首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Human umbilical cord mesenchymal stem cells (hUC‐MSCs) transplantation has been shown to promote regeneration and neuroprotection in central nervous system (CNS) injuries and neurodegenerative diseases. To develop this approach into a clinical setting it is important to be able to follow the fates of transplanted cells by noninvasive imaging. Neural precursor cells and hematopoietic stem cells can be efficiently labeled by superparamagnetic iron oxide (SPIO) nanoparticle. The purpose of our study was to prospectively evaluate the influence of SPIO on hUC‐MSCs and the feasibility of tracking for hUC‐MSCs by noninvasive imaging. In vitro studies demonstrated that magnetic resonance imaging (MRI) can efficiently detect low numbers of SPIO‐labeled hUC‐MSCs and that the intensity of the signal was proportional to the number of labeled cells. After transplantation into focal areas in adult rat spinal cord transplanted SPIO‐labeled hUC‐MSCs produced a hypointense signal using T2‐weighted MRI in rats that persisted for up to 2 weeks. This study demonstrated the feasibility of noninvasive imaging of transplanted hUC‐MSCs. J. Cell. Biochem. 108: 529–535, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

2.
Mesenchymal stem cells (MSCs) can differentiate into neural cells to treat nervous system diseases. Magnetic resonance is an ideal means for cell tracking through labeling cells with superparamagnetic iron oxide (SPIO). However, no studies have described the neural differentiation ability of SPIO-labeled MSCs, which is the foundation for cell therapy and cell tracking in vivo. Our results showed that bone marrow-derived mesenchymal stem cells (BM-MSCs) labeled in vitro with SPIO can be induced into neural-like cells without affecting the viability and labeling efficiency. The cellular uptake of SPIO was maintained after labeled BM-MSCs differentiated into neural-like cells, which were the basis for transplanted cells that can be dynamically and non-invasively tracked in vivo by MRI. Moreover, the SPIO-labeled induced neural-like cells showed neural cell morphology and expressed related markers such as NSE, MAP-2. Furthermore, whole-cell patch clamp recording demonstrated that these neural-like cells exhibited electrophysiological properties of neurons. More importantly, there was no significant difference in the cellular viability and [Ca2+]i between the induced labeled and unlabeled neural-like cells. In this study, we show for the first time that SPIO-labeled MSCs retained their differentiation capacity and could differentiate into neural-like cells with high cell viability and a good cellular state in vitro.  相似文献   

3.
Successful cell therapy will depend on the ability to monitor transplanted cells. With cell labeling, it is important to demonstrate efficient long term labeling without deleterious effects on cell phenotype and differentiation capacity. We demonstrate long term (7 weeks) retention of superparamagnetic iron oxide particles (SPIO) by mesenchymal stem cells (MSCs) in vivo, detectable by MRI. In vitro, multilineage differentiation (osteogenic, chondrogenic and adipogenic) was demonstrated by histological evaluation and molecular analysis in SPIO labeled and unlabeled cells. Gene expression levels were comaparable to unlabeled controls in adipogenic and chondrogenic conditions however not in the osteogenic condition. MSCs seeded into a scaffold for 21 days and implanted subcutaneously into nude mice for 4 weeks, showed profoundly altered phenotypes in SPIO labeled samples compared to implanted unlabeled control scaffolds, indicating chondrogenic differentiation. This study demonstrates long term MSC traceability using SPIO and MRI, uninhibited multilineage MSC differentiation following SPIO labeling, though with subtle but significant phenotypical alterations.  相似文献   

4.

Background

For clinical applications of mesenchymal stem cells (MSCs), labeling and tracking is crucial to evaluate cell distribution and homing. Magnetic resonance imaging (MRI) has been successfully established detecting MSCs labeled with superparamagnetic particles of iron oxide (SPIO). Despite initial reports that labeling of MSCs with SPIO is safe without affecting the MSC's biology, recent studies report on influences of SPIO-labeling on metabolism and function of MSCs. Exposition of cells and tissues to high magnetic fields is the functional principle of MRI. In this study we established innovative labeling protocols for human MSCs using clinically established SPIO in combination with magnetic fields and investigated on functional effects (migration assays, quantification of colony forming units, analyses of gene and protein expression and analyses on the proliferation capacity, the viability and the differentiation potential) of magnetic fields on unlabeled and labeled human MSCs. To evaluate the imaging properties, quantification of the total iron load per cell (TIL), electron microscopy, and MRI at 3.0 T were performed.

Results

Human MSCs labeled with SPIO permanently exposed to magnetic fields arranged and grew according to the magnetic flux lines. Exposure of MSCs to magnetic fields after labeling with SPIO significantly enhanced the TIL compared to SPIO labeled MSCs without exposure to magnetic fields resulting in optimized imaging properties (detection limit: 1,000 MSCs). Concerning the TIL and the imaging properties, immediate exposition to magnetic fields after labeling was superior to exposition after 24 h. On functional level, exposition to magnetic fields inhibited the ability of colony formation of labeled MSCs and led to an enhanced expression of lipoprotein lipase and peroxisome proliferator-activated receptor-γ in labeled MSCs under adipogenic differentiation, and to a reduced expression of alkaline phosphatase in unlabeled MSCs under osteogenic differentiation as detected by qRT-PCR. Moreover, microarray analyses revealed that exposition of labeled MSCs to magnetic fields led to an up regulation of CD93 mRNA and cadherin 7 mRNA and to a down regulation of Zinc finger FYVE domain mRNA. Exposition of unlabeled MSCs to magnetic fields led to an up regulation of CD93 mRNA, lipocalin 6 mRNA, sialic acid acetylesterase mRNA, and olfactory receptor mRNA and to a down regulation of ubiquilin 1 mRNA. No influence of the exposition to magnetic fields could be observed on the migration capacity, the viability, the proliferation rate and the chondrogenic differentiation capacity of labeled or unlabeled MSCs.

Conclusions

In our study an innovative labeling protocol for tracking MSCs by MRI using SPIO in combination with magnetic fields was established. Both, SPIO and the static magnetic field were identified as independent factors which affect the functional biology of human MSCs. Further in vivo investigations are needed to elucidate the molecular mechanisms of the interaction of magnetic fields with stem cell biology.  相似文献   

5.
The therapeutic potential of transplantation of embryonic stem cells (ESCs) in animal model of myocardial infarction has been consistently demonstrated. The development of superparamagnetic iron oxide (SPIO) nanoparticles labeling and cardiac magnetic resonance imaging (MRI) have been increasingly used to track the migration of transplanted cells in vivo allowing cell fate determination. However, the impact of SPIO- labeling on cell phenotype and cardiac differentiation capacity of ESCs remains unclear. In this study, we demonstrated that ESCs labeled with SPIO compared to their unlabeled counterparts had similar cardiogenic capacity, and SPIO-labeling did not affect calcium-handling property of ESC-derived cardiomyocytes. Moreover, transplantation of SPIO-labeled ESCs via direct intra-myocardial injection to infarct myocardium resulted in significant improvement in heart function. These findings demonstrated the feasibility of in vivo ESC tracking using SPIO-labeling and cardiac MRI without affecting the cardiac differentiation potential and functional properties of ESCs.  相似文献   

6.
Background aimsAssessing mesenchymal stromal cells (MSCs) after grafting is essential for understanding their migration and differentiation processes. The present study sought to evaluate via cellular magnetic resonance imaging (MRI) if transplantation route may have an effect on MSCs engrafting to fibrotic liver of rats.MethodsRat MSCs were prepared, labeled with superparamagnetic iron oxide and scanned with MRI. Labeled MSCs were transplanted via the portal vein or vena caudalis to rats with hepatic fibrosis. MRI was performed in vitro before and after transplantation. Histologic examination was performed. MRI scan and imaging parameter optimization in vitro and migration under in vivo conditions were demonstrated.ResultsStrong MRI susceptibility effects could be found on gradient echo-weighted, or T21-weighted, imaging sequences from 24 h after labeling to passage 4 of labeled MSCs in vitro. In vivo, MRI findings of the portal vein group indicated lower signal in liver on single shot fast spin echo-weighted, or T2-weighted, imaging and T21-weighted imaging sequences. The low liver MRI signal increased gradually from 0–3 h and decreased gradually from 3 h to 14 days post-transplantation. The distribution pattern of labeled MSCs in liver histologic sections was identical to that of MRI signal. It was difficult to find MSCs in tissues near the portal area on day 14 after transplantation; labeled MSCs appeared in fibrous tuberculum at the edge of the liver. No MRI signal change and a positive histologic examination were observed in the vena caudalis group.ConclusionsThe portal vein route seemed to be more beneficial than the vena caudalis on MSC migration to fibrotic liver of rats via MRI.  相似文献   

7.

Aim

The aim of this work was the development of successful cell therapy techniques for cartilage engineering. This will depend on the ability to monitor non-invasively transplanted cells, especially mesenchymal stem cells (MSCs) that are promising candidates to regenerate damaged tissues.

Methods

MSCs were labeled with superparamagnetic iron oxide particles (SPIO). We examined the effects of long-term labeling, possible toxicological consequences and the possible influence of progressive concentrations of SPIO on chondrogenic differentiation capacity.

Results

No influence of various SPIO concentrations was noted on human bone marow MSC viability or proliferation. We demonstrated long-term (4 weeks) in vitro retention of SPIO by human bone marrow MSCs seeded in collagenic sponges under TGF-β1 chondrogenic conditions, detectable by Magnetic Resonance Imaging (MRI) and histology. Chondrogenic differentiation was demonstrated by molecular and histological analysis of labeled and unlabeled cells. Chondrogenic gene expression (COL2A2, ACAN, SOX9, COL10, COMP) was significantly altered in a dose-dependent manner in labeled cells, as were GAG and type II collagen staining. As expected, SPIO induced a dramatic decrease of MRI T2 values of sponges at 7T and 3T, even at low concentrations.

Conclusions

This study clearly demonstrates (1) long-term in vitro MSC traceability using SPIO and MRI and (2) a deleterious dose-dependence of SPIO on TGF-β1 driven chondrogenesis in collagen sponges. Low concentrations (12.5–25 µg Fe/mL) seem the best compromise to optimize both chondrogenesis and MRI labeling.  相似文献   

8.
The purpose of this study was to determine the ability of superparamagnetic iron oxide (SPIO) nanoparticles to function as a long-term tracking label for multi-modal imaging of implanted engineered tissues containing muscle-derived progenitor cells using magnetic resonance imaging (MRI) and X-ray micro-computed tomography (μCT). SPIO-labeled primary myoblasts were embedded in fibrin sealant and imaged to obtain intensity data by MRI or radio-opacity information by μCT. Each imaging modality displayed a detection gradient that matched increasing SPIO concentrations. Labeled cells were then incorporated in fibrin sealant, injected into the atrioventricular groove of rat hearts, and imaged in vivo and ex vivo for up to 1 year. Transplanted cells were identified in intact animals and isolated hearts using both imaging modalities. MRI was better able to detect minuscule amounts of SPIO nanoparticles, while μCT more precisely identified the location of heavily-labeled cells. Histological analyses confirmed that iron oxide particles were confined to viable, skeletal muscle-derived cells in the implant at the expected location based on MRI and μCT. These analyses showed no evidence of phagocytosis of labeled cells by macrophages or release of nanoparticles from transplanted cells. In conclusion, we established that SPIO nanoparticles function as a sensitive and specific long-term label for MRI and μCT, respectively. Our findings will enable investigators interested in regenerative therapies to non-invasively and serially acquire complementary, high-resolution images of transplanted cells for one year using a single label.  相似文献   

9.

Background  

Stem cell therapy has emerged as a promising addition to traditional treatments for a number of diseases. However, harnessing the therapeutic potential of stem cells requires an understanding of their fate in vivo. Non-invasive cell tracking can provide knowledge about mechanisms responsible for functional improvement of host tissue. Superparamagnetic iron oxide nanoparticles (SPIONs) have been used to label and visualize various cell types with magnetic resonance imaging (MRI). In this study we performed experiments designed to investigate the biological properties, including proliferation, viability and differentiation capacity of mesenchymal cells (MSCs) labeled with clinically approved SPIONs.  相似文献   

10.
For the purpose of successfully monitoring labeled cells, optimum labeling efficiency without any side effect is a prerequisite. Magnetic cellular imaging is a new and growing field that allows the visualization of implanted cells in vivo. Herein, superparamagnetic iron oxide (SPIO) nanoparticles were conjugated with a non-toxic protein transduction domain (PTD), identified by the authors and termed low molecular weight protamine (LMWP), to generate efficient and non-toxic cell labeling tools. The cells labeled with LMWP-SPIO presented the highest iron content compared to those labeled with naked SPIO and the complex of SPIO with poly-l-lysine, which is currently used as a transfection agent. In addition to the iron content assay, Prussian staining and confocal observation demonstrated the highest intracellular LMWP-SPIO presence, and the labeling procedure did not alter the cell differentiation capacity of mesenchymal stem cells. Taken together, cell permeable magnetic nanoparticles conjugated with LMWP can be suggested as labeling tools for efficient magnetic imaging of transplanted cells.  相似文献   

11.
Background aimsHuman mesenchymal stem cells (hMSCs) have gained interest for treatment of stroke injury. Using in vitro culture, the purpose of this study was to investigate the long-term detectability of hMSCs by magnetic resonance imaging (MRI) after transfection with a superparamagnetic iron oxide (SPIO) and evaluate the effects of SPIO on cellular activity, particularly under an ischemic environment.MethodshMSCs were exposed to low doses of SPIOs. After a short incubation period, cells were cultured for additional 1, 7 and 14 d to evaluate proliferation, colony formation and multilinear potential. Labeled cells were imaged and evaluated in agarose to quantify R2 and R21 contrast at each time point. Cells were placed in a low-oxygen, low-serum environment and tested for cytotoxicity. In addition, labeled cells were transplanted into an ischemic stroke model and evaluated with ex vivo MRI and histology.ResultsCellular events such as proliferation and differentiation were not affected at any of the exposures tested when cultured for 14 d. The low iron exposure and short incubation time are sufficient for detectability with MRI. However, the higher iron dosage results in higher calcification and cytotoxicity under in vitro ischemic conditions. Transplantation of the hMSCs labeled with an initial exposure of 22.4 μg of Fe showed excellent retention of contrast in stroke-induced rats.ConclusionsAlthough SPIO labeling is stable for long-term MRI detection and has limited effects on the multilineage potential of hMSCs, high-dose SPIO labeling may affect hMSC survival under serum and oxygen withdrawal.  相似文献   

12.

Background

This study aimed to evaluate the feasibility of intraarterial (IA) delivery and in vivo MR imaging of superparamagnetic iron oxide (SPIO)-labeled mesenchymal stem cells (MSCs) in a canine stroke model.

Methodology

MSCs harvested from beagles’ bone marrow were labeled with home-synthesized SPIO. Adult beagle dogs (n = 12) were subjected to left proximal middle cerebral artery (MCA) occlusion by autologous thrombus, followed by two-hour left internal carotid artery (ICA) occlusion with 5 French vertebral catheter. One week later, dogs were classified as three groups before transplantation: group A: complete MCA recanalization, group B: incomplete MCA recanalization, group C: no MCA recanalization. 3×106 labeled-MSCs were delivered through left ICA. Series in vivo MRI images were obtained before cell grafting, one and 24 hours after transplantation and weekly thereafter until four weeks. MRI findings were compared with histological studies at the time point of 24 hours and four weeks.

Principal Findings

Home-synthesized SPIO was useful to label MSCs without cell viability compromise. MSCs scattered widely in the left cerebral hemisphere in group A, while fewer grafted cells were observed in group B and no cell was detected in group C at one hour after transplantation. A larger infarction on the day of cell transplantation was associated with more grafted cells in the brain. Grafted MSCs could be tracked effectively by MRI within four weeks and were found in peri-infarction area by Prussian blue staining.

Conclusion

It is feasible of IA MSCs transplantation in a canine stroke model. Both the ipsilateral MCA condition and infarction volume before transplantation may affect the amount of grafted cells in target brain. In vivo MR imaging is useful for tracking IA delivered MSCs after SPIO labeling.  相似文献   

13.
Mesenchymal stem cell (MSC)-based therapy has great potential for tissue regeneration. However, being able to monitor the in vivo behavior of implanted MSCs and understand the fate of these cells is necessary for further development of successful therapies and requires an effective, non-invasive and non-toxic technique for cell tracking. Super paramagnetic iron oxide (SPIO) is an idea label and tracer of MSCs. MRI can be used to follow SPIO-labeled MSCs and has been proposed as a gold standard for monitoring the in vivo biodistribution and migration of implanted SPIO-labeled MSCs. This review discusses the biological effects of SPIO labeling on MSCs and the therapeutic applications of local or systemic delivery of these labeled cells.  相似文献   

14.
Background aimsAdipose-derived stem cells (ADSCs) have shown great promise in the regenerative repair of injured peripheral nerves. Magnetic resonance imaging (MRI) has provided attractive advantages in tracking superparamagnetic iron oxide nanoparticle (SPION)-labeled cells and evaluating their fate after cell transplantation. This study investigated the feasibility of the use of MRI to noninvasively track ADSCs repair of peripheral nerve injury in vivo.MethodsGreen fluorescent protein (GFP)-expressing ADSCs were isolated, expanded, differentiated into an SC-like phenotype (GFP-dADSCs) at early passages and subsequently labeled with SPIONs. The morphological and functional properties of the GFP-dADSCs were assessed through the use of immunohistochemistry. The intracellular stability, proliferation and viability of the labeled cells were evaluated in vitro. Through the use of a microsurgical procedure, the labeled cells were then seeded into sciatic nerve conduits in C57/BL6 mice to repair a 1-cm sciatic nerve gap. A clinical 3-T MRI was performed to investigate the GFP-dADSCs in vitro and the transplanted GFP-dADSCs inside the sciatic nerve conduits in vivo.ResultsThe GFP-dADSCs were efficiently labeled with SPIONs, without affecting their viability and proliferation. The labeled cells implanted into the mice sciatic nerve conduit exhibited a significant increase in axonal regeneration compared with the empty conduit and could be detected by MRI. Fluorescent microscopic examination, histological analysis and immunohistochemistry confirmed the axon regeneration and MRI results.ConclusionsThese data will elucidate the neuroplasticity of ADSCs and provide a new protocol for in vivo tracking of stem cells that are seeded to repair injured peripheral nerves.  相似文献   

15.
Molecular imaging is used to improve the disease diagnosis, prognosis, monitoring of treatment in living subjects. Numerous molecular targets have been developed for various cellular and molecular processes in genetic, metabolic, proteomic, and cellular biologic level. Molecular imaging modalities such as Optical Imaging, Magnetic Resonance Imaging (MRI), Positron Emission Tomography (PET), Single Photon Emission Computed Tomography (SPECT), and Computed Tomography (CT) can be used to visualize anatomic, genetic, biochemical, and physiologic changes in vivo. For in vivo cell imaging, certain cells such as cancer cells, immune cells, stem cells could be labeled by direct and indirect labeling methods to monitor cell migration, cell activity, and cell effects in cell-based therapy. In case of cancer, it could be used to investigate biological processes such as cancer metastasis and to analyze the drug treatment process. In addition, transplanted stem cells and immune cells in cell-based therapy could be visualized and tracked to confirm the fate, activity, and function of cells. In conventional molecular imaging, cells can be monitored in vivo in bulk non-invasively with optical imaging, MRI, PET, and SPECT imaging. However, single cell imaging in vivo has been a great challenge due to an extremely high sensitive detection of single cell. Recently, there has been great attention for in vivo single cell imaging due to the development of single cell study. In vivo single imaging could analyze the survival or death, movement direction, and characteristics of a single cell in live subjects. In this article, we reviewed basic principle of in vivo molecular imaging and introduced recent studies for in vivo single cell imaging based on the concept of in vivo molecular imaging.  相似文献   

16.

Background  

Mesenchymal stem cells (MSCs) are multipotent cells with the potential to differentiate into bone, cartilage, fat and muscle cells and are being investigated for their utility in cell-based transplantation therapy. Yet, adequate methods to track transplanted MSCs in vivo are limited, precluding functional studies. Quantum Dots (QDs) offer an alternative to organic dyes and fluorescent proteins to label and track cells in vitro and in vivo. These nanoparticles are resistant to chemical and metabolic degradation, demonstrating long term photostability. Here, we investigate the cytotoxic effects of in vitro QD labeling on MSC proliferation and differentiation and use as a cell label in a cardiomyocyte co-culture.  相似文献   

17.
Adult stem cells have been intensively studied for their potential use in cell therapies for neurodegenerative diseases, ischemia and traumatic injuries. One of the most promising cell sources for autologous cell transplantation is bone marrow, containing a heterogenous cell population that can be roughly divided into hematopoietic stem and progenitor cells and mesenchymal stem cells (MSCs). MSCs are multipotent progenitor cells that, in the case of severe tissue ischemia or damage, can be attracted to the lesion site, where they can secrete bioactive molecules, either naturally or through genetic engineering. They can also serve as vehicles for delivering therapeutic agents. Mobilized from the marrow, sorted or expanded in culture, MSCs can be delivered to the damaged site by direct or systemic application. In addition, MSCs can be labeled with superparamagnetic nanoparticles that allow in vivo cell imaging. Magnetic resonance imaging (MRI) is thus a suitable method for in vivo cell tracking of transplanted cells in the host organism. This review will focus on cell labeling for MRI and the use of MSCs in experimental and clinical studies for the treatment of brain and spinal cord injuries.  相似文献   

18.
Tendon stem cells are multi‐potent adult stem cells with broad differentiation plasticity that render them of great importance in cell‐based therapies for the repair of tendons. We called them tendon‐derived stem cells (TDSCs) to indicate the tissue origin from which the stem cells were isolated in vitro. Based on the work of other sources of MSCs and specific work on TDSCs, some properties of TDSCs have been characterized / implicated in vitro. Despite these findings, tendon stem cells remained controversial cells. This was because MSCs residing in different organs, although very similar, were not identical cells. There is evidence of differences in stem cell‐related properties and functions related to tissue origins. Similar to other stem cells, tendon stem cells were identified and characterized in vitro. Their in vivo identities, niche (both anatomical locations and regulators) and roles in tendons were less understood. This review aims to summarize the current evidence of the possible anatomical locations and niche signals regulating the functions of tendon stem cells in vivo. The possible roles of tendon stem cells in tendon healing and non‐healing are presented. Finally, the potential strategies for understanding the in vivo identity of tendon stem cells are discussed.  相似文献   

19.
The field of tissue engineering integrates the principles of engineering, cell biology and medicine towards the regeneration of specific cells and functional tissue. Matrix associated stem cell implants (MASI) aim to regenerate cartilage defects due to arthritic or traumatic joint injuries. Adult mesenchymal stem cells (MSCs) have the ability to differentiate into cells of the chondrogenic lineage and have shown promising results for cell-based articular cartilage repair technologies. Autologous MSCs can be isolated from a variety of tissues, can be expanded in cell cultures without losing their differentiation potential, and have demonstrated chondrogenic differentiation in vitro and in vivo1, 2.In order to provide local retention and viability of transplanted MSCs in cartilage defects, a scaffold is needed, which also supports subsequent differentiation and proliferation. The architecture of the scaffold guides tissue formation and permits the extracellular matrix, produced by the stem cells, to expand. Previous investigations have shown that a 2% agarose scaffold may support the development of stable hyaline cartilage and does not induce immune responses3.Long term retention of transplanted stem cells in MASI is critical for cartilage regeneration. Labeling of MSCs with iron oxide nanoparticles allows for long-term in vivo tracking with non-invasive MR imaging techniques4.This presentation will demonstrate techniques for labeling MSCs with iron oxide nanoparticles, the generation of cell-agarose constructs and implantation of these constructs into cartilage defects. The labeled constructs can be tracked non-invasively with MR-Imaging.Open in a separate windowClick here to view.(27M, flv)  相似文献   

20.
Human umbilical cord mesenchymal stem cells (hUC-MSCs) can be efficiently labeled by superparamagnetic iron oxide (SPIO) nanoparticles, which produces low signal intensity on magnetic resonance imaging (MRI) in vitro. This study was to evaluate the feasibility of in vivo tracking for hUC-MSCs labeled by SPIO with noninvasive MRI. SPIO was added to cultures at concentrations equivalent to 0, 7, 14, 28, and 56 μg Fe/ml (diluted with DMEM/F12) and incubated for 16 h. Prussian Blue staining was used to determinate the labeling efficiency. Rats were randomly divided into three groups, control group, hUC-MSCs group, and SPIO-labeled hUC-MSCs group. All groups were subjected to spinal cord injury (SCI) by weight drop device. Rats were examined for neurological function. In vivo MRI was used to track SPIO-labeled hUC-MSCs transplanted in rats spinal cord. Survival and migration of hUC-MSCs were also explored using immunofluorescence. Significant improvements in locomotion were observed in the hUC-MSCs groups. There was statistical significance compared with control group. In vivo MRI 1 and 3 weeks after injection showed a large reduction in signal intensity in the region transplanted with SPIO-labeled hUC-MSCs. The images from unlabeled hUC-MSCs showed a smaller reduction in signal intensity. Transplanted hUC-MSCs engrafted within the injured rats spinal cord and survived for at least 8 weeks. In conclusion, hUC-MSCs can survive and migrate in the host spinal cord after transplantation, which promote functional recovery after SCI. Noninvasive imaging of transplanted SPIO-labeled hUC-MSCs is feasible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号