首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Many predator species feed on prey that fluctuates in abundance from year to year. Birds of prey can face large fluctuations in food abundance i.e. small mammals, especially voles. These annual changes in prey abundance strongly affect the reproductive success and mortality of the individual predators and thus can be expected to influence their population dynamics and persistence. The barn owl, for example, shows large fluctuations in breeding success that correlate with the dynamics in voles, their main prey species. Analysis of the impact of fluctuations in vole abundance (their amplitude, peaks and lows, cycle length and regularity) with a simple predator prey model parameterized with literature data indicates population persistence is especially affected by years with low vole abundance. In these years the population can decline to low owl numbers such that the ensuing peak vole years cannot be exploited. This result is independent of the length and regularity of vole fluctuations. The relevance of this result for conservation of the barn owl and other birds of prey that show a numerical response to fluctuating prey species is discussed.  相似文献   

2.
The consequences of cyclic fluctuations in abundance of prey species on predator continue to improve our understanding of the mechanisms behind population regulation. Among predators, vole‐eating raptors usually respond to changes in prey abundance with no apparent time‐lag and therefore contradict predictions from the predator–prey theory. In such systems, the interplay between demographic traits and population growth rate in relation to prey abundance remains poorly studied, yet it is crucial to characterize the link between ecological processes and population changes. Using a mechanistic approach, we assessed the demographic rates associated to the direct and indirect numerical responses of a specialist raptor (Montagu's harrier) to its cyclic prey (common vole), using long term data from two adjacent study sites in France. First‐year survival rates were weakly affected by vole abundance, probably due to the fact that Montagu's harriers are trans‐Saharan migrants and thus escape the vole collapse occurring in autumn–winter. Recruitment of yearling as well as breeding propensity of experienced adult females were strongly affected by vole abundance and at least partially shaped the trajectory of the breeding population. We argued that the strong density dependent signal detected in predator time series was mostly the phenomenological consequence of the positive direct numerical response of harriers to vole abundance. Accounting for this, we proposed a method to assess density dependence in predator relying on a cyclic prey. Finally, the variation in Montagu's harrier population growth rates was best explained by overwinter growth rates of the prey population and to a lesser extent by previous residual predator density.  相似文献   

3.
Population dynamics of small mammals and predators in semi-arid Chile is positively correlated with rainfall associated with incursions of El Niño (El Niño Southern Oscillation: ENSO). However, the causal relationships between small mammal fluctuations, predator oscillations, and climatic disturbances are poorly understood. Here, we report time series models for three species of small mammal prey and two species of owl predators. The large differences in population fluctuations between the three small mammal species are related to differences in their respective feedback structures. The analyses reveal that per capita growth rate of the leaf-eared mouse is a decreasing function of log density and of log barn owl abundance together with a positive rainfall effect. In turn, per capita population growth rate ( R -function) of the barn owl is a negative function of log barn owl abundance and a positive function of leaf-eared mouse abundance, suggesting a predator–prey interaction. The dramatic population fluctuations exhibited by leaf-eared mouse ( Phyllotis darwini ) are caused by climate effects coupled with a complex food web architecture.  相似文献   

4.
Predicting the dynamics of animal populations with different life histories requires careful understanding of demographic responses to multifaceted aspects of global changes, such as climate and trophic interactions. Continent‐scale dampening of vole population cycles, keystone herbivores in many ecosystems, has been recently documented across Europe. However, its impact on guilds of vole‐eating predators remains unknown. To quantify this impact, we used a 27‐year study of an avian predator (tawny owl) and its main prey (field vole) collected in Kielder Forest (UK) where vole dynamics shifted from a high‐ to a low‐amplitude fluctuation regime in the mid‐1990s. We measured the functional responses of four demographic rates to changes in prey dynamics and winter climate, characterized by wintertime North Atlantic Oscillation (wNAO). First‐year and adult survival were positively affected by vole density in autumn but relatively insensitive to wNAO. The probability of breeding and number of fledglings were higher in years with high spring vole densities and negative wNAO (i.e. colder and drier winters). These functional responses were incorporated into a stochastic population model. The size of the predator population was projected under scenarios combining prey dynamics and winter climate to test whether climate buffers or alternatively magnifies the impact of changes in prey dynamics. We found the observed dampening vole cycles, characterized by low spring densities, drastically reduced the breeding probability of predators. Our results illustrate that (i) change in trophic interactions can override direct climate change effect; and (ii) the demographic resilience entailed by longevity and the occurrence of a floater stage may be insufficient to buffer hypothesized environmental changes. Ultimately, dampened prey cycles would drive our owl local population towards extinction, with winter climate regimes only altering persistence time. These results suggest that other vole‐eating predators are likely to be threatened by dampening vole cycles throughout Europe.  相似文献   

5.
The little owl (Athene noctua) has declined significantly in many parts of Europe, including the Netherlands. To understand the demographic mechanisms underlying their decline, we analysed all available Dutch little owl ringing data. The data set spanned 35 years, and included more than 24,000 ringed owls, allowing detailed estimation of survival rates through multi-state capture–recapture modelling taking dispersal into account. We investigated geographical and temporal variation in age-specific survival rates and linked annual survival estimates to population growth rate in corresponding years, as well as to environmental covariates. The best model for estimating survival assumed time effects on both juvenile and adult survival rates, with average annual survival estimated at 0.258 (SE = 0.047) and 0.753 (SE = 0.019), respectively. Juvenile survival rates decreased with time whereas adult survival rates fluctuated regularly among years, low survival occurring about every 4 years. Years when the population declined were associated with low juvenile survival. More than 60% of the variation in juvenile survival was explained by the increase in road traffic intensity or in average temperature in spring, but these correlations rather reflect a gradual decrease in juvenile survival coinciding with long-term global change than direct causal effects. Surprisingly, vole dynamics did not explain the cyclic dynamics of adult survival rate. Instead, dry and cold years led to low adult survival rates. Low juvenile survival rates, that limit recruitment of first-year breeders, and the regular occurrence of years with poor adult survival, were the most important determinants of the population decline of the little owl.  相似文献   

6.
The ongoing climate change has improved our understanding of how climate affects the reproduction of animals. However, the interaction between food availability and climate on breeding has rarely been examined. While it has been shown that breeding of boreal birds of prey is first and foremost determined by prey abundance, little information exists on how climatic conditions influence this relationship. We studied the joint effects of main prey abundance and ambient weather on timing of breeding and reproductive success of two smaller (pygmy owl Glaucidium passerinum and Tengmalm’s owl Aegolius funereus) and two larger (tawny owl Strix aluco and Ural owl Strix uralensis) avian predator species using long-term nation-wide datasets during 1973–2004. We found no temporal trend either in vole abundance or in hatching date and brood size of any studied owl species. In the larger species, increasing late winter or early spring temperature advanced breeding at least as much as did high autumn abundance of prey (voles). Furthermore, increasing snow depth delayed breeding of the largest species (Ural owl), presumably by reducing the availability of voles. Brood size was strongly determined by spring vole abundance in all four owl species. These results show that climate directly affects the breeding performance of vole-eating boreal avian predators much more than previously thought. According to earlier studies, small-sized species should advance their breeding more than larger species in response to increasing temperature. However, we found an opposite pattern, with larger species being more sensitive to temperature. We argue that this pattern is caused by a difference in the breeding tactics of larger mostly capital breeding and smaller mostly income breeding owl species.  相似文献   

7.
We studied the response of the barn owl annual productivity to the common vole population numbers and variability to test the effects of environmental stochasticity on their life histories. Current theory predicts that temporal environmental variability can affect long-term nonlinear responses (e.g., production of young) both positively and negatively, depending on the shape of the relationship between the response and environmental variables. At the level of the Czech Republic, we examined the shape of the relationship between the annual sum of fledglings (annual productivity) and vole numbers in both non-detrended and detrended data. At the districts’ level, we explored whether the degree of synchrony (measured by the correlation coefficient) and the strength of the productivity response increase (measured by the regression coefficient) in areas with higher vole population variability measured by the s-index. We found that the owls’ annual productivity increased linearly with vole numbers in the Czech Republic. Furthermore, based on district data, we also found that synchrony between dynamics in owls’ reproductive output and vole numbers increased with vole population variability. However, the strength of the response was not affected by the vole population variability. Additionally, we have shown that detrending remarkably increases the Taylor’s exponent b relating variance to mean in vole time series, thereby reversing the relationship between the coefficient of variation and the mean. This shift was not responsible for the increased synchrony with vole population variability. Instead, we suggest that higher synchrony could result from high food specialization of owls on the common vole in areas with highly fluctuating vole populations.  相似文献   

8.
Exploring predator–prey systems in diverse ecosystems increases our knowledge about ecological processes. Predator population growth may be positive when conspecific density is low but predators also need areas with prey availability, associated with competition, which increases the risk of suffering losses but stabilises populations. We studied relationships between European rabbits Oryctolagus cuniculus (prey) and adult eagle owls Bubo bubo (predators) in south-western Europe. We assessed models explaining the predator population growth and stability. We estimated the abundance of rabbits and adult eagle owls during three years in eight localities of central-southern Spain. We explored models including rabbit and adult eagle owl abundance, accounting for yearly variations and including the locality as a random variable. We found that population growth of adult eagle owls was positive in situations with low conspecific abundance and tended to be negative but approaching equilibrium in situations of higher conspecific abundance. Population growth was also positively related to previous summer rabbit density when taking into account eagle owl conspecific abundance, possibly indicating that rabbits may support recruitment. Furthermore, abundance stability of adult eagle owls was positively related to previous winter–spring rabbit density, which could suggest predator population stabilisation through quick territory occupation in high-quality areas. These results exemplify the trade-off between prey availability and abundance of adult predators related to population growth and abundance stability in the eagle owl–rabbit system in south-western Europe. Despite rabbits have greatly declined during the last decades and eagle owls locally specialise on them, eagle owls currently have a favourable conservation status. As eagle owls are the only nocturnal raptor with such dependence on rabbits, this could point out that predators may overcome prey decreases in areas with favourable climate and prey in the absence of superior competitors with similar foraging mode.  相似文献   

9.
Arne Lundberg 《Oecologia》1979,41(3):273-281
Summary Fennoscandian owl species differ, among other things, with respect to nest-site, food, clutch size, mate and territory fidelity, sexual size dimorphism and longevity. All these life characteristics help shaping the pattern of mobility and wintering strategies found in owl species, but it seems justifiable to regard food abundance and nest-site availability as the most prominent ones.The Ural owl is a generalist feeder and nests in tree cavities which are scarce. The pair is faithful to their territory for life. The long-eared owl is a vole specialist, breeds in secondhand twig-nests, which are abundantly available, and is largely migratory. Tengmalm's owl is a vole specialist and breeds in tree holes. As an adaptation to the conflicting pressures of periodical food scarcity and of keen competition for the nest holes which therefore have better be guarded uninterruptedly this species has evolved a strategy of partial migration, adult males being resident and females and young being migratory.  相似文献   

10.
We examined the temporal, spatial, and demographic factors that influenced roadway mortality of barn owls (Tyto alba) along a 248-km stretch of Interstate 84 in southern Idaho using systematic road surveys. Counts of dead animals from surveys can be underestimated because of sampling biases; therefore, we also conducted experiments to assess the effects of search and removal bias on the estimates of roadway mortality of owls. We conducted surveys every 2 weeks over a 2-year period and detected 812 dead barn owls (unadjusted mortality rate of 1.64 owls/km/yr). After adjusting this estimate for search and removal bias, we documented mortality rates of up to 5.99 owls/km/year. Owl mortality was not random in relation to sex, age class, or location along the highway. Females and juveniles, which represent individuals more likely to disperse long distances, were killed more frequently than males and adults. During the nonbreeding season, owls were killed more often near agricultural lands than in shrub-steppe, but this pattern was not apparent during the breeding season. Owls were also killed more often on portions of the roadway closer to the Snake River canyon, perhaps because of the availability of nest and roost sites. Mortality rates differed markedly between the 2 years of study, which could have been related to variability in weather and its subsequent effect on owl productivity. Our data suggest that barn owls in this region may not persist under this level of mortality without significant immigration or management. Thus, roadway management to reduce or prevent owl use of roadways, reduce rodent populations near major roads, alert motorists to the presence of owls, or otherwise reduce the chances that vehicles and owls collide would improve barn owl survival and population persistence. © 2012 The Wildlife Society.  相似文献   

11.
Breeding close to top predators is a widespread reproductive strategy. Breeding animals may gain indirect benefits if proximity to top predators results in a reduction of predation due to suppression of mesopredators. We tested if passerine birds gain protection from mesopredators by nesting within territories of a top predator, the Ural owl (Strix uralensis). We placed nest boxes for pied flycatchers (Ficedula hypoleuca) in Ural owl nest sites and in control sites (currently unoccupied by owls). The nest boxes were designed so that nest predation risk could be altered (experimentally increased) after flycatcher settlement; we considered predation rate as a proxy of mesopredator abundance. Overall, we found higher nest predation rates in treatment than in control sites. Flycatcher laying date did not differ between sites, but smaller clutches were laid in treatment sites compared to controls, suggesting a response to perceived predation risk. Relative nest predation rate varied between years, being higher in owl nest sites in 2 years but similar in another; this variation might be indirectly influenced by vole abundance. Proximity to Ural owl nests might represent a risky habitat for passerines. High predation rates within owl territories could be because small mesopredators that do not directly threaten owl nests are attracted to owl nest sites. This could be explained if some mesopredators use owl territories to gain protection from their own predators, or if top predators and mesopredators independently seek similar habitats.  相似文献   

12.
1. Understanding which factors regulate population dynamics may help us to understand how a population would respond to environmental change, and why some populations are declining.
2. In southern Finland, vole abundance shows a three-phased cycle of low, increase and decrease phases, but these have been fading out in recent years. During five such cycles (1981–1995), all tawny owls Strix aluco were censused in a 250-km2 study area, and their reproduction and survival were monitored.
3. Males and females showed similar dynamics, but experienced breeders recruited more offspring and had higher survival than first breeders. Offspring recruitment, but not survival of breeding individuals varied in accordance with vole abundance.
4. The population's numerical response to prey abundance was primarily due to first-breeding individuals entering the population in the increase phase when immigration was the highest. First-breeding birds were younger, but experienced breeders were older in more favourable vole years.
5. A stage-specific matrix population model integrating survival and fecundity showed that, despite obvious variation in fecundity between vole cycle phases, this variation had limited importance for overall tawny owl population dynamics, but that the survival of experienced breeders during the low phase is most important for population growth.
6. Model and data agreed that the vole cycle drives the dynamics of this avian predator by limiting the recruitment of new breeders during the low phase. Population dynamics hence differ not only from the classic example of the species in a more temperate region in the UK where the number of territories is stable across years, but also from the dynamics of other avian vole predators in Fennoscandia where the recurring crash in vole abundance drastically lowers adult survival thereby creating vacancies.  相似文献   

13.
Large predators may affect the hunting efficiency of smaller ones directly by decreasing their numbers, or indirectly by altering their behaviour. Either way this may have positive effects on the density of shared prey. Using large outdoor enclosures, we experimentally studied whether the presence of the Tengmalm's owl Aegolius funereus affects the hunting efficiency of the smallest member of the vole-eating predator guild, the least weasel Mustela nivalis, as measured by population responses of coexisting prey species, the field vole Microtus agrestis and the sibling vole M. levis . We compared the density and survival probability of vole populations exposed to no predation, weasel predation or combined predation by a weasel and an owl. The combined predation of both owl and weasel did not result in obvious changes in the density of sibling and field vole populations compared to the control populations without predators, while predation by least weasel alone decreased the densities of sibling voles and induced a similar trend in field vole densities. Survival of field voles was not affected by predator treatment while sibling vole survival was lower in predator treated populations than in control populations. Our results suggest that weasels are intimidated by avian predators, but without changing the effects of predators on competitive situations between the two vole species. Non-lethal effects of intraguild predation therefore will not necessarily change competitive interactions between shared prey species.  相似文献   

14.
Erkki Korpimäki 《Oecologia》1986,69(2):195-201
Summary I studied the importance of geographical location, snow cover and food to the fluctuations in 30 breeding populations of Tengmalm's owl (Aegolius funereu) in Europe. Cyclicity indices were positively related both to latitude and longitude, but within Fennoscandia they were better correlated with snow cover. Population fluctuations increased northward, while food niche breadth and degree of site tenacity decreased northwards.Microtine fluctuations become more pronounced northwards and are more synchronized, while number of alternative prey increases southwards. These factors promote instability in North European and stability in central European owl populations. Furthermore, snow conditions were more important within Fennoscandia, since this small owl cannot hunt voles protected by deep snow. Environmental predictability and diversity of available food for Tengmalm's owl increase southwards in Europe. Thus, the owl is a resident generalist predator of small mammals and birds in central Europe and adopts a partial migration strategy (males being resident and females nomadic) in South and West Finland, changing its habits to nomadic microtine specialist in areas with pronounced vole cycles (in northern Fennoscandia). These changes fit well with the recent suggestion that gradients in density variations of small rodents are related to sustainable numbers of generalist predators.  相似文献   

15.
Climate, food, density and wildlife population growth rate   总被引:2,自引:0,他引:2  
1. The aim of this study was to derive and evaluate a priori models of the relationship between annual instantaneous population growth rate (r) and climate. These were derived from the numerical response of annual r and food, and the effect of climate on a parameter in the numerical response. The goodness of fit of a range of such deductive models to data on annual r of Soay sheep and red deer were evaluated using information-theoretic (AICc-based) analyses. 2. The analysis for sheep annual r showed negative effects of abundance and negative effects of the interaction of abundance and climate, measured as March rainfall (and winter NAO) in the best fitting models. The analysis for deer annual r showed a negative effect of deer abundance and a positive effect of climate measured as March rainfall (but a negative effect of winter NAO), but no interaction of abundance and climate in the best fitting models. 3. There was most support in the analysis of sheep dynamics for the ratio numerical response and the assumption that parameter J (equilibrium food per animal) was influenced by climate. In the analysis of deer dynamics there was most support for the numerical responses assuming effects of food and density (Ivlev and density, food and density, and additive responses) and slightly less support for the ratio numerical response. The evaluation of such models would be aided by the collection of and incorporation of food data into the analyses.  相似文献   

16.

Background

Most hypotheses on population limitation of small mammals and their predators come from studies carried out in northern latitudes, mainly in boreal ecosystems. In such regions, many predators specialize on voles and predator-prey systems are simpler compared to southern ecosystems where predator communities are made up mostly of generalists and predator-prey systems are more complex. Determining food limitation in generalist predators is difficult due to their capacity to switch to alternative prey when the basic prey becomes scarce.

Methodology

We monitored the population density of a generalist raptor, the Eurasian kestrel Falco tinnunculus over 15 years in a mountainous Mediterranean area. In addition, we have recorded over 11 years the inter-annual variation in the abundance of two main prey species of kestrels, the common vole Microtus arvalis and the eyed lizard Lacerta lepida and a third species scarcely represented in kestrel diet, the great white-toothed shrew Crocidura russula. We estimated the per capita growth rate (PCGR) to analyse population dynamics of kestrel and predator species.

Principal Findings

Multimodel inference determined that the PCGR of kestrels was better explained by a model containing the population density of only one prey species (the common vole) than a model using a combination of the densities of the three prey species. The PCGR of voles was explained by kestrel abundance in combination with annual rainfall and mean annual temperature. In the case of shrews, growth rate was also affected by kestrel abundance and temperature. Finally, we did not find any correlation between kestrel and lizard abundances.

Significance

Our study showed for the first time vertebrate predator-prey relationships at southern latitudes and determined that only one prey species has the capacity to modulate population dynamics of generalist predators and reveals the importance of climatic factors in the dynamics of micromammal species and lizards in the Mediterranean region.  相似文献   

17.
Populations of bluegill sunfish Lepomis macrochirus , experiencing heavy juvenile predation, showed increased growth rates and increased age and size at maturity relative to populations experiencing decreased predation on juveniles but increased predation on adults. This study examined bluegills experimentally from both types of populations and a cross between them in a common environment to determine if variation in growth and age at maturity is genetically or environmentally induced. Two factorial experiments, varying strain of bluegills and resource availability, were used to evaluate differences in growth rate. One experiment, varying strain of bluegills, was used to assess differences in age at maturity. Growth was strongly influenced by resource level, but growth rate did not vary among populations. Nearly all bluegills in each population matured at 1 year of age in a common environment. Thus, variation observed in source populations must be mostly attributable to differences in the environment between populations. At least three factors could potentially cause differences in growth and age at maturity: (1) variation in resource availability; (2) variation in demographic structure; and (3) variation in size-specific mortality rates caused by differences in predator abundance between populations. Observed patterns of variation between populations are best explained by effects of differences in predator populations.  相似文献   

18.
The relationship between the rates of prey capture and predator population growth is a fundamental aspect of predation, yet it is rarely measured for vertebrate predators. For the isolated wolf population on Isle Royale, annual variation in kill rate explains 22% of the variation in wolf population growth rate. From the slope of this relationship, we estimate that the production efficiency (ratio of production to respiration) of wolves is between 0.5% and 1.5%. More generally, we assess the relative extent to which wolf population growth rate is affected by density dependence, prey availability (moose, Alces alces ), winter weather, and demographic stochasticity. Prey availability explains the most variation in wolf growth rate (42%), but this is only recognized after accounting for the influence of a disease-induced population crash and age structure of the prey population (i.e. number of vulnerable moose, >9 years of age). Demographic stochasticity accounts for approximately 30% of the variation in wolf growth rate. This recognition is important, but not surprising, given that the average population size of Isle Royale wolves is 22. Previous work indicates that the effect of winter climate, as mediated through prey vulnerability and kill rates, is substantial. This work indicates that the direct effect of winter climate is weak, and explains only about 4% of the variation in wolf growth rate (P=0.10).  相似文献   

19.
Though researchers have studied population dynamics extensively in many free-ranging primate populations, information on the relationship between food abundance and demographic parameters based on long-term data is sparse. We examined changes in demographic parameters in relation to decreased provisioning of foods based on data gathered for >50 yr in a provisioned, free-ranging Japanese macaque (Macaca fuscata) population at Takasakiyama, Oita Prefecture, in the southern region of Japan. At Takasakiyama, population size increased linearly because of heavy provisioning in the 1950s and 1960s. The provisioning of food to macaques decreased from 1965. We examined changes in the physique index of full adult females, primiparous age, birth percentage, infant mortality rate, population density, and annual population growth rate relative to the decrease of provisioned foods between the 1970s and 1990s. As a result of the drastic decrease in the amount of foods provisioned, the physique index of full adult females decreased, primiparous age increased, birth percentage decreased, and infant mortality rate increased, such that annual population growth rate diminished substantially. Ours is the first study to demonstrate quantitatively the relationship between provisioned food abundance and demographic parameters based on long-term data.  相似文献   

20.
Vertebrate population dynamics, social organisation and space use often are closely associated with the distribution of critical resources, such as food. Tree squirrels are ideal models to study these relationships, since both key demographic parameters (reproduction, survival and dispersal) and spatio-temporal variation in food supplies (measured as seed-crop size) can be reliably estimated. In this paper we test the following two predictions underlying the association between annual food abundance and demography in six alpine red squirrel populations, both with and without time-lag effects: 1) between-season and between-year fluctuations in survival rate, population density and increase parallel those in food availability; and 2) individuals follow a resource tracking strategy and increase in density mainly the year after a rich seed-crop. Red squirrels occurred at higher densities in Scots pine forest, characterised by stable seed-crops, than in Norway spruce with more abundant but more variable seed crops. Fluctuations in numbers were positively correlated with food availability, measured as annual conifer seed-crop sizes. Overall, adult survival rates were higher than those of subadults, and survival substantially fluctuated between seasons and years. Autumn densities and rates of population increase (summer-autumn) were strongly correlated with the same year's autumn seed-crop, while correlations with the previous year's seed-crop (time-lag models) were either weak (population density) or absent (population increase). Results of this paper show that fluctuations in red squirrel densities in habitats with strong temporal variation in seed production are more closely linked with food availability than in more stable habitats. In addition, in the Alpine conifer forests squirrel population sizes, in autumn, increase in synchrony with food resources, eliminating the population lag normally present when resources are produced in pulses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号