首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Apoptotic cells are engulfed and removed by phagocytes. This ensures proper development of the organism and can modulate immune responses. Recent studies have examined molecules on apoptotic cells, such as phosphatidylserine, which may signal for engulfment through multiple receptors. Apoptotic recognition mechanisms may vary with the apoptotic and engulfing cell type, and even with the age of the corpse.  相似文献   

2.
Ye X  Deng Y  Lai ZC 《Developmental biology》2012,369(1):115-123
Tissue growth is achieved through coordinated cellular growth, cell division and apoptosis. Hippo signaling is critical for monitoring tissue growth during animal development. Loss of Hippo signaling leads to tissue overgrowth due to continuous cell proliferation and block of apoptosis. As cells lacking Hippo signaling are similar in size compared to normal cells, cellular growth must be properly maintained in Hippo signaling-deficient cells. However, it is not clear how Hippo signaling might regulate cellular growth. Here we show that loss of Hippo signaling increased Akt (also called Protein Kinase B, PKB) expression and activity, whereas activation of Hippo signaling reduced Akt expression in developing tissues in Drosophila. While yorkie (yki) is sufficient to increase Akt expression, Akt up-regulation caused by the loss of Hippo signaling is strongly dependent on yki, indicating that Hippo signaling negatively regulates Akt expression through Yki inhibition. Consistently, genetic analysis revealed that Akt plays a critical role in facilitating growth of Hippo signaling-defective tissues. Thus, Hippo signaling not only blocks cell division and promotes apoptosis, but also regulates cellular growth by inhibiting the Akt pathway activity.  相似文献   

3.
4.
5.
6.
7.
We have shown the functional expression by chondrocytes of serine racemase (SR) which is responsible for the synthesis of D-serine (Ser) from L-Ser in cartilage. In this study, we evaluated the possible functional expression of SR by bone-forming osteoblasts and bone-resorbing osteoclasts. Expression of SR mRNA was seen in osteoblasts localized at the cancellous bone surface in neonatal rat tibial sections and in cultured rat calvarial osteoblasts endowed to release D-Ser into extracellular medium, but not in cultured osteoclasts differentiated from murine bone marrow progenitor cells. Sustained exposure to D-Ser failed to significantly affect alkaline phosphatase activity and Ca(2+) accumulation in cultured osteoblasts, but significantly inhibited differentiation and maturation in a concentration-dependent manner at a concentration range of 0.1-1 mM without affecting cellular survival in cultured osteoclasts. By contrast, L-Ser promoted osteoclastic differentiation in a manner sensitive to the inhibition by D-Ser. Matured osteoclasts expressed mRNA for the amino acid transporter B(0,+) (ATB(0,+) ) and the system alanine, serine, and cysteine amino acid transporter-2 (ASCT2), which are individually capable of similarly incorporating extracellular L- and D-Ser. Knockdown of these transporters by siRNA prevented both the promotion by L-Ser and the inhibition by D-Ser of osteoclastic differentiation in pre-osteoclastic RAW264.7 cells. These results suggest that D-Ser may play a pivotal role in osteoclastogenesis through a mechanism related to the incorporation mediated by both ATB(0,+) and ASCT2 of serine enantiomers in osteoclasts after the synthesis and subsequent release from adjacent osteoblasts.  相似文献   

8.
Many studies have shown that FcgammaRIIB is a negative regulator of B cell receptor signaling, and even though FcgammaRIIB is expressed through all developmental stages of the B cell lineage, its involvement in pre-B cell receptor (pre-BCR) signaling has not been examined. To investigate FcgammaRIIB function at the pre-B cell stage, we have established pre-BCR positive pre-B cell lines from normal mice and FcgammaRIIB-deficient mice, named PreBR and Fcgamma(-/-)PreBR, respectively. These cell lines are able to differentiate into immature B cells in vitro by removal of IL-7. In PreBR, apoptosis was moderately induced by F(ab')(2) anti-mu Ab, but not by intact anti-mu Ab. Phosphorylation of SH2-containing inositol 5-phosphatase (SHIP) and Dok, which are involved in FcgammaRIIB signaling, was induced by anti-mu cross-linking in PreBR. In contrast, apoptosis was strongly induced by both the F(ab')(2) and intact anti-mu Abs in Fcgamma(-/-)PreBR, and the level of phosphorylation of SHIP or Dok was much lower in Fcgamma(-/-)PreBR than those observed in PreBR. Restoration of FcgammaRIIB to Fcgamma(-/-)PreBR followed by anti-mu cross-linking blocked severe apoptosis, and up-regulated SHIP and Dok phosphorylation. The results demonstrate that FcgammaRIIB negatively regulates pre-BCR-mediated signaling for apoptosis.  相似文献   

9.
The clearance of apoptotic cells by phagocytes is an integral component of normal life, and defects in this process can have significant implications for self tolerance and autoimmunity. Recent studies have provided new insights into the engulfment process, including how phagocytes seek apoptotic cells, how they recognize and ingest these targets and how they maintain cellular homeostasis after the 'meal'. Several new factors that regulate engulfment have been identified, whereas the roles of some of the older players require revision. This Review focuses on these recent developments and attempts to highlight some of the important questions in this field.  相似文献   

10.
11.
Bone morphogenetic proteins (BMPs) have been shown to regulate both osteoblasts and osteoclasts. We previously reported that BMP2 could directly enhance RANKL-mediated osteoclast differentiation by increasing the size and number of osteoclasts. Similarly, genetic deletion of the BMP antagonist Twisted gastrulation (TWSG1) in mice, resulted in an enhancement of osteoclast formation, activity and osteopenia. This was accompanied by increased levels of phosphorylated Smad (pSmad) 1/5/8 in Twsg1(-/-) osteoclasts in vitro. The purpose of this study was to develop an adenoviral vector overexpressing Twsg1 as a means of inhibiting osteoclast activity. We demonstrate that overexpressing TWSG1 in primary osteoclasts decreased the size and number of multinuclear TRAP-positive osteoclasts, expression of osteoclast genes, and resorption ability. Overexpression of TWSG1 did not affect osteoclast proliferation or apoptosis. However, overexpression of TWSG1 decreased the levels of pSmad 1/5/8 in osteoclasts. Addition of exogenous BMP2 to osteoclasts overexpressing TWSG1 rescued the size and levels of pSmad 1/5/8 compared to cultures infected with a control virus. Finally, TWSG1 overexpression in osteoclasts isolated from the Twsg1(-/-) mice rescued size of the osteoclasts while further addition of exogenous BMP2 reversed the effect of TWSG1 overexpression and increased the size of the osteoclasts similar to control virus infected cells. Taken together, we demonstrate that overexpressing TWSG1 in osteoclasts via an adenoviral vector results in inhibition of osteoclastogenesis and may provide a potential therapy for inhibiting osteoclast activity in a localized manner.  相似文献   

12.
13.
14.
Corneal keratocytes (stromal cells) are activated to fibroblasts and myofibroblasts during wound healing. Myofibroblast transdifferentiation is accompanied by the expression of α-smooth muscle actin (α-SMA) and the assembly of a robust stress fiber network and larger focal adhesions (FAs). The regulation of the assembly of stress fibers was evaluated in cultured corneal fibroblast and myofibroblast phenotypes. In both cell types, the inhibition of Rho GTPase activity by microinjecting C3 transferase into the cells resulted in the disassembly of stress fibers and FAs. However, the inhibition of the Rho-associated kinases ROKα and ROKβ with their inhibitor, Y27632, or by overexpression of their mutant kinase-dead forms resulted in only a partial loss of the stress fibers and FAs in myofibroblasts but a total loss in fibroblasts. ROK inhibitor-sensitive and -resistant stress fibers in myofibroblasts contained α-SMA, nonmuscle myosin II, tropomyosin, and calponin. The ROK inhibition-resistant stress fibers and FAs were lost upon the overexpression of the dominant-negative form of mDia1 (a mammalian homolog of Drosophila diaphanous protein). These findings indicated that while the assembly of stress fibers in fibroblasts critically involves both ROK and mDia1, in myofibroblasts, the assembly of α-SMA-containing stress fibers also occurs independently of ROK and involves Rho/mDia1.  相似文献   

15.
16.
The serine/threonine kinase Akt functions in multiple cellular processes, including cell survival and tumor development. Studies of the mechanisms that negatively regulate Akt have focused on dephosphorylation-mediated inactivation. In this study, we identified a negative regulator of Akt, MULAN, which possesses both a RING finger domain and E3 ubiquitin ligase activity. Akt was found to directly interact with MULAN and to be ubiquitinated by MULAN in vitro and in vivo. Other molecular assays demonstrated that phosphorylated Akt is a substantive target for both interaction with MULAN and ubiquitination by MULAN. The results of the functional studies suggest that the degradation of Akt by MULAN suppresses cell proliferation and viability. These data provide insight into the Akt ubiquitination signaling network.  相似文献   

17.
18.
The intestinal epithelium serves as a barrier to the intestinal flora. In response to pathogens, intestinal epithelial cells (IEC) secrete proinflammatory cytokines. To aid in defense against bacteria, IEC also secrete antimicrobial peptides, termed defensins. The aim of our studies was to understand the role of TLR signaling in regulation of beta-defensin expression by IEC. The effect of LPS and peptidoglycan on beta-defensin-2 expression was examined in IEC lines constitutively or transgenically expressing TLRs. Regulation of beta-defensin-2 was assessed using promoter-reporter constructs of the human beta-defensin-2 gene. LPS and peptidoglycan stimulated beta-defensin-2 promoter activation in a TLR4- and TLR2-dependent manner, respectively. A mutation in the NF-kappaB or AP-1 site within the beta-defensin-2 promoter abrogated this response. In addition, inhibition of Jun kinase prevents up-regulation of beta-defensin-2 protein expression in response to LPS. IEC respond to pathogen-associated molecular patterns with expression of the antimicrobial peptide beta-defensin-2. This mechanism may protect the intestinal epithelium from pathogen invasion and from potential invaders among the commensal flora.  相似文献   

19.
20.
Epithelial cells display apical-basal polarity, and the apical surface is segregated from the basolateral membranes by a barrier called the tight junction (TJ). TJs are constructed from transmembrane proteins that form cell-cell contacts-claudins, occludin, and junctional adhesion molecule (JAM)-plus peripheral proteins such as ZO-1. The Par proteins (partitioning-defective) Par3 and Par6, plus atypical protein kinase C (aPKC) function in the formation or maintenance of TJs and more generally in metazoan cell polarity establishment. Par6 contains a PDZ domain and a partial CRIB (Cdc42/Rac interactive binding) domain and binds the small GTPase Cdc42. Here, we show that Par6 inhibits TJ assembly in MDCK II epithelial cells after their disruption by Ca(2+) depletion but does not inhibit adherens junction (AJ) formation. Transepithelial resistance and paracellular diffusion assays confirmed that assembly of functional TJs is delayed by Par6 overexpression. Strikingly, the isolated, N-terminal fragment of PKCzeta, which binds Par6, also inhibits TJ assembly. Activated Cdc42 can disrupt TJs, but neither a dominant-negative Cdc42 mutant nor the CRIB domain of gammaPAK (p21-activated kinase), which inhibits Cdc42 function, observably inhibit TJ formation. These results suggest that Cdc42 and Par6 negatively regulate TJ assembly in mammalian epithelial cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号