首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The roles of D2 and D1 dopaminergic receptors on the regulation of striatal acetylcholine (ACh) release in vivo were examined for a period of 120 min after acute (2 h) or prolonged (16 h) depletion of brain dopamine (DA) by alpha-methyl-p-tyrosine. The reduction of DA transmission did not affect basal ACh output after 2 h but markedly lowered ACh release by 16 h (50%). Acute alpha-methyl-p-tyrosine pretreatment prevented the reduction of ACh release by the D1 antagonist SCH 23390 and its increase by the D2 antagonist, remoxipride, consistent with a drastic reduction of DA transmission at both DA receptors. However, 16 h after alpha-methyl-p-tyrosine, the effect of remoxipride on ACh release was restored, but SCH 23390 still had no effect, suggesting that the D2 inhibitory tone on ACh release had recovered, whereas the reduction of the D1 facilitatory influence persisted. The D1 facilitatory control of ACh neurotransmission thus appears to be more sensitive than the D2 inhibitory control to a reduction in DA transmission. The new model of DA-ACh interaction resulting from these data casts fresh light on the relationship between changes in DA transmission and extrapyramidal motor function.  相似文献   

2.
Dopamine or agonists with D1 receptor potency stimulated cyclic AMP (cAMP) accumulation in whole cell preparations of NS20Y neuroblastoma cells. The accumulation of cAMP after D1 stimulation was rapid and linear for 3 min. Both dopamine and the novel D1 receptor agonist dihydrexidine stimulated cAMP accumulation two- to three-fold over baseline. The pseudo-Km for dopamine was approximately 2 microM, whereas for dihydrexidine it was approximately 30 nM. The effects of both drugs were blocked by either the D1-selective antagonist SCH23390 (Ki, 0.3 nM) or the nonselective antagonist (+)-butaclamol (Ki, 5 nM). Both (-)-butaclamol and the D2-selective antagonist (-)-sulpiride were ineffective (Ki greater than 3 microM). Forskolin (10 microM), prostaglandin E1 (1 microM), and adenosine (10 microM) also stimulated cAMP accumulation, but none were antagonized by SCH23390 (1 microM). Finally, muscarinic receptor stimulation (100 microM carbachol) inhibited both D1- and forskolin-stimulated increases in cAMP accumulation by 80%. The present results indicate that NS20Y neuroblastoma cells have D1 receptors that are coupled to adenylate cyclase, and that these receptors have a pharmacological profile similar to that of the D1 receptor(s) found in rat striatum.  相似文献   

3.
Large numbers of in vitro studies and microdialysis studies suggest that dopaminergic regulation of striatal acetylcholine (ACh) output is via inhibitory dopamine D2 receptors and stimulatory dopamine D1 receptors. Questions remain as to the relative predominance of dopamine D2 versus D1 receptor modulation of striatal ACh output under physiological conditions. Using positron emission tomography, we first demonstrate that norchloro[18F]fluoroepibatidine ([18F]NFEP), a selective nicotinic ACh receptor (nAChR) ligand, was sensitive to changes of striatal ACh concentration. We then examined the effect of quinpirole (D2 agonist), raclopride (D2 antagonist), SKF38393 (D1 agonist), and SCH23390 (D1 antagonist) on striatal binding of [18F]NFEP in the baboon. Pretreatment with quinpirole increased the striatum (ST) to cerebellum (CB) ratio by 26+/-6%, whereas pretreatment with raclopride decreased the ST/CB ratio by 22+/-2%. The ratio of the distribution volume of [18F]NFEP in striatum to that in cerebellum, which corresponds to (Bmax/K(D)) + 1 (index for nAChR availability), also showed a significant increase (29 and 20%; n = 2) and decrease (20+/-3%; n = 3) after pretreatment with quinpirole and raclopride, respectively. However, both the D1 agonist and antagonist had no significant effect. This suggests that under physiological conditions the predominant influence of endogenous dopamine on striatal ACh output is dopamine D2, not D1, receptor-mediated.  相似文献   

4.
Rat striatal slices prelabelled with [3H]choline were superfused with dopamine D-1 and D-2 agonists and antagonists, separately and in combination, during measurement of [3H]acetylcholine (ACh) release. SKF38393 (D-1 agonist), 10(-7)-10(-4) M, and SCH23390 (D-1 antagonist), 10(-7)-10(-5) M, produced a dose-dependent increase in [3H]ACh release when given separately. The increased [3H]ACh release induced by either drug could not be attenuated by sufficient L-sulpiride to block D-2 receptors. Yet both SKF38393, 10(-6)-10(-5) M, and SCH23390, 10(-6)-10(-5) M, were able to partially or fully overcome the [3H]ACh release-depressant effect of cosuperfused LY171555 (D-2 agonist), 10(-6) M. This suggests that a functional antagonism regarding striatal ACh release exists between D-1 and D-2 dopaminergic receptor-mediated mechanisms, but that D-1 modulation of local ACh release does not occur at the level of the recognition site of the striatal D-2 receptor. Finally, although attenuation of the increased release of striatal [3H]ACh induced by 10(-5) M SCH23390 by SKF38393 was seen, it is possible that such functional antagonism is not mediated by exclusively D-1 dopaminergic means.  相似文献   

5.
To investigate aspects of the biochemical nature of membrane-bound dopamine D1 receptors, rat striatal homogenates were pretreated with heavy metal cations and some other chemical agents, and their effects on D1 receptors were subsequently determined using a standard [3H](R)-(+)-8-chloro-2,3,4,5-tetrahydro-3-methyl-5-phenyl-1-N-3- benzazepine([3H]SCH 23390) binding assay. Incubation of striatal membranes with as little as 1 microM Hg2+, 10 microM Cu2+, and 10 microM Cd2+ completely prevented specific [3H]SCH 23390 binding. The effect of Cu2+, 1.5 microM, was noncompetitive in nature, whereas 3-5 microM Cu2+ afforded mixed-type inhibition. The inhibitory effect of Cu2+ was fully reversed by dithiothreitol (0.1-1 mM). Cu2+ (2 microM) did not affect the affinity of cis-flupenthixol or clozapine for remaining [3H]SCH 23390 sites. A second series of cations, Co2+ (30 microM), Ni2+ (30 microM), Mn2+ (1 mM), Ca2+ (25 mM), and Ba2+ (20 mM), inhibited specific [3H]SCH 23390 binding by 50% at the concentrations indicated. The thiol alkylating reagent N-ethylmaleimide (NEM) (0.2 mM) reduced specific binding by 70%. The effect of NEM was completely prevented by coincubation with a D1 receptor saturating concentration of SCH 23390 (20 nM) or dopamine (10 microM). The results indicated that the dopamine D1 receptor is a thiol protein and that a thiol group is essential for the ligand binding.  相似文献   

6.
The levels of mRNA encoding glutamic acid decarboxylase (GAD) and preproenkephalin (PPE) were measured by Northern blot analysis, in the dorsal and the ventral part of the striatum, following long-term treatments with drugs acting selectively on D1 or D2 dopaminergic receptors. Chronic injection of the selective D1 antagonist SCH 23390 elicited a significant decrease in level of both GAD and PPE mRNA (-30%) in the dorsal striatum, whereas no significant change was observed in the ventral striatum. Chronic administration of both SCH 23390 and RU 24926, a D2 agonist, decreased the GAD and PPE mRNA levels in the dorsal (-38 and -57%, respectively) as well as in the ventral (-70 and -60%, respectively) striatum. In the ventral striatum the marked reduction of GAD mRNA levels was paralleled by a significant decrease of Vmax values of GAD enzymatic activity (-41%). These results suggest that the decrease in content of both GAD and PPE mRNA, promoted by the chronic blockade of D1 receptors, is mainly due to the action of dopamine acting on unaffected D2 receptors. Indeed, this decrease is further amplified when the D2 agonist and the D1 antagonist are administered together. Our results substantiate further the molecular mechanisms by which dopamine acts on different populations of GABAergic and enkephalinergic neurons in the two striatal regions examined.  相似文献   

7.
The compound [9-3H]SCH23390 [R-(+)-8-chloro-2,3,4,5-tetrahydro-3-methyl-5-phenyl-1H-3-benzazepine-7- ol] was synthesized, and the binding of this purportedly selective antagonist of D1 3,4-dihydroxyphenylethylamine (dopamine) receptors was characterized. The regional distribution of high-affinity, specific [3H]SCH23390 binding sites in the rat brain correlated well with levels of endogenous dopamine. Receptor densities were greatest in corpus striatum, nucleus accumbens, and olfactory tubercle; intermediate levels were found in several limbic and cortical areas, whereas few sites were detectable in cerebellum, brainstem, and ol-factory bulb. Specific binding in caudate-putamen was found to be both temperature- and pH-dependent, with optima at 25-30 degrees C and pH 7.8-8.0. Scatchard or Woolf analyses of binding in caudate-putamen suggest that most of the sites are either of a single class or of classes with similar characteristics (KD = 0.7 +/- 0.1 nM; Bmax = 347 +/- 35 fmol/mg of protein). Both dopamine and cis-flupenthixol altered the slope but not the intercept of lines generated by Scatchard analysis, suggesting a competitive mode of inhibition of [3H]SCH23390 binding. Competition for binding by dopamine or the D1 agonist SKF38393 was inhibited by guanine nucleotides, whereas GTP had little effect on the competition for binding by the antagonist cis-flupenthixol. The competition for [3H]SCH23390 binding sites by dopamine was much more sensitive to GTP than was competition for [3H]spiperone binding. These data support the hypotheses that [3H]SCH23390 binds to recognition sites that differ from those previously described using other radiolabeled dopamine antagonists and that these sites have the characteristics expected of dopamine receptors.  相似文献   

8.
J M Gorell  B Czarnecki 《Life sciences》1986,38(24):2239-2246
This study was done to provide pharmacologic evidence for the location of those striatal dopamine D-1 and D-2 receptors that participate in the regulation of local acetylcholine (ACh) release. Striatal tissue slices from adult male Sprague-Dawley rats were preloaded with [3H]choline and superfused in separate experiments with buffer containing either: a D-2-specific agonist (LY141865 or LY171555), a D-2 specific antagonist (L-sulpiride), a D-1 specific agonist (SKF38393), or a D-1 antagonist (SCH23390), in the presence or absence of tetrodotoxin (TTX), used to block interneuronal activity. With either D-2 agonist there was a dose-dependent decrease in K+-stimulated [3H]ACh release, maximally at 5 X 10(-7)-10(-6) M [agonist] and to the same extent with each drug. Both SKF38393 and SCH23390 increased [3H]ACh release at tested concentrations of these agents. Results were unchanged when any of the drugs used was superfused in the presence of TTX, 5 X 10(-7) M. These data are consistent with the hypothesis that populations of striatal D-1 and D-2 receptors exist on local cholinergic neurons, where they regulate ACh release. Alternative interpretations are discussed.  相似文献   

9.
3,4-Dihydroxyphenylethylamine (dopamine) and beta-adrenergic receptor agonists and antagonists were assessed for their effects on cyclic AMP accumulation in human astrocytoma derived clone D384 cells. Dopamine, SKF 38393, and 2-amino-6,7-dihydroxy-1,2,3,4-tetrahydronaphthalene increased cyclic AMP content with Ka values of 2.0, 0.2, and 1.6 microM. The D1-selective antagonists SCH 23390 (Ki, 1.2 nM) and SKF 83566 (Ki, 0.8 nM) were over 5,000-fold more potent than the D2-selective antagonist domperidone (Ki, 6.7 microM) at inhibiting dopamine stimulation of cyclic AMP formation. SCH 23388 (Ki, 560 nM; the S-enantiomer of SCH 23390) was 400-fold less potent than SCH 23390. Isoprenaline, adrenaline, salbutamol, and noradrenaline increased cyclic AMP content with Ka values of 0.13, 0.12, 0.22, and 7.60 microM. The beta 2-selective antagonist ICI 118,551 (Ki,0.8 nM) was almost 8,000-fold more potent than the beta 1-selective antagonist practolol (Ki, 5.9 microM) at inhibiting isoprenaline stimulated cyclic AMP accumulation. These results demonstrate that D384 cells express D1-dopamine and beta 2-adrenergic receptors linked to adenylate cyclase. Furthermore, the dopamine receptor expressed by D384 cells exhibits a pharmacological profile typical of a mammalian striatal D1-receptor and therefore the use of this clone represents another approach to studying central D1-receptors.  相似文献   

10.
Dopamine receptor activation regulates cyclic AMP levels and is critically involved in modulating neurotransmission in the striatum. Others have shown that alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA)-type glutamate receptor-mediated current is potentiated by cyclic AMP-dependent protein kinase (PKA) activation. We made whole-cell patch clamp recordings from cultured striatal neurons and tested whether D1-type dopamine receptor activation affected AMPA receptor-mediated currents. After a 5-min exposure to the D1 agonist SKF 81297 (1 microM), kainate-evoked current amplitude was enhanced in approximately 75% of cells to 121+/-2.5% of that recorded prior to addition of drug. This response was inhibited by the D1 antagonist SCH 23390 and mimicked by activators of PKA. Moreover, by western blot analysis using an antibody specific for the phosphorylated PKA site Ser845 of GluR1, we observed a marked increase in phosphorylated GluR1 following a 10-min exposure of striatal neurons to 1 microM SKF 81297. Our data demonstrate that activation of D1-type dopamine receptors on striatal neurons promotes phosphorylation of AMPA receptors by PKA as well as potentiation of current amplitude. These results elucidate one mechanism by which dopamine can modulate neurotransmission in the striatum.  相似文献   

11.
This study examined the effects of dopamine D1 and D2 receptor agonists and antagonists on the spontaneous and calcium-dependent, K+-induced release of gamma-[3H]aminobutyric acid [( 3H]GABA) accumulated by slices of rat substantia nigra. SKF 38393 (D1 agonist) and dopamine (dual D1/D2 agonist) were without effect on [3H]GABA efflux by themselves (1-40 microM), or in the presence of the phosphodiesterase inhibitor isobutylmethylxanthine (IBMX) (0.5 mM), but potentiated evoked release in the presence of forskolin (0.5 microM), an adenylate cyclase activator. These increases in release were prevented by the D1 antagonist SCH 23390 (0.5 microM), but not by the D2 antagonist metoclopramide (0.5 microM). Higher concentrations of forskolin (10-40 microM) augmented stimulus-evoked [3H]GABA release directly, whereas dibutyryl cyclic AMP (100-200 microM) depressed it. Apomorphine, noradrenaline, and 5-hydroxytryptamine (1-40 microM) had no effect. The D2 stimulants lisuride, RU 24213, LY 171555, and bromocriptine dose-dependently inhibited depolarisation-induced but not basal [3H]GABA outflow. These inhibitory responses were not modified by the additional presence of SKF 38393 (10 microM) or SCH 23390 (1 microM), or by injection of 6-hydroxydopamine into the medial forebrain bundle 42 days earlier, but were attenuated by metoclopramide (0.5 microM). Higher amounts (10 microM) of SCH 23390, metoclopramide, or other D2 antagonists (loxapine, haloperidol) reduced evoked GABA release by themselves, probably by nonspecific mechanisms. These results suggest D1 and D2 receptors may have opposing effects on nigral GABA output and could explain the variable effects of mixed D1/D2 dopaminomimetics in earlier release and electrophysiological experiments.  相似文献   

12.
Abstract: Pharmacological blockade of either D1 or D2 dopamine (DA) receptors prevents damage of striatal DA terminals by repeated doses of methamphetamine (m-AMPH). Because the substantial DA overflow produced by multiple m-AMPH treatments appears to contribute to the subsequent injury, we have investigated the effects of blockade of D1 or D2 receptors on m-AMPH-induced DA efflux using in vivo microdialysis. Four treatments with m-AMPH (4 mg/kg, s.c., 2-h intervals) produced large increases in striatal DA overflow, with particularly marked overflow (10 times the basal values) following the fourth injection. Administered by themselves, four injections of the D1 antagonist SCH 23390 or the D2 antagonist eticlopride (0.5 mg/kg, i.p., 2-h intervals) significantly increased striatal DA overflow. However, treatment with either SCH 23390 or eticlopride 15 min before each of four m-AMPH injections attenuated the marked DA peak otherwise seen after the fourth m-AMPH injection. These effects on DA overflow were related to subsequent DA depletions. Although our m-AMPH regimen produced a 54% reduction in striatal DA tissue content 1 week later, pretreatments with either the D1 or the D2 antagonist completely prevented subsequent DA content depletions. Furthermore, the DA content of striatal tissue remaining 1 week after m-AMPH treatment was significantly correlated with the magnitude of the cumulative DA overflow during the m-AMPH treatment ( r = -0.69). Thus, the extensive DA overflow seen during neurotoxic regimens of m-AMPH appears critical to the subsequent neurotoxicity, and the neuroprotective action of DA receptor antagonists seems to result from their attenuation of stimulant-induced DA overflow.  相似文献   

13.
Nitric oxide (NO) is a key neuromodulator of corticostriatal synaptic transmission. We have shown previously that dopamine (DA) D1/5 receptor stimulation facilitates neuronal NO synthase (nNOS) activity in the intact striatum. To study the impact of local manipulations of D1/5 and glutamatergic NMDA receptors on striatal nNOS activity, we combined the techniques of in vivo amperometry and reverse microdialysis. Striatal NO efflux was monitored proximal to the microdialysis probe in urethane‐anesthetized rats during local infusion of vehicle or drug. NO efflux elicited by systemic administration of SKF‐81297 was blocked following intrastriatal infusion of: (i) the D1/5 receptor antagonist SCH‐23390, (ii) the nNOS inhibitor 7‐nitroindazole, (iii) the non‐specific ionotropic glutamate receptor antagonist kynurenic acid, and (iv) the selective NMDA receptor antagonist 3‐phosphonopropyl‐piperazine‐2‐carboxylic acid. Glycine co‐perfusion did not affect SKF‐81297‐induced NO efflux. Furthermore, intrastriatal infusion of SKF‐81297 potentiated NO efflux evoked during electrical stimulation of the motor cortex. The facilitatory effects of cortical stimulation and SKF‐81297 were both blocked by intrastriatal infusion of SCH‐23390, indicating that striatal D1/5 receptor activation is necessary for the activation of nNOS by corticostriatal afferents. These studies demonstrate for the first time that reciprocal DA‐glutamate interactions play a critical role in stimulating striatal nNOS activity.  相似文献   

14.
Dopamine stimulated human neuroblastoma SK-N-MC cells to accumulated cyclic AMP. The D1 agonist SKF (R)-38393 also stimulated cyclic AMP production whereas the response to dopamine was inhibited by the D1 antagonist SCH (R)-23390. Membranes from SK-N-MC cells bound the D1 ligand [125I]SCH 23982 with a Kd of 2.1 nM and a Bmax of 102 fmol/mg protein. Binding was displaced by dopamine, SKF 38393, and SCH 23390. Up to 40% of the receptors were in an agonist high affinity, guanine nucleotide-sensitive state, compared to only 6% in rat striatum. A D1 photoaffinity probe labeled a 72 kDa protein in both SK-N-MC and rat striatal membranes. Thus, SK-N-MC human neuroblastoma cells contain D1 dopamine receptors which are similar to those found in mammalian striatum, but which are more tightly coupled to adenylate cyclase. SK-N-MC cells may be a useful model to investigate the properties and regulation of D1 dopamine receptors.  相似文献   

15.
Identification of D1-like dopamine receptors on human blood platelets   总被引:1,自引:0,他引:1  
Dopamine is able to inhibit the epinephrine-induced aggregation of human blood platelets, but the mechanism of action has not been elucidated. In this study we report that membranes from human blood platelets possess high affinity, saturable and stereoselective binding sites for the D1 dopamine receptor antagonist (3H) SCH 23390. (3H) SCH 23390 appeared to label a single class of binding sites with a Bmax of 18.6 +/- 1.6 fmol/mg protein and a KD of 0.8 nM. The potencies of different dopaminergic antagonists and agonists in displacing (3H) SCH 23390 from blood platelet membranes were similar to those obtained for striatal membranes. Unlike the classically defined D1 receptors, e.g. those in striatum, the D1 receptor sites on platelets appeared not to be coupled to the adenylate cyclase system, hence the term "D1-like". The D1 agonist SKF 38393 was more potent than dopamine in inhibiting platelet aggregation induced by epinephrine, and the effects of dopamine and SKF 38393 were prevented by SCH 23390. These results suggest that the inhibitory action of dopamine on the epinephrine-induced platelet aggregation is mediated through these D1-like receptors.  相似文献   

16.
The activation by endogenous dopamine of the inhibitory 3,4-dihydroxyphenylethylamine (dopamine) receptors modulating the electrically evoked release of [3H]acetylcholine [( 3H]ACh) and [3H]dopamine in rat striatal slices is a function of the concentration of dopamine accumulated in the synaptic cleft during electrical stimulation. When the release of 3H-neurotransmitters was elicited with a 2-min period of stimulation at a frequency of 1 Hz, neither dopamine autoreceptors nor dopamine receptors modulating [3H]ACh were activated by endogenously released dopamine. On the other hand, exposure to (S)-sulpiride facilitated the release of [3H]dopamine and [3H]ACh elicited when the 2-min stimulation was carried out at a frequency of 3 Hz but this effect was not observed at a lower frequency of stimulation (1 Hz). In the presence of amphetamine the dopamine receptors modulating the electrically evoked release of [3H]ACh can be activated by endogenous dopamine even at the lower frequency of stimulation (1 Hz). Similar effects can be obtained if the neuronal uptake of dopamine is inhibited by cocaine or nomifensine. The inhibition by amphetamine of the release of [3H]ACh elicited by electrical stimulation at 1 Hz involves dopamine receptors and can be fully antagonized by clozapine, haloperidol, chlorpromazine, or pimozide. The stereoselectivity of this antagonism can be demonstrated with the optical enantiomers of sulpiride and butaclamol. This inhibitory effect of amphetamine on cholinergic neurotransmission appears to be the result of the stimulation of dopamine receptors of the D2 subtype, as they were resistant to blockade by the preferential D1 receptor antagonist SCH 23390.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Abstract: K+-evoked acetyl[3H]choline ([3H]ACh) release was inhibited in a concentration-dependent manner by apomorphine and the D2 agonist quinpirole in striatal slices prepared from euthyroid and hypothyroid rats. However, there was a significant increase in the maximum inhibition observed with both agonists in the hypothyroid compared with the euthyroid group, which paralleled the increased D2 agonist sensitivity reported for stereotyped behavior. The D2 antagonist raclopride decreased, and the D, antagonist SCH 23390 increased, the inhibition of [3H]ACh release by apomorphine, confirming an inhibitory role for D2 receptors and an opposing role for D1 receptors. Because there is no difference in D1 or D2 receptor concentration between the euthyroid and hypothyroid groups, it is suggested that thyroid hormone modulation of D2 receptor sensitivity affects a receptor-mediated event. Following intrastriatal injection of pertussis toxin (PTX), apomorphine no longer inhibited [3H]ACh release. In fact, increased [3H]- ACh release was observed, an effect reduced by SCH 23390, providing evidence that D1 receptors enhance [3H]- ACh release, and confirming that a PTX-sensitive G protein mediates the D2 response. As it has been reported that thyroid hormones modulate G protein expression, this mechanism may underlie their effect on dopamine agonist- mediated inhibition of ACh.  相似文献   

18.
The modulation of striatal cholinergic neurons by somatostatin (SOM) was studied by measuring the release of acetylcholine (ACh) in the striatum of freely moving rats. The samples were collected via a transversal microdialysis probe. ACh level in the dialysate was measured by the high performance liquid chromatography method with an electrochemical detector. Local administration of SOM (0.1, 0.5 and 1 microM) produced a long-lasting and concentration-dependent increase in the basal striatal ACh output. The stimulant effect of SOM was antagonized by the SOM receptor antagonist cyclo(7-aminopentanoyl-Phe-D-Trp-Lys-Thr[BZL]) (1 microM). In a series of experiments, we studied the effect of 6,7-dinitroquinoxaline-2, 3-dione (DNQX), a selective non-NMDA (N-methyl-D-aspartate) glutamatergic antagonist, on the basal and SOM-induced ACh release from the striatum. DNQX, 2 microM, perfused through the striatum had no effect on the basal ACh output but inhibited the SOM (1 microM)-induced ACh release. The non-NMDA glutamatergic receptor antagonist 1-(4-aminophenyl)-4-methyl-7,8-methylendioxy-5H-2,3- benzodiazepine (GYKI-52466), 10 microM, antagonized the SOM (1 microM)-induced release of ACh in the striatum. Local administration of the NMDA glutamatergic receptor antagonist, 2-amino-5-phosphonopentanoic acid (APV), 100 microM, blocked SOM (1 microM)-evoked ACh release. Local infusion of tetrodotoxin (1 microM) decreased the basal release of ACh and abolished the 1 microM SOM-induced increase in ACh output suggesting that the stimulated release of ACh depends on neuronal firing. The present results are the first to demonstrate a neuromodulatory role of SOM in the regulation of cholinergic neuronal activity of the striatum of freely moving rats. The potentiating effect of SOM on ACh release in the striatum is mediated (i) by SOM receptor located on glutamatergic nerve terminals, and (ii) by NMDA and non-NMDA glutamatergic receptors located on dendrites of cholinergic interneurones of the striatum.  相似文献   

19.
SCH23390 has neurochemical properties characteristic of a specific D1 dopamine receptor antagonist. However, it is a potent inhibitor of dopamine-mediated behaviors which previously had been thought to be linked to D2 receptors. The metabolism of SCH23390 following parenteral administration to rats was much more rapid in the periphery than in brain, and SCH23390 had behavioral effects long after its circulating concentration had declined below detectable levels. Furthermore, the stimulation of adenylate cyclase by dopamine was attenuated in striatal homogenates taken from rats treated with SCH23390 as much as twelve hours before sacrifice. Pretreatment with cis-flupenthixol, a compound with equivalent D1 potency in vitro, failed to inhibit dopamine-stimulated adenylate cyclase activity one or four hours following injection, despite the fact that this dose produced significant behavioral effects. These data indicate that SCH23390 may act with unusual tenacity at certain sites in the central nervous system.  相似文献   

20.
The effects of selective D1 and D2 dopaminergic agents on the extracellular acetylcholine (ACh) content in striata of freely moving rats were determined by the microdialysis technique. LY 171555, a selective D2 agonist, reduced ACh output by approximately 30% within 20 min at the dose of 0.2 mg/kg, i.p., whereas the D2 antagonists (-)-remoxipride (10 mg/kg, s.c.) and L-sulpiride (50 mg/kg, i.p.) induced maximal increases of approximately 50% within 10 and 20 min, respectively. In contrast, the D1 antagonist SCH 23390 (0.25 mg/kg, s.c.) decreased the extracellular ACh content by approximately 30% in 20 min, but lower doses--0.025 and 0.05 mg/kg--had no such effect. The stimulation of ACh release by LY 171555 was prevented by (-)-remoxipride but not by SCH 23390 (0.25 mg/kg, s.c.). In addition, the D1 agonist SKF 38393 failed to modify the ACh increasing effect of (-)-remoxipride. Thus, the D1 and D2 receptors subserve opposing functions on ACh release. The D1/D2 dopaminergic agonist R-apomorphine, at the does of 1 mg/kg, i.p., reduced ACh output by approximately 35% only when D1 receptors were blocked by SCH 23390 (0.025 mg/kg, s.c.). The results provide clear in vivo evidence of the tonic inhibition exerted by dopaminergic nigrostriatal input on the cholinergic system of the basal ganglia through D1 and D2 receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号