共查询到20条相似文献,搜索用时 15 毫秒
1.
Intraspecific variation in symbiont genomes: bottlenecks and the aphid-buchnera association 总被引:5,自引:0,他引:5
Buchnera are maternally transmitted bacterial endosymbionts that synthesize amino acids that are limiting in the diet of their aphid hosts. Previous studies demonstrated accelerated sequence evolution in Buchnera compared to free-living bacteria, especially for nonsynonymous substitutions. Two mechanisms may explain this acceleration: relaxed purifying selection and increased fixation of slightly deleterious alleles under drift. Here, we test the divergent predictions of these hypotheses for intraspecific polymorphism using Buchnera associated with natural populations of the ragweed aphid, Uroleucon ambrosiae. Contrary to expectations under relaxed selection, U. ambrosiae from across the United States yielded strikingly low sequence diversity at three Buchnera loci (dnaN, trpBC, trpEG), revealing polymorphism three orders of magnitude lower than in enteric bacteria. An excess of nonsynonymous polymorphism and of rare alleles was also observed. Local sampling of additional dnaN sequences revealed similar patterns of polymorphism and no evidence of food plant-associated genetic structure. Aphid mitochondrial sequences further suggested that host bottlenecks and large-scale dispersal may contribute to genetic homogenization of aphids and symbionts. Together, our results support reduced N(e) as a primary cause of accelerated sequence evolution in Buchnera. However, our study cannot rule out the possibility that mechanisms other than bottlenecks also contribute to reduced N(e) at aphid and endosymbiont loci. 相似文献
2.
3.
Sulfur-oxidizing chemoautotrophic (thioautotrophic) bacteria are now known to occur as endosymbionts in phylogenetically diverse
bivalve hosts found in a wide variety of marine environments. The evolutionary origins of these symbioses, however, have remained
obscure. Comparative 16S rRNA sequence analysis was used to investigate whether thioautotrophic endosymbionts are monophyletic
or polyphyletic in origin and to assess whether phylogenetic relationships inferred among these symbionts reflect those inferred
among their hosts. 16S rRNA gene sequences determined for endosymbionts from nine newly examined bivalve species from three
families (Vesicomyidae, Lucinidae, and Solemyidae) were compared with previously published 16S rRNA sequences of thioautotrophic
symbionts and free-living bacteria. Distance and parsimony methods were used to infer phylogenetic relationships among these
bacteria. All newly examined symbionts fall within the gamma subdivision of the Proteobacteria, in clusters containing previously
examined symbiotic thioautotrophs. The closest free-living relatives of these symbionts are bacteria of the genus Thiomicrospira. Symbionts of the bivalve superfamily Lucinacea and the family Vesicomyidae each form distinct monophyletic lineages which
are strongly supported by bootstrap analysis, demonstrating that host phylogenies inferred from morphological and fossil evidence
are congruent with phylogenies inferred for their respective symbionts by molecular sequence analysis. The observed congruence
between host and symbiont phylogenies indicates shared evolutionary history of hosts and symbiont lineages and suggests an
ancient origin for these symbioses.
Correspondence to: D.L. Distel 相似文献
4.
Holly L. Nichols Elliott B. Goldstein Omid Saleh Ziabari Benjamin J. Parker 《PLoS pathogens》2021,17(4)
Host genetic variation plays an important role in the structure and function of heritable microbial communities. Recent studies have shown that insects use immune mechanisms to regulate heritable symbionts. Here we test the hypothesis that variation in symbiont density among hosts is linked to intraspecific differences in the immune response to harboring symbionts. We show that pea aphids (Acyrthosiphon pisum) harboring the bacterial endosymbiont Regiella insecticola (but not all other species of symbionts) downregulate expression of key immune genes. We then functionally link immune expression with symbiont density using RNAi. The pea aphid species complex is comprised of multiple reproductively-isolated host plant-adapted populations. These ‘biotypes’ have distinct patterns of symbiont infections: for example, aphids from the Trifolium biotype are strongly associated with Regiella. Using RNAseq, we compare patterns of gene expression in response to Regiella in aphid genotypes from multiple biotypes, and we show that Trifolium aphids experience no downregulation of immune gene expression while hosting Regiella and harbor symbionts at lower densities. Using F1 hybrids between two biotypes, we find that symbiont density and immune gene expression are both intermediate in hybrids. We propose that in this system, Regiella symbionts are suppressing aphid immune mechanisms to increase their density, but that some hosts have adapted to prevent immune suppression in order to control symbiont numbers. This work therefore suggests that antagonistic coevolution can play a role in host-microbe interactions even when symbionts are transmitted vertically and provide a clear benefit to their hosts. The specific immune mechanisms that we find are downregulated in the presence of Regiella have been previously shown to combat pathogens in aphids, and thus this work also highlights the immune system’s complex dual role in interacting with both beneficial and harmful microbes. 相似文献
5.
We investigate the generation and decay of interspecific disequilibrium (ID) between organelle and symbiont genomes as a function of the rate of horizontal transmission. We show that rare horizontal transmission greatly diminishes the covariance between organelle and symbiont genomes. This result has two important implications. First, a low level of ID does not indicate low levels of vertical transmission. Second, even with low levels of horizontal transmission, the additive effects of host and symbiont loci will determine the response to selection, while epistatic effects will not be selectable. 相似文献
6.
7.
Insect-borne diseases exact a high public health burden and have a devastating impact on livestock and agriculture. To date, control has proved to be exceedingly difficult. One such disease that has plagued sub-Saharan Africa is caused by the protozoan African trypanosomes (Trypanosoma species) and transmitted by tsetse flies (Diptera: Glossinidae). This presentation describes the biology of the tsetse fly and its interactions with trypanosomes as well as its symbionts. Tsetse can harbor up to three distinct microbial symbionts, including two enterics (Wigglesworthia glossinidia and Sodalis glossinidius) as well as facultative Wolbachia infections, which influence host physiology. Recent investigations into the genome of the obligate symbiont Wigglesworthia have revealed characteristics indicative of its long co-evolutionary history with the tsetse host species. Comparative analysis of the commensal-like Sodalis with free-living enterics provides examples of adaptations to the host environment (physiology and ecology), reflecting genomic tailoring events during the process of transitioning into a symbiotic lifestyle. From an applied perspective, the extensive knowledge accumulated on the genomic and developmental biology of the symbionts coupled with our ability to both express foreign genes in these microbes in vitro and repopulate tsetse midguts with these engineered microbes now provides a means to interfere with the host physiological traits which contribute to vector competence promising a novel tool for disease management. 相似文献
8.
IMRAN A. RAHMAN MARK D. SUTTON MARK A. BELL 《Lethaia: An International Journal of Palaeontology and Stratigraphy》2009,42(4):424-437
Fossil carpoids possess a unique anatomy that is difficult to interpret; as a result, there are a number of competing phylogenetic hypotheses for carpoid taxa. Stratigraphic congruence indices provide a quantitative means of evaluating alternative cladograms where character coding is contentious; trees that show a statistically significant fit between stratigraphy and phylogeny are better supported by the fossil record. We here test the agreement between stratigraphic and cladistic data for 27 carpoid cladograms (24 have previously been published, three are novel). The results demonstrate that in analyses of subsets of carpoid taxa, the stratigraphic congruence of trees is not strongly affected by the interpretative model followed. However, when studying the relationships of carpoids with other deuterostomes, assuming that carpoids should be interpreted by reference to chordates/hemichordates (rather than echinoderms) leads to a poorer fit with the known stratigraphic ranges of taxa. Thus, the disputed calcichordate hypothesis (carpoids interpreted as stem and crown-group chordates and stem-group hemichordates) is much less congruent with stratigraphy than alternative models interpreting carpoids as stem or crown-group echinoderms. 相似文献
9.
Background
The Neogastropoda is a highly diversified group of predatory marine snails (Gastropoda: Caenogastropoda). Traditionally, its monophyly has been widely accepted based on several morphological synapomorphies mostly related with the digestive system. However, recent molecular phylogenetic studies challenged the monophyly of Neogastropoda due to the inclusion of representatives of other caenogastropod lineages (e.g. Littorinimorpha) within the group. Neogastropoda has been classified into up to six superfamilies including Buccinoidea, Muricoidea, Olivoidea, Pseudolivoidea, Conoidea, and Cancellarioidea. Phylogenetic relationships among neogastropod superfamilies remain unresolved. 相似文献10.
Arild R. Arifin Ryan D. Phillips Celeste C. Linde 《Journal of evolutionary biology》2023,36(1):221-237
The study of congruency between phylogenies of interacting species can provide a powerful approach for understanding the evolutionary history of symbiotic associations. Orchid mycorrhizal fungi can survive independently of orchids making cospeciation unlikely, leading us to predict that any congruence would arise from host-switches to closely related fungal species. The Australasian orchid subtribe Drakaeinae is an iconic group of sexually deceptive orchids that consists of approximately 66 species. In this study, we investigated the evolutionary relationships between representatives of all six Drakaeinae orchid genera (39 species) and their mycorrhizal fungi. We used an exome capture dataset to generate the first well-resolved phylogeny of the Drakaeinae genera. A total of 10 closely related Tulasnella Operational Taxonomic Units (OTUs) and previously described species were associated with the Drakaeinae orchids. Three of them were shared among orchid genera, with each genus associating with 1–6 Tulasnella lineages. Cophylogenetic analyses show Drakaeinae orchids and their Tulasnella associates exhibit significant congruence (p < 0.001) in the topology of their phylogenetic trees. An event-based method also revealed significant congruence in Drakaeinae–Tulasnella relationships, with duplications (35), losses (25), and failure to diverge (9) the most frequent events, with minimal evidence for cospeciation (1) and host-switches (2). The high number of duplications suggests that the orchids speciate independently from the fungi, and the fungal species association of the ancestral orchid species is typically maintained in the daughter species. For the Drakaeinae–Tulasnella interaction, a pattern of phylogenetic niche conservatism rather than coevolution likely explains the observed phylogenetic congruency in orchid and fungal phylogenies. Given that many orchid genera are characterized by sharing of fungal species between closely related orchid species, we predict that these findings may apply to a wide range of orchid lineages. 相似文献
11.
The identification of orthologous genes shared by multiple genomes plays an important role in evolutionary studies and gene functional analyses. Based on a recently developed accurate tool, called MSOAR 2.0, for ortholog assignment between a pair of closely related genomes based on genome rearrangement, we present a new system MultiMSOAR 2.0, to identify ortholog groups among multiple genomes in this paper. In the system, we construct gene families for all the genomes using sequence similarity search and clustering, run MSOAR 2.0 for all pairs of genomes to obtain the pairwise orthology relationship, and partition each gene family into a set of disjoint sets of orthologous genes (called super ortholog groups or SOGs) such that each SOG contains at most one gene from each genome. For each such SOG, we label the leaves of the species tree using 1 or 0 to indicate if the SOG contains a gene from the corresponding species or not. The resulting tree is called a tree of ortholog groups (or TOGs). We then label the internal nodes of each TOG based on the parsimony principle and some biological constraints. Ortholog groups are finally identified from each fully labeled TOG. In comparison with a popular tool MultiParanoid on simulated data, MultiMSOAR 2.0 shows significantly higher prediction accuracy. It also outperforms MultiParanoid, the Roundup multi-ortholog repository and the Ensembl ortholog database in real data experiments using gene symbols as a validation tool. In addition to ortholog group identification, MultiMSOAR 2.0 also provides information about gene births, duplications and losses in evolution, which may be of independent biological interest. Our experiments on simulated data demonstrate that MultiMSOAR 2.0 is able to infer these evolutionary events much more accurately than a well-known software tool Notung. The software MultiMSOAR 2.0 is available to the public for free. 相似文献
12.
Recent evidence suggests that plant performance can be influenced by the phylogenetic diversity of neighboring plants. However, no study to date has examined the effect of such phylogenetic density dependence on the transition from seed to seedling. Using 6 years of data on seedling recruitment and seed rain of 13 species from 130 stations (one 0.5 m2 seed trap and three adjacent 1 m2 seedling plots) in a subtropical evergreen forest, we asked: (1) Does negative density dependence act across seed to seedling stages? (2) Is there evidence for phylogenetic density dependence during the seed to seedling transition? (3) Does the strength of density dependence vary among years? Generalized linear mixed-effects models were used to model seed to seedling transition as a function of conspecific seed and seedling densities, heterospecific seed and seedling densities, and mean phylogenetic distance of heterospecific seeds and seedling. Conspecific seed density had a significant negative effect on seedling transition rates for 12 of 13 focal species. In contrast, conspecific seedling density had a positive effect for 7 species, suggesting species-specific habitat preferences. Few species were significantly affected by the density or phylogenetic relatedness of heterospecific seeds and seedlings. Only conspecific seed density effects varied among years for most focal species. Overall, our results reveal that conspecific seed and seedling densities play a more important role than the density or relatedness of heterospecific seeds and seedlings during the seed to seedling stage, suggesting that species-specific seed predators, along with habitat preferences, may contribute to diversity maintenance in this forest. 相似文献
13.
【目的】明确球孢白僵菌种内线粒体基因组的分化程度。【方法】从GenBank下载已知的球孢白僵菌6个菌株线粒体基因组序列,详细分析基因组的组成结构,比较外显子区、内含子区和基因间区的碱基变异情况,分析菌株间的系统发育关系。【结果】球孢白僵菌不同菌株的线粒体基因组大小为28.8–32.3 kb,都有14个常见的核心蛋白编码基因、2个rRNA基因和25个tRNA基因,具有很强的共线性关系。但是,不同菌株含有的线粒体内含子数目存在差异(2–5个/菌株),在cox1、cox2和nad1基因中表现出内含子插入/缺失多态性,这是导致线粒体基因组大小变化的主要因素。对外显子、内含子和基因间区的碱基变异情况进行分析,发现内含子和基因间区相对变异较大,而外显子区相对变异较小。系统发育分析发现,这些球孢白僵菌菌株以很高的支持度聚在一起,具有相同内含子分布规律的菌株也具有较近的聚类关系。【结论】本研究首次报道球孢白僵菌因内含子数目不同、插入缺失突变和单核苷酸变异等在线粒体基因组上表现出较大程度的遗传分化,为认识真菌种内线粒体基因组分化提供了新的证据。 相似文献
14.
To date, the taxonomic status and phylogenetic affinities within Hyphessobrycon, even among other genera in Characidae, remain unclear. Here, we determined five new mitochondrial genomes (mitogenomes) of Hyphessobrycon species (H. elachys, H. flammeus, H. pulchripinnis, H. roseus, and H. sweglesi). The mitogenomes were all classical circular structures, with lengths ranging from 16,008 to 17,224 bp. The type of constitutive genes and direction of the coding strand that appeared in the mitogenomes were identical to those of other species in Characidae. The highest value of the Ka/Ks ratio within 13 protein‐coding genes (PCGs) was found in ND2 with 0.83, suggesting that they were subject to purifying selection in the Hyphessobrycon genus. Comparison of the control region sequences among seven Hyphessobrycon fish revealed that repeat units differ in length and copy number across different species, which led to sharp differences in mitogenome sizes. Phylogenetic trees based on the 13 PCGs did not support taxonomic relationships, as the Hyphessobrycon fish mixed with those from other genera. These data were combined to explore higher level relationships within Characidae and could aid in the understanding of the evolution of this group. 相似文献
15.
Georgette Sabeur Gabriel Macaya Farida Kadi Giorgio Bernardi 《Journal of molecular evolution》1993,37(2):93-108
The compositional distributions of high molecular weight DNA fragments from 20 species belonging to 9 out of the 17 eutherian orders were investigated by analytical CsCl density gradient centrifugation and by preparative fractionation in Cs2SO4/BAMD density gradients followed by analysis of the fractions in CsCl. These compositional distributions reflect those of the isochores making up the corresponding genomes. A “general distribution” was found in species belonging to eight mammalian orders. A “myomorph distribution” was found in Myomorpha, but not in the other rodent infraorders Sciuromorpha and Histricomorpha, which share the general distribution. Two other distributions were found in a megachiropteran (but not in microchiropteran, which, again, shares the general distribution) and in pangolin (a species from the only genus of the order Pholidota), respectively. The main difference between the general distribution and all other distributions is that the former contains sizable amounts (6–10%) of GC-rich isochores (detected as DNA fragments equal to, or higher than, 1.710 g/cm3 in modal buoyant density), which are scarce, or absent, in the other distributions. This difference is remarkable because gene concentrations in mammalian genomes are paralleled by GC levels, the highest gene concentrations being present in the GC-richest isochores. The compositional distributions of mammalian genomes reported here shed light on mammalian phylogeny. Indeed, all orders investigated, with the exception of Pholidota, seem to share a common ancestor. The compositional patterns of the megachiropteran and of Myomorpha may be derived from the general pattern or have independent origins. 相似文献
16.
In this study, we analyse the evolutionary dynamics and phylogenetic implications of gene order rearrangements in five newly sequenced mitochondrial (mt) genomes and four published mt genomes of isopod crustaceans. The sequence coverage is nearly complete for four of the five newly sequenced species, with only the control region and some tRNA genes missing, while in Janira maculosa only two thirds of the genome could be determined. Mitochondrial gene order in isopods seems to be more plastic than that in other crustacean lineages, making all nine known mt gene orders different. Especially the asellote Janira is characterized by many autapomorphies. The following inferred ancestral isopod mt gene order exists slightly modified in modern isopods: nad1, tnrL1, rrnS, control region, trnS1, cob, trnT, nad5, trnF. We consider the inferred gene translocation events leading to gene rearrangements as valuable characters in phylogenetic analyses. In this first study covering major isopod lineages, potential apomorphies were identified, e.g., a shared relative position of trnR in Valvifera. We also report one of the first findings of homoplasy in mitochondrial gene order, namely a shared relative position of trnV in unrelated isopod lineages. In addition to increased taxon sampling secondary structure, modification in tRNAs and GC-skew inversion may be potentially fruitful subjects for future mt genome studies in a phylogenetic context. 相似文献
17.
Lateral gene transfer (LGT) is an important mechanism of natural variation among prokaryotes. Over the full course of evolution, most or all of the genes resident in a given prokaryotic genome have been affected by LGT, yet the frequency of LGT can vary greatly across genes and across prokaryotic groups. The proteobacteria are among the most diverse of prokaryotic taxa. The prevalence of LGT in their genome evolution calls for the application of network-based methods instead of tree-based methods to investigate the relationships among these species. Here, we report networks that capture both vertical and horizontal components of evolutionary history among 1,207,272 proteins distributed across 329 sequenced proteobacterial genomes. The network of shared proteins reveals modularity structure that does not correspond to current classification schemes. On the basis of shared protein-coding genes, the five classes of proteobacteria fall into two main modules, one including the alpha-, delta-, and epsilonproteobacteria and the other including beta- and gammaproteobacteria. The first module is stable over different protein identity thresholds. The second shows more plasticity with regard to the sequence conservation of proteins sampled, with the gammaproteobacteria showing the most chameleon-like evolutionary characteristics within the present sample. Using a minimal lateral network approach, we compared LGT rates at different phylogenetic depths. In general, gene evolution by LGT within proteobacteria is very common. At least one LGT event was inferred to have occurred in at least 75% of the protein families. The average LGT rate at the species and class depth is about one LGT event per protein family, the rate doubling at the phylum level to an average of two LGT events per protein family. Hence, our results indicate that the rate of gene acquisition per protein family is similar at the level of species (by recombination) and at the level of classes (by LGT). The frequency of LGT per genome strongly depends on the species lifestyle, with endosymbionts showing far lower LGT frequencies than free-living species. Moreover, the nature of the transferred genes suggests that gene transfer in proteobacteria is frequently mediated by conjugation. 相似文献
18.
Both the chloroplast and mitochondrial genomes are used extensively in studies of plant population genetics and systematics. In the majority of angiosperms, the chloroplast DNA (cpDNA) and mitochondrial DNA (mtDNA) are each primarily transmitted maternally, but rare biparental transmission is possible. The extent to which the cpDNA and mtDNA are in linkage disequilibrium is argued to be dependent on the fidelity of co-transmission and the population structure. This study reports complete linkage disequilibrium between cpDNA and mtDNA haplotypes in 86 individuals from 17 populations of Silene vulgaris, a gynodioecious plant species. Phylogenetic analysis of cpDNA and mtDNA haplotypes within 14 individuals supports a hypothesis that the evolutionary histories of the chloroplasts and mitochondria are congruent within S. vulgaris, as might be expected if this association persists for long periods. This provides the first documentation of the evolutionary consequences of long-term associations between chloroplast and mitochondrial genomes within a species. Factors that contribute to the phylogenetic and linkage associations, as well as the potential for intergenomic hitchhiking resulting from selection on genes in one organellar genome are discussed. 相似文献
19.
20.
Intraspecific variability of the Pleistocene speciesSorex runtonensis Hinton, 1911 from different Polish and Russian (Caucasus Mts.) localities and its relationships to Recent red-toothed shrews
of similar body size and mandibular morphology,S. caecutiens Laxmann, 1788 andS. tundrensis Merriam, 1990, are explained on the grounds of multivariate statistics. The remains ofS. runtonensis from different localities form a single group and differ fromS. caecutiens. They resembleS. tundrensis by the first canonical root related to a mandibular size and proportions. This may indicate thatS. runtonensis andS. tundrensis are closely related but separated components of the species complextundrensis. 相似文献