首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Arabidopsis thaliana peptide deformylase PDF1B was expressed in tobacco chloroplasts using spectinomycin as the selective agent. The foreign protein accumulated in chloroplasts (6% of the total soluble protein) and was enzymatically active. Transplastomic plants were evaluated for resistance to the peptide deformylase inhibitor actinonin. In vitro seed germination in the presence of actinonin and in planta application of the inhibitor demonstrated the resistance of the transformed plants. In addition, transgenic leaf explants were able to develop shoots via organogenesis in the presence of actinonin. However, when the combination of the PDF1B gene and actinonin was used as the primary selective marker system for chloroplast transformation of tobacco, all developed shoots were escapes. Therefore, under the experimental conditions tested, the use of this system for plastid transformation would be limited to function as a secondary selective marker.  相似文献   

2.
Transient and stable expression of foreign genes has been achieved in sweet potato using the particle bombardment system of gene delivery. Callus and root isolates of two genotypes (Jewel and TIS-70357) with positive signs of transformation have been recovered. Tungsten microcarriers coated with plasmid DNA (pBI 221 containing the gusA gene) were accelerated at high velocity using a biolistic device into sweet potato target tissues. Histochemical examination of bombarded leaf and petiole explants revealed that most had cells expressing the gusA gene. When explants were cultured, calli and roots developed in most bombarded tissues. Similar results but with a lower frequency of transformation were observed when the plasmid pBI 121 (with gusA and antibiotic resistance npt II genes) was employed and bombarded explants cultured on an antibiotic selection medium. Subcultured roots and calli were positive for gusA expression when tested even after one year of in vitro culture, and thus the expression of the foreign gene is fairly stable. The particle bombardment approach of gene delivery appears to have a potential for generating transgenic sweet potatoes with useful agronomic traits.Abbreviations BA 6-benzylaminopurine - CaMV cauliflower mosaic virus - 2,4-D 2, 4-dichlorophenoxyacetic acid - GUS ß glucuronidase - NAA naphthaleneaceticacid - nos nopaline synthase gene - NPT II neomycin phosphotransferase II - MS Murashige and Skoog (1962) - MS-CP MS cell proliferation medium  相似文献   

3.
We report an efficient whole plant transformation system for Hyoscyamus muticus, an important medicinal plant of the Solanaceous family. We developed a system using a plasmid carrying the nptII and gusA genes, which was delivered into leaf explants by particle bombardment. Ten percent of bombarded leaf explants formed kanamycin-resistant callus, from which putative transgenic plants were recovered. The nptII gene conferring kanamycin resistance was found to be incorporated into the genome of all transgenic plants screened. Over 50% of the kanamycin resistant plants showed strong expression of the non-selected gusA gene. The majority of transgenic plants reached maturity, could be self pollinated, and produced fertile seed. A simple and efficient whole plant transformation system for this medicinal plant is an important step in furthering our understanding of tropane alkaloid production in plants.  相似文献   

4.
Abstract

Transgenic alfalfa (Medicago sativa L.) plants overexpressing the Arabidopsis ATP sulfurylase gene were generated using Agrobacterium-mediated genetic transformation to enhance their heavy metal accumulation efficiency. The ATP sulfurylase gene was cloned from Arabidopsis, following exposure to vanadium (V) and lead (Pb), and transferred into an Agrobacterium tumefaciens binary vector. This was co-cultivated with leaf explants of the alfalfa genotype Regen SY. Co-cultivated leaf explants were cultured on callus and somatic embryo induction medium, followed by regeneration medium for regenerating complete transgenic plants. The transgenic nature of the plants was confirmed using PCR and southern hybridization. The expression of Arabidopsis ATP sulfurylase gene in the transgenic plants was evaluated through RT-PCR. The selected transgenic lines showed increased tolerance to a mixture of five heavy metals and also demonstrated enhanced metal uptake ability under controlled conditions. The transgenic lines were fertile and did not exhibit any apparent morphological abnormality. The results of this study indicated an effective approach to improve the heavy metal accumulation ability of alfalfa plants which can then be used for the remediation of contaminated soil in arid regions.  相似文献   

5.
Sesbania drummondii (Rydb.) Cory is a source for phytopharmaceuticals. It also hyperaccumulates several toxic heavy metals. Development of an efficient gene transfer method is an absolute requirement for the genetic improvement of this plant with more desirable traits due to limitations in conventional breeding methods. A simple protocol was developed for Agrobacterium-mediated stable genetic transformation of Sesbania. Agrobacterium tumefaciens strain EHA 101 containing the vector pCAMBIA 1305.1 having hptII and GUS plus genes was used for the gene transfer experiments. Evaluation of various parameters was carried out to assess the transformation frequency by GUS expression analysis. High transformation frequency was achieved by using 7-day-old precultured cotyledonary node (CN) explants. Further, the presence of acetosyringone (150 μM), infection of explants for 30–45 min and 3 days of cocultivation proved to be critical factors for greatly improving the transformation efficiency. Stable transformation of S. drummondii was achieved, and putative transgenic shoots were obtained on medium supplemented with hygromycin (25 mg l−1). GUS histochemical analysis of the putative transgenic tissues further confirmed the transformation event. Genomic Southern blot analysis was performed to verify the presence of transgenes and their stable integration. A transformation frequency of 4% was achieved for CN explants using this protocol.  相似文献   

6.
As a major contributor to the flower market, Gypsophila paniculata is an important target for the breeding of new varieties. However, gypsophila breeding is strongly hampered by the sterility of this species’ genotypes and the lack of a genetic-transformation procedure for this genus. Here we describe the establishment of a transformation procedure for gypsophila (Gypsophila paniculata L.) based on Agrobacterium inoculation of highly regenerative stem segments. The transformation procedure employs stem explants derived from GA3-pretreated mother plants and a two-step selection scheme. The GA3 treatment was crucial for obtaining high gene-transfer frequencies (75–90% GUS-expressing explants out of total inoculated explants), as shown using three different gypsophila varieties. An overall transformation efficiency of five GUS-expressing shoots per 100 stem explants was demonstrated for cv. Arbel. The applicability of the transformation system to gypsophila was further reinforced by the generation of transgenic plants expressing Agrobacterium rhizogenes rolC driven by a CaMV 35S promoter. Transgenic gypsophila plantlets exhibited extensive rooting and branching, traits that could be beneficial to the ornamental industry.  相似文献   

7.
A method for genetic transformation of Saintpaulia ionantha by co-cultivation of in vitro-grown leaves and petioles with Agrobacterium tumefaciens is described. Two bacterial strains, EHA105 and A281 both harbouring the binary plasmid pKIWI105 carrying the genes uidA and nptII, were used in the experiments. Regenerants were not obtained using the disarmed strain EHA105. The oncogenic strain A281 resulted in efficient transient and stable expression of the transferred traits for petiole explants only. After transformation and regeneration, the integration of the transgenes in the plant genome was confirmed by PCR analysis and Southern hybridization.  相似文献   

8.
We have developed a high-throughput Agrobacterium-mediated transformation model system using both nptII and the 5-enolpyruvylshikimate-3-phosphate synthase gene from Agrobacterium tumefaciens strain CP4 (cp4) based selections in MicroTom, a miniature rapid-cycling cherry tomato variety. With the NPTII selection system, transformation frequency calculated as independent transgenic events per inoculated explant ranged from 24 to 80% with an average of 56%, in industrial production scale transformation experiments. For CP4, with glyphosate selection, the average transformation frequency was 57%. Stable transformation frequency was positively correlated with transient expression (R=0.85), and variable with the genes of interest. DNA integration and germline transformation were confirmed by biological assay, Southern Blot analysis, and R1 phenotype segregation. Transgene expression was observed in leaf, root, stem, flower, and fruit tissues of the transgenic plants. Ninety-five percent of transgenic events coexpressed two introduced genes based on β-glucuronidase (GUS) and neonmycin phosphotransferase II (NPTII) expression. Seventy-five percent of transgenic events contained one to two copies of the introduced uidA (GUS) gene based on Southern analysis. Transgenic plants from the cotyledon explants to the transgenic plants transferred to soil were produced within about 2–3 months depending on the genes of interest. The utility of this MicroTom model transformation system for functional genomic studies, such as identification of genes related to important agricultural traits and gene function, is discussed.  相似文献   

9.
A binary vector devoid of a plant selection-marker gene (designated as pSSA-F) was constructed to overcome bio-safety concerns about genetically modified plants. This vector carried chloroplast-targeted superoxide dismutase (SOD) and ascorbate peroxidase (APX) genes under the control of an oxidative stress-inducible(SWPA2) promoter, and was utilized to transform potato (Solanum tuberosum L.). Integration of these foreign genes into transgenic plants was primarily performed via PCR with genomic DNA. Twelve marker-free transgenic lines were obtained by inoculating stem explants. The maximum transformation efficiency was 6.25% and averaged 2.2%. Successful integration of the SOD and APX genes rendered transgenic plants tolerant to methyl viologen-mediated oxidative stress at the leaf-disc and whole-plant levels. Our findings suggest that this technique for developing selection marker-free transgenic plants is feasible and can be employed with other crop species.  相似文献   

10.
A new Agrobacterium-mediated transformation system was developed for finger millet using shoot apex explants. The Agrobacterium strain LBA4404 harboring binary vector pCAMBIA1301, which contained hygromycin phosphotransferase (hptII) as selectable marker gene and β-glucuronidase (GUS) as reporter gene, was used for optimization of transformation conditions. Two finger millet genotypes, GPU 45 and CO 14, were used in this study. The optimal conditions for the Agrobacterium-mediated transformation of finger millet were found to be the co-cultivation of explants obtained on the 16th day after callus induction (DACI), exposure of explants for 30 min to agrobacterial inoculum and 3 days of co-cultivation on filter paper placed on medium supplemented with 100 μM acetosyringone (AS). Addition of 100 μM l-cysteine in the selection medium enhanced the frequency of transformation and transgenic plant recovery. Both finger millet genotypes were transformed by Agrobacterium. A frequency of 19% transient expression with 3.8% stable transformation was achieved in genotype GPU 45 using optimal conditions. Five stably transformed plants were fully characterized by Southern blot analysis. A segregation analysis was also performed in four R1 progenies, which showed normal Mendelian pattern of transgene segregation. The inheritance of transgenes in R1 progenies was also confirmed by Southern blot analysis. This is the first report on Agrobacterium-mediated transformation of finger millet. This study underpins the introduction of numerous agronomically important genes into the genome of finger millet in the future.  相似文献   

11.
An efficient system for Agrobacterium tumefaciens-mediated transformation of Solanum gilo was established. The marker genes for kanamycin resistance and ß-glucuronidase expression were introduced. A comparison between cotyledon and hypocotyl explants showed that while regeneration was better from hypocotyl explants, cotyledon explants gave better transformation efficiency (46% vs. 32%). Four levels of kanamycin selection (100, 150, 200 and 250 mg/l) were tested for effect on transformation efficiency with each type of explant. Lower levels of kanamycin worked better using cotyledon explants, while higher levels of kanamycin worked better for hypocotyl explants. All nine t0 plants tested for expression of the kan r gene were positive. The progeny of three of these plants showed a pattern of classical Mendelian inheritance (3 to 1) for both the kan r and the ß-glucuronidase genes.Abbreviations MS Murashige and Skoog (1962) medium - 2,4-D 2,4-Dichlorophenoxyacetic acid - NPTII neomycin phosphotransferase - GUS ß-glucuronidase  相似文献   

12.
Crane C  Wright E  Dixon RA  Wang ZY 《Planta》2006,223(6):1344-1354
Medicago truncatula, barrel medic, is a forage crop that has been developed into a model legume. The development of new transformation methods is important for functional genomic studies in this species. Based on Agrobacterium tumefaciens-mediated transformation of root explants, we developed an effective system for producing M. truncatula (genotype R108) transgenic plants. Among the four A. tumefaciens strains (AGL1, C58C1, EHA105 and LBA4404) tested, EHA105 and AGL1 were most effective in regenerating transgenics. Callus induction frequency from root explants was 69.8%, and plantlet/shoot regeneration frequency was 41.3% when EHA105 was used. Transgenic nature of the regenerated plants was confirmed by PCR and Southern hybridization analyses. Progeny analysis revealed stable Mendelian meiotic transmission of transgenes. Because M. truncatula is particularly useful for the study of root endosymbiotic associations, we further developed a plant regeneration system from A. rhizogenes-transformed hairy roots of M. truncatula. Fertile true transgenic plants were regenerated from the hairy roots, thus allowing the assessment of gene functions at the whole plant level. Segregation analysis revealed that the hairy root genes could be segregated out in the progenies. By coupling A. rhizogenes-mediated hairy root transformation and the regeneration system reported here, once potential genes of interest are identified, the transformed hairy roots carrying such genes could be directly regenerated into plants for more detailed characterization of the genes.  相似文献   

13.
A genetic transformation method via secondary somatic embryogenesis was developed for alfalfa (Medicago sativa L.). Mature somatic embryos of alfalfa were infected by Agrobacterium strain GV3101 containing the binary vector pCAMBIA2301. pCAMBIA2301 harbors the uidA Gus reporter gene and npt II acts as the selectable marker gene. Infected primary embryos were placed on SH2K medium containing plant growth regulators to induce cell dedifferentiation and embryogenesis under 75 mg/L kanamycin selection. The induced calli were transferred to plant medium free of plant growth regulators for embryo formation while maintaining selection. Somatic embryos germinated normally upon transfer to a germination medium. Plants were recovered and grown in a tissue culture room before transfer to a greenhouse. Histochemical analysis showed high levels of GUS activity in secondary somatic embryos and in different organs of plants recovered from secondary somatic embryos. The presence and stable integration of transgenes in recovered plants were confirmed by polymerase chain reaction using transgene-specific primers and Southern blot hybridization using the npt II gene probe. The average transformation efficiency achieved via secondary somatic embryogenesis was 15.2%. The selection for transformation throughout the cell dedifferentiation and embryogenic callus induction phases was very effective, and no regenerated plants escaped the selection procedure. Alfalfa transformation is usually achieved through somatic embryogenesis using different organs of developed plants. Use of somatic embryos as explants for transformation can avoid the plant development phase, providing a faster procedure for introduction of new traits and facilitates further engineering of previously transformed lines.  相似文献   

14.
苜蓿基因型是限制遗传转化的关键因素之一。本实验通过对7种苜蓿胚性愈伤组织诱导,筛选出一份具有高频再生潜力的基因型公农-1号,并以该基因型为转化平台探索和建立了一套高效的苜蓿遗传转化系统。分析了影响农杆菌共培养转化苜蓿悬浮胚性愈伤的因素,优化了悬浮培养条件,建立的超声波辅助农杆菌介导苜蓿胚性愈伤的遗传转化系统为:以下胚轴诱导的愈伤组织经悬浮培养得到的胚性愈伤为转化材料,乙酰丁香酮为100 μmol·L-1、超声波处理时间8 s、卡那霉素筛选浓度30 mg·L-1、共培养4 d,接种于选择培养基上进行筛选和再生。最终,获得了大量的转基因植株,分子检测证实目的基因-角碱蓬液泡膜型Na+/H+逆向转运蛋白基因已经整合到苜蓿基因组中。  相似文献   

15.
Seedling explants of three tomato (Lycopersicon esculentum) and four bell pepper (Capsicum annuum) cultivars consisting of the radicle, the hypocotyl and one cotyledon were obtained after removing the primary and axillary meristems. After 14 days of incubation on solid Murashige and Skoog (MS) medium without growth regulators, explants of both species regenerated multiple shoots on the cut surface (2.9–5.3 shoots per explant for tomato and 1.2–2.2 for bell pepper cultivars). After excision, the shoots were rooted on solid MS medium and acclimated to the greenhouse. This method was highly efficient in tomato and, particularly, in bell pepper, where plant regeneration is especially difficult. We used these explants to transform tomato with Agrobacterium tumefaciens containing a 35S-GUS-intron binary vector. As shown by GUS expression, 47% of the tomato explants produced transformed meristems, which differentiated into plants that exhibited a low (3%) tetraploidy ratio. Southern blots and analysis of inheritance of the foreign genes indicated that T-DNA was stably integrated into the plant genome. The use of this technique opens new prospects for plant transformation in other dicotyledoneous plants in which genetic engineering has been limited, to date, due to the difficulties in developing an efficient in vitro regeneration system.  相似文献   

16.
Ri-plasmid as a helper for introducing vector DNA into alfalfa plants   总被引:1,自引:0,他引:1  
Genetic engineering of legumes and other important dicotyledonous plants is limited because of the difficulty of regenerating plants via cell culture. Since a considerable number of crop plants can be regenerated only from root culture, the introduction of foreign genes into Agrobacterium rhizogenes-induced hairy roots may expand the list of crop plants that could be genetically engineered. Here we report genetic transformation of alfalfa (Medicago sativa L.), a valuable forage legume, using a virulent strain of Agrobacterium rhizogenes containing, in addition to its Ri-plasmid, a binary vector containing a nopaline synthase gene. Plant cells transformed by this vector can be easily identified by their ability to produce nopaline. Transformed alfalfa plants were recovered from A. rhizogenes-induced hairy roots. These transgenic plants were characterized by normal leaf morphology and stem growth but a root system that was shallow and more extensive than normal. These plants were also fertile, set seeds upon self-pollination and outcrossing. Nopaline was detected in R1 progeny. Southern blot analysis confirmed the presence of multiple copies of T-DNAs from the Riplasmid in the plant genome in addition to the vector T-DNA.  相似文献   

17.
18.
Eucalyptus globulus is one of the most economically important plantation hardwoods for paper making. However, its low transformation frequency has prevented genetic engineering of this species with useful genes. We found the hypocotyl section with a shoot apex has the highest regeneration ability among another hypocotyl sections, and have developed an efficient Agrobacterium-mediated transformation method using these materials. We then introduced a salt tolerance gene, namely a bacterial choline oxidase gene (codA) with a GUS reporter gene, into E. globulus. The highest frequency of transgenic shoot regeneration from hypocotyls with shoot apex was 7.4% and the average frequency in four experiments was 4.0%, 12-fold higher than that from hypocotyls without shoot apex. Using about 10,000 explants, over 250 regenerated buds were confirmed as transformants by GUS analysis. Southern blot analysis of 100 elongated shoots confirmed successful generation of stable transformants. Accumulation of glycinebetaine was investigated in 44 selected transgenic lines, which showed 1- to 12-fold higher glycinebetaine levels than non-transgenic controls. Rooting of 16 transgenic lines was successful using a photoautotrophic method under enrichment with 1,000 ppm CO2. The transgenic whole plantlets were transplanted into potting soil and grown normally in a growth room. They showed salt tolerance to 300 mM NaCl. The points of our system are using explants with shoot apex as materials, inhibiting the elongation of the apex on the selection medium, and regenerating transgenic buds from the side opposite to the apex. This approach may also solve transformation problems in other important plants.  相似文献   

19.
Cowpeas are nutritious grains that provide the main source of protein, highly digestible energy and vitamins to some of the world's poorest people. The demand for cowpeas is high but yields remain critically low, largely because of insect pests. Cowpea germplasm contains little or no resistance to major insect pests and a gene technology approach to adding insect protection traits is now a high priority. We have adapted features of several legume and other transformation systems and reproducibly obtained transgenic cowpeas that obey Mendelian rules in transmitting the transgene to their progeny. Critical parameters in this transformation system include the choice of cotyledonary nodes from developing or mature seeds as explants and a tissue culture medium devoid of auxins in the early stages, but including the cytokinin BAP at low levels during shoot initiation and elongation. Addition of thiol-compounds during infection and co-culture with Agrobacterium and the choice of the bar gene for selection with phosphinothricin were also important. Transgenic cowpeas that transmit the transgenes to their progeny can be recovered at a rate of one fertile plant per thousand explants. These results pave the way for the introduction of new traits into cowpea and the first genes to be trialled will include those with potential to protect against insect pests.  相似文献   

20.
This paper establishes that the isolated shoot meristem of monocotyledons can be infected and transformed using Agrobacterium. Since this explant from nearly any cereal cultivar can rapidly regenerate into a plant, using this explant effectively eliminates the genotype regeneration restrictions to cereal crop transformation allowing direct transformation of elite germplasm. Shoot apices of Oryza sativa L. Tropical Japonica, cv. Maybelle were explants used for cocultivation, and gene transfer was accomplished using Agrobacterium containing plasmids for the bar gene expression driven by the CaMV 35S promoter or by the rice actin 1 promoter. Experiments to determine the survival rates of isolated shoot apices on media containing the herbicide, glufosinate-ammonium (PPT), established that no shoot apices survived on 0.5 or 1.0 mg/l PPT. After shoot apices were cocultivated with Agrobacterium, 2.8% (overall 20 out of 721 shoot apices) survived on 0.5 mg/l PPT. Results demonstrated that the use of the actin 1 promoter-based expression vector and an extra-wounding treatment of the meristematic cells appeared to be most effective in promoting transformation. Integration, expression and transmission of the transferred foreign genes in primary, R1 and R2 generation plants were confirmed by molecular analyses and herbicide application tests. A germination test of R2 progeny from one of the transgenic plants (R1) established a phenotype segregation ratio showing a non-Mendelian inheritance pattern. Inactivation of the transferred foreign gene in R2 progeny appeared to result from transgene methylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号