect of 0.5-1 mM tetracaine on basal insulin release was blocked by the secretory inhibitors, adrenaline (1 microM), clonidine (1 microM) and by Ca2+-deficiency, but the stimulation by 3.5 mM tetracaine was not reduced by 1 microM clonidine or Ca2+ deficiency. Atropine (10 microM) did not affect the stimulation by 0.5 mM tetracaine at 3 mM glucose or by 0.25 mM tetracaine at 20 mM glucose. Tetracaine, at 0.1 mM, potentiated the secretory stimulation of 20 mM L-leucine, 20 mM D-mannose, or 1 microM glibenclamide. Mannoheptulose, 10 mM, abolished the combined effects of 0.1 mM tetracaine and 10 mM glucose. Lidocaine, 1-5 mM, stimulated basal insulin release, but 1 microM-1 mM of the drug did not affect glucose-induced (20 mM glucose) insulin release and 5 mM lidocaine inhibited glucose stimulation. The oxidation of 10 mM D-[U-14C]glucose was slightly enhanced by 0.1 and 1 mM tetracaine. The results indicate that tetracaine and lidocaine, at certain concentrations, can induce insulin release and that tetracaine potentiates secretion induced by other secretagogues. It is concluded that these effects may be associated with beta-cell functions related to the adrenergic receptors but probably not to cholinergic receptors.  相似文献   

14.
Hypoglycemic sulfonylureas such as glibenclamide have been widely used to treat type 2 diabetic patients for 40 yr, but controversy remains about their mode of action. The widely held view is that they promote rapid insulin exocytosis by binding to and blocking pancreatic beta-cell ATP-dependent K+ (KATP) channels in the plasma membrane. This event stimulates Ca2+ influx and sets in motion the exocytotic release of insulin. However, recent reports show that >90% of glibenclamide-binding sites are localized intracellularly and that the drug can stimulate insulin release independently of changes in KATP channels and cytoplasmic free Ca2+. Also, glibenclamide specifically and progressively accumulates in islets in association with secretory granules and mitochondria and causes long-lasting insulin secretion. It has been proposed that nutrient insulin secretagogues stimulate insulin release by increasing formation of malonyl-CoA, which, by blocking carnitine palmitoyltransferase 1 (CPT-1), switches fatty acid (FA) catabolism to synthesis of PKC-activating lipids. We show that glibenclamide dose-dependently inhibits beta-cell CPT-1 activity, consequently suppressing FA oxidation to the same extent as glucose in cultured fetal rat islets. This is associated with enhanced diacylglycerol (DAG) formation, PKC activation, and KATP-independent glibenclamide-stimulated insulin exocytosis. The fat oxidation inhibitor etomoxir stimulated KATP-independent insulin secretion to the same extent as glibenclamide, and the action of both drugs was not additive. We propose a mechanism in which inhibition of CPT-1 activity by glibenclamide switches beta-cell FA metabolism to DAG synthesis and subsequent PKC-dependent and KATP-independent insulin exocytosis. We suggest that chronic CPT inhibition, through the progressive islet accumulation of glibenclamide, may explain the prolonged stimulation of insulin secretion in some diabetic patients even after drug removal that contributes to the sustained hypoglycemia of the sulfonylurea.  相似文献   

15.
In pancreatic islets of fetal rats the effect of glucose (3 and 16.7 mM), glyceraldehyde (10 mM), leucine (20 mM), b-BCH (20 mM), tolbutamide (100 micrograms/ml), glibenclamide (0.5 and 5.0 micrograms/ml) arginine (20 mM), KCl (20 mM) and theophylline (2.5 mM) on 45Ca2+ net uptake and secretion of insulin was studied. All compounds tested failed to stimulate 45Ca2+ net uptake. However, in contrast to glucose and glyceraldehyde, leucine, b-BCH, tolbutamide, glibenclamide, arginine, KCl and theophylline significantly stimulated release of insulin. This effect could not be inhibited by the calcium antagonist verapamil (20 microM). Elevation of the glucose concentration from 3 to 5.6 mM did not alter 86Rb+ efflux of fetal rat islets but inhibited 86Rb+ efflux of adult rat islets. Stimulation of 86Rb+ efflux with tolbutamide (100 micrograms/ml), leucine (20 mM) or b-BCH (20 mM) in the presence of 3 mM glucose was also ineffective in fetal rat islets. Our data suggest that stimulation of calcium uptake via the voltage dependent calcium channel is not possible in the fetal state. They also provide evidence that stimulators of insulin release which are thought not to act through their metabolism, initiate insulin secretion from fetal islets by a mechanism which is different from stimulation of calcium influx.  相似文献   

16.
Islet amyloid polypeptide (IAPP) has been shown to be actively secreted by the pancreatic B-cell along with insulin. To determine whether the modulation of B-cell IAPP secretion is similar to that of insulin, we assessed IAPP release in response to glucose at 4 different concentrations (1.67, 5.5, 8.8 and 16.7 mM) and to non-glucose secretagogues at different glucose concentrations in a neonatal rat islet monolayer culture preparation. Glucose alone stimulated IAPP and insulin secretion in a dose dependent fashion with maximal release for both peptides occurring at 8.8 mM. B-cell secretion of IAPP in response to arginine, isobutylmethylxanthine or both together was potentiated by increasing glucose concentrations from 1.67 to 16.7 mM. This same pattern of glucose potentiation was observed for insulin secretion. The data indicate that the pattern of peptide responses of cultured neonatal B-cells to glucose is similar for both IAPP and insulin release. Furthermore, the data suggest that glucose is capable of potentiating B-cell secretion of both IAPP and insulin.  相似文献   

17.
Tight glycemic control in individuals with diabetes mellitus is essential to prevent or delay its complications. Present treatments to reduce hyperglycemia mainly target the ATP-sensitive K(+) (K(ATP)) channel of pancreatic beta cells to increase insulin secretion. These current approaches are often associated with the side effect of hypoglycemia. Here we show that inhibition of the activity of cyclin-dependent kinase 5 (Cdk5) enhanced insulin secretion under conditions of stimulation by high glucose but not low glucose in MIN6 cells and pancreatic islets. The role of Cdk5 in regulation of insulin secretion was confirmed in pancreatic beta cells deficient in p35, an activator of Cdk5. p35-knockout mice also showed enhanced insulin secretion in response to a glucose challenge. Cdk5 kinase inhibition enhanced the inward whole-cell Ca(2+) channel current and increased Ca(2+) influx across the L-type voltage-dependent Ca(2+) channel (L-VDCC) upon stimulation with high glucose in beta cells, but had no effect on Ca(2+) influx without glucose stimulation. The inhibitory regulation by Cdk5 on the L-VDCC was attributed to the phosphorylation of loop II-III of the alpha(1C) subunit of L-VDCC at Ser783, which prevented the binding to SNARE proteins and subsequently resulted in a decrease of the activity of L-VDCC. These results suggest that Cdk5/p35 may be a drug target for the regulation of glucose-stimulated insulin secretion.  相似文献   

18.
We have studied the effects by cysteamine in vitro and in vivo on hormone production and islet cell metabolism in isolated pancreatic islets and perfused pancreas of the rat. In isolated islets, cysteamine dose-dependently depleted somatostatin immunoreactivity by 50% after 60 min exposure to 1 mmol/l of the compound. This effect appeared to be independent of interaction of the drug with secretion of somatostatin from the pancreatic D-cells. Cysteamine, however, interacted acutely not only with the D-cells, but also markedly suppressed glucose-induced insulin release. Moreover, cysteamine inhibited islet glucose oxidation, an effect which reflects interference with the metabolism mainly of the B-cells. The effect of cysteamine on glucose-induced insulin release was prolonged, since it was still observed in the isolated rat pancreas perfused 24 h after in vivo treatment with cysteamine. In contrast to the effects on glucose-induced insulin release, the response to glibenclamide remained unaffected by a previous exposure to cysteamine in vivo. However, both glucose- and glibenclamide-induced somatostatin secretion was reduced by 50%, whereas basal glucagon secretion was significantly enhanced in pancreata from cysteamine-treated rats vs. control rats. We conclude that (1) cysteamine does not specifically affect the D-cells of the islets, and (2) the multiple effects by cysteamine on islet cell function, particularly on B-cell metabolism and secretion, renders the compound unsuitable for the study of paracrine interactions in the islets.  相似文献   

19.
Summary Ultrastructural studies of pancreatic islets have suggested that crinophagy provides a possible mechanism for intracellular degradation of insulin in the insulin-producing B-cells. In the present study, a quantitative estimation of crinophagy in mouse pancreatic islets was attempted by morphometric analysis of lysosomes containing immunoreactive insulin. Isolated islets were incubated in tissue culture for one week in 3.3, 5.5 or 28 mmol/l glucose. The lysosomes of the pancreatic B-cells were identified by morphological and enzyme-cytochemical criteria and divided into three subpopulations comprising primary lysosomes and insulin-positive or insulin-negative secondary lysosomes. Both the volume and numerical density of the primary lysosomes increased with increasing glucose concentration. The proportion of insulin-containing secondary lysosomes was highest at 5.5 and lowest at 3.3 mmol/l glucose. Insulin-negative secondary lysosomes predominated at 3.3 mmol/l glucose. Studies of the dose-response relationships of glucose-stimulated insulin biosynthesis and insulin secretion of the pancreatic islets showed that biosynthesis had an apparent Km-value for glucose of 7.0 mmol/l, whereas it was 14.5 mmol/l for secretion. The pronounced crinophagic activity at 5.5 mmol/l glucose may thus be explained by the difference in glucose sensitivity between insulin biosynthesis and secretion resulting in an intracellular accumulation of insulin-containing secretory granules. The predominance of insulin-negative secondary lysosomes at 3.3 mmol/l glucose may reflect an increased autophagy, whereas the predominance of primary lysosomes at 28 mmol/l glucose may reflect a generally low activity of intracellular degradative processes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号