首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Autophagy》2013,9(9):1371-1382
Autophagy is an important cellular catabolic process that plays a variety of important roles, including maintenance of the amino acid pool during starvation, recycling of damaged proteins and organelles, and clearance of intracellular microbes. Currently employed autophagy detection methods include fluorescence microscopy, biochemical measurement, SDS-PAGE and western blotting, but they are time consuming, labor intensive, and require much experience for accurate interpretation. More recently, development of novel fluorescent probes have allowed the investigation of autophagy via standard flow cytometry. However, flow cytometers remain relatively expensive and require a considerable amount of maintenance. Previously, image-based cytometry has been shown to perform automated fluorescence-based cellular analysis comparable to flow cytometry. In this study, we developed a novel method using the Cellometer image-based cytometer in combination with Cyto-ID® Green dye for autophagy detection in live cells. The method is compared with flow cytometry by measuring macroautophagy in nutrient-starved Jurkat cells. Results demonstrate similar trends of autophagic response, but different magnitude of fluorescence signal increases, which may arise from different analysis approaches characteristic of the two instrument platforms. The possibility of using this method for drug discovery applications is also demonstrated through the measurement of dose-response kinetics upon induction of autophagy with rapamycin and tamoxifen. The described image-based cytometry/fluorescent dye method should serve as a useful addition to the current arsenal of techniques available in support of autophagy-based drug discovery relating to various pathological disorders.  相似文献   

2.
LL Chan  D Shen  AR Wilkinson  W Patton  N Lai  E Chan  D Kuksin  B Lin  J Qiu 《Autophagy》2012,8(9):1371-1382
Autophagy is an important cellular catabolic process that plays a variety of important roles, including maintenance of the amino acid pool during starvation, recycling of damaged proteins and organelles, and clearance of intracellular microbes. Currently employed autophagy detection methods include fluorescence microscopy, biochemical measurement, SDS-PAGE and western blotting, but they are time consuming, labor intensive, and require much experience for accurate interpretation. More recently, development of novel fluorescent probes have allowed the investigation of autophagy via standard flow cytometry. However, flow cytometers remain relatively expensive and require a considerable amount of maintenance. Previously, image-based cytometry has been shown to perform automated fluorescence-based cellular analysis comparable to flow cytometry. In this study, we developed a novel method using the Cellometer image-based cytometer in combination with Cyto-ID® Green dye for autophagy detection in live cells. The method is compared with flow cytometry by measuring macroautophagy in nutrient-starved Jurkat cells. Results demonstrate similar trends of autophagic response, but different magnitude of fluorescence signal increases, which may arise from different analysis approaches characteristic of the two instrument platforms. The possibility of using this method for drug discovery applications is also demonstrated through the measurement of dose-response kinetics upon induction of autophagy with rapamycin and tamoxifen. The described image-based cytometry/fluorescent dye method should serve as a useful addition to the current arsenal of techniques available in support of autophagy-based drug discovery relating to various pathological disorders.  相似文献   

3.
The ability to accurately determine cell viability is essential to performing a well-controlled biological experiment. Typical experiments range from standard cell culturing to advanced cell-based assays that may require cell viability measurement for downstream experiments. The traditional cell viability measurement method has been the trypan blue (TB) exclusion assay. However, since the introduction of fluorescence-based dyes for cell viability measurement using flow or image-based cytometry systems, there have been numerous publications comparing the two detection methods. Although previous studies have shown discrepancies between TB exclusion and fluorescence-based viability measurements, image-based morphological analysis was not performed in order to examine the viability discrepancies. In this work, we compared TB exclusion and fluorescence-based viability detection methods using image cytometry to observe morphological changes due to the effect of TB on dead cells. Imaging results showed that as the viability of a naturally-dying Jurkat cell sample decreased below 70 %, many TB-stained cells began to exhibit non-uniform morphological characteristics. Dead cells with these characteristics may be difficult to count under light microscopy, thus generating an artificially higher viability measurement compared to fluorescence-based method. These morphological observations can potentially explain the differences in viability measurement between the two methods.  相似文献   

4.
Traditionally, many cell-based assays that analyze cell populations and functionalities have been performed using flow cytometry. However, flow cytometers remain relatively expensive and require highly trained operators for routine maintenance and data analysis. Recently, an image cytometry system has been developed by Nexcelom Bioscience (Lawrence, MA, USA) for automated cell concentration and viability measurement using bright-field and fluorescent imaging methods. Image cytometry is analogous to flow cytometry in that gating operations can be performed on the cell population based on size and fluorescent intensity. In addition, the image cytometer is capable of capturing bright-field and fluorescent images, allowing for the measurement of cellular size and fluorescence intensity data. In this study, we labeled a population of cells with an enzymatic vitality stain (calcein-AM) and a cell viability dye (propidium iodide) and compared the data generated by flow and image cytometry. We report that measuring vitality and viability using the image cytometer is as effective as flow cytometric assays and allows for visual confirmation of the sample to exclude cellular debris. Image cytometry offers a direct method for performing fluorescent cell-based assays but also may be used as a complementary tool to flow cytometers for aiding the analysis of more complex samples.  相似文献   

5.
In vivo cell-death imaging is still a challenging issue. Until now, only (99m)Tc-labeled HYNIC-rh-annexin A5 has been extensively studied in clinical trials. In the ongoing search for an alternative imaging agent, we synthesized a series of fluorescent zinc-cyclen complexes as annexin A5 mimics and studied structural variations on the uptake behavior of cells undergoing apoptosis/necrosis. The number of cyclen chelators was varied and the spacer separating cyclen from the central scaffold was modified. Five zinc-cyclen complexes were labeled with fluorescein for flow cytometric studies and one was labeled with (18)F for in vivo applications. Jurkat cells were treated with staurosporine to induce apoptosis/necrosis, incubated with the fluorescein-labeled zinc complexes and analyzed them by flow cytometry. Fluorescent annexin A5 and propidium iodide were applied as reference dyes. Flow cytometry revealed greater accumulation of zinc-cyclen complexes in staurosporine treated cells. The uptake was contingent on the presence of zinc and the fluorescence intensity was dependent on the number of zinc-cyclen groups. Confocal laser scanning microscopy showed the {bis[Zn(cyclen)]}(4+) complex distributed throughout the cytosol different to annexin A5. Owing to the structural similarity of the bis-cyclen ligands with CXCR4 binding bis-cyclam derivatives the zinc-cyclen complex uptake was challenged with the meta derivative of AMD3100. Lack of uptake depletion in staurosporine treated cells ruled out measurable CXCR4 interaction. PET imaging using the (18)F labeled zinc-cyclen complex revealed significantly higher uptake in an irradiated Dunning R3327-AT1 prostate tumor as compared to the contralateral control tumor. PET imaging of a HelaMatu tumor model additionally showed an increased uptake after taxol treatment. It could be demonstrated that the fluorescent zinc-cyclen complexes offer potential as new agents for flow cytometry and microscopic imaging of cell death. In addition, the (18)F labeled analogue holds promise for in vivo applications providing informations about cell death after radiation therapy and cytostatic drug treatment.  相似文献   

6.
Fluorescence is a mainstay of bioanalytical methods, offering sensitive and quantitative reporting, often in multiplexed or multiparameter assays. Perhaps the best example of the latter is flow cytometry, where instruments equipped with multiple lasers and detectors allow measurement of 15 or more different fluorophores simultaneously, but increases beyond this number are limited by the relatively broad emission spectra. Surface enhanced Raman scattering (SERS) from metal nanoparticles can produce signal intensities that rival fluorescence, but with narrower spectral features that allow a greater degree of multiplexing. We are developing nanoparticle SERS tags as well as Raman flow cytometers for multiparameter single cell analysis of suspension or adherent cells. SERS tags are based on plasmonically active nanoparticles (gold nanorods) whose plasmon resonance can be tuned to give optimal SERS signals at a desired excitation wavelength. Raman resonant compounds are adsorbed on the nanoparticles to confer a unique spectral fingerprint on each SERS tag, which are then encapsulated in a polymer coating for conjugation to antibodies or other targeting molecules. Raman flow cytometry employs a high resolution spectral flow cytometer capable of measuring the complete SERS spectra, as well as conventional flow cytometry measurements, from thousands of individual cells per minute. Automated spectral unmixing algorithms extract the contributions of each SERS tag from each cell to generate high content, multiparameter single cell population data. SERS-based cytometry is a powerful complement to conventional fluorescence-based cytometry. The narrow spectral features of the SERS signal enables more distinct probes to be measured in a smaller region of the optical spectrum with a single laser and detector, allowing for higher levels of multiplexing and multiparameter analysis.  相似文献   

7.
The effects of liver enzymes on drug activities are important considerations in the drug discovery process. Frequently, liver microsomes are used to simulate first-pass metabolism in the liver; however, there are significant disadvantages to the microsome system. As an alternative, a simple cell-based, high-throughput system that allows for examination of metabolite activity is described. Using multiparameter flow cytometry and the low-volume, high-sample format of 96-well plates, it is possible to rapidly evaluate a dose-response curve for metabolites based on variables including initial compound concentrations, hepatocyte cell line metabolic activities, and time. Using HepG2 cells as a surrogate for hepatic metabolism of a potential therapeutic, the impact of metabolites on Jurkat cell death was measured by both propidium iodide dye exclusion and cell cycle analysis. While this system is not proposed to supplant liver microsome studies, this alternative assay provides a highly adaptable, low-cost, and high-throughput measure of drug metabolism.  相似文献   

8.
Cytotoxic effect of gossypol on colon carcinoma cells   总被引:6,自引:0,他引:6  
Wang X  Wang J  Wong SC  Chow LS  Nicholls JM  Wong YC  Liu Y  Kwong DL  Sham JS  Tsa SW 《Life sciences》2000,67(22):2663-2671
Gossypol, a male contraceptive drug extracted from cottonseeds, has been found to have antiproliferative activity on tumour cells and is thought to be a potential anticancer drug. The aim of this study was to investigate the mechanisms of gossypol-induced cell death on two colon carcinoma cell lines, HT29 and LoVo. Firstly, we studied the effect of gossypol on the colony forming ability of these tumour cells, which is the main target of chemotherapeutic drugs. Using clonogenic assays, flow cytometry and DNA gel electrophoresis techniques, we have found that gossypol not only inhibited colony forming ability of these tumour cells, but we also observed cellular internucleosomal DNA fragmentation in the cells treated with 3 doses of gossypol and this was accompanied by the appearance of a sub-G1 apoptotic peak and morphological characteristics of apoptosis. Our results suggest that the gossypol induced cell death is via an apoptotic pathway and the effect of gossypol may not be cell cycle specific. Using Western blotting analysis, we found that the gossypol-induced apoptosis may not be involved in the regulation of p53 but possibly associated with the regulation of bcl-2 and Bax expression. Our evidence indicates that gossypol may provide a potential therapeutic benefit for the treatment of colon carcinoma and understanding the mechanisms of gossypol-induced cytotoxicity on tumour cells is essential for including this drug in clinical use.  相似文献   

9.
This study demonstrates cytotoxic and genotoxic potential of juglone, a chief constituent of walnut, and its underlying mechanisms against melanoma cells. MTT assay and clonogenic assay were used to study cytotoxicity, micronucleus assay to assess genotoxicity, glutathione (GSH) assay and 2′,7′-dicholorofluorescein diacetate (DCFH-DA) assay to evaluate the oxidative stress induction. Apoptosis/necrosis induction was analysed by flow cytometry. We observed a concentration-dependent decrease in cell survival with a corresponding increase in the lactate dehydrogenase levels. A dose-dependent increase in the frequency of micronucleated binucleate cells indicated the potential of juglone to induce cytogenetic damage in melanoma tumor cells. Moreover, results of the micronuclei study indicated division delay in the proliferating cell population by showing decrease in the cytokinesis blocked proliferation index. Further, juglone-induced apoptosis and necrosis could be demonstrated by oligonucleosomal ladder formation, microscopic analysis, increase in the hypodiploid fraction (sub Go peak in DNA histogram), as well as an increased percentage of AnnexinV(+)/PI(+) cells detected by flow cytometry. A significant concentration-dependent decrease in the glutathione levels and increase in dichlorofluorescein (DCF) fluorescence after juglone treatment confirmed the ability of juglone to generate intracellular reactive oxygen species. The cytotoxic effect of juglone can be attributed to mechanisms including the induction of oxidative stress, cell membrane damage, and a clastogenic action leading to cell death by both apoptosis and necrosis.  相似文献   

10.
A M Steff  M Fortin  C Arguin  P Hugo 《Cytometry》2001,45(4):237-243
BACKGROUND: Reliable assessment of cell death is now pivotal to many research programs aiming at generating new anti-tumor compounds or at screening cDNA libraries. Such approaches need to rely on reproducible, easy-to-handle, and rapid microplate-based cytotoxicity assays that are amenable to high-throughput screening (HTS) technologies. We describe a method for the direct measurement of cell death, based on the detection of a decrease in fluorescence observed following death induction in cells expressing enhanced green fluorescent protein (EGFP). METHODS: Cell death was induced by a variety of apoptotic stimuli in various EGFP-expressing mammalian cell lines, including those routinely used in anti-cancer drug screening. Decrease in fluorescence was assessed either by flow cytometry (and compared with other apoptotic markers) or by a fluorescence microplate reader. RESULTS: Cells expressing EGFP exhibited a decrease in fluorescence when treated by various agents, such as chemotherapeutic drugs, UV irradiation, or caspase-independent cell death inducers. Kinetics and sensitivity of this EGFP-based assay were comparable to those of traditional apoptosis markers such as annexin-V binding, propidium iodide incorporation, or reactive oxygen species production. We also show that the decrease in EGFP fluorescence is directly quantifiable in a fluorescence-based microplate assay. Furthermore, analysis of EGFP protein content in cells undergoing cell death demonstrates that the decrease in fluorescence does not arise from degradation of the protein. CONCLUSIONS: This novel GFP-based microplate assay combines sensitivity and rapidity, is easily amenable to HTS setups, making it an assay of choice for cytotoxicity evaluation.  相似文献   

11.
The borderline between necrosis and apoptosis is indistinct, but that between types of cell death is important because necrosis may lead to local inflammation, whereas apoptosis usually does not. In certain autoimmune disorders, inhibition of cell death is crucial, since macromolecules released from the dead cells may accelerate the autoimmune processes. We have used various cell death inhibitors to block cell death induced by 4HPR [N‐(4‐hydroxyphenil)‐retinamide] the BL41 and U937 cell lines. VD‐FMK, a general caspase inhibitor, inhibited DNA fragmentation induced by 4HPR, but not PI (propidium iodide) uptake and necrosis. Interestingly heparin, a serine‐protease inhibitor, lowered the PI fluorescence of the dead cell population and increased the sub‐G1 population as measured by flow cytometry. Regarding these changes, we found that heparin failed to increase DNA fragmentation, but merely liberated high molecular mass DNA fragments from dead cells. The exact mechanism is unclear, but heparin during secondary necrosis might enter the cells, bind RNPs (ribonucleoproteins), and pull them out with the attached DNA, where they would be sensitive to enzymatic degradation. Thus, the results suggest that heparin treatment helps in the clearance of cell debris and decreases the immunogenity of secondary necrotic cells.  相似文献   

12.
BACKGROUND: Conventional flow cytometry does not allow the rapid analysis of multiple samples. This has limited its uses in drug discovery, for which the standard for throughput is 100,000 samples per day. METHODS: We describe a simple method in which commercial peristaltic tubing is connected from a commercial autosampler to a flow cytometer. The samples are delivered via a peristaltic pump from source wells in a multiwell plate. The samples are separated by air bubbles. RESULTS: Throughput rates approach the limit of the autosampler (up to 100 wells per minute). Using optimal tubing and flow rates, particles remain within appropriate light scatter and fluorescence gates. The carryover between wells is typically less than 5% without and 1% with a wash step. The volumes of sample delivered are in the microliter scale. The approach has been validated with instruments from three manufacturers. CONCLUSIONS: Flow cytometry has potential throughput of 100,000 samples or more per day starting with the method described. The method is currently best suited to end-point assays. However, combined with high-speed sorting and single- cell assays, the number of assays could approach 1 billion per day.  相似文献   

13.
BACKGROUND: The ability to transfer immunoregulatory, cytoprotective, or anti-apoptotic genes into pancreatic islet cells may allow enhanced resistance against the autoimmune destruction of these cells in type 1 diabetes. We describe here an inducible transduction system for expression of the anti-apoptotic bcl-2 gene in insulin-producing cells as a potential tool for protecting against beta-cell death. MATERIALS AND METHODS: Isolated pancreatic rat islet cells or rat insulinoma (RINm5F) cells were transduced using a progesterone antagonist (RU 486) inducible adenoviral vector system, expressing the bcl-2 gene. Bcl-2 overexpression was measured by Western blot assays and flow cytometry analysis. Following exposure to cytokines or to the mitochondrial uncoupler FCCP, cell survival was determined using fluorescence and electron microscopy, and a colorimetric assay (2,3-bis[2-methoxy-4-nitro-5-sulfophenyl]- 2H-tetrazolium-5-carboxanilide [XTT]-based) for cell viability. The mitochondrial membrane potential ((m)) was assessed using the lipophilic cationic membrane potential-sensitive dye JC-1. RESULTS: The adenoviral gene transfer system induced Bcl-2 expression in more than 70% of beta-cells and the protein expression levels were successfully regulated in response to varying concentrations of progesterone antagonist RU 486. Exposure of islet cells to proinflammatory cytokines IL-1beta, TNF-alpha, and IFN-gamma, or to the mitochondrial uncoupler FCCP resulted in disruption of the mitochondrial membrane potential ((m)) and beta-cell death. Bcl-2 overexpression stabilized (m) and prevented cell death in RINm5F cells but not in islet cells. In addition, prolonged in vitro culture revealed adenoviral-induced islet cell necrosis. CONCLUSIONS: The RU 486-regulated adenoviral system can achieve an efficient control of gene transfer at relatively low doses of the adenoviral vector. However, Bcl-2 overexpression in islet cells did not prevent adenoviral- or cytokine-induced toxicity, suggesting that the specific death pathway involved in adenoviral toxicity in beta-cells may bypass the mitochondrial permeability transition event.  相似文献   

14.
Sodium butyrate (SB), a histone deacetylase inhibitor, is emerging as a potent anti-cancer drug for different types of cancers. In the present study, anti-cancer activity of SB in Xp11.2 (TFE3) translocated renal cell carcinoma cell line UOK146 was studied. Anti-proliferative effect of SB in renal cell carcinoma (RCC) cell line UOK146 was evaluated by MTT assay and morphological characteristics were observed by phase contrast microscopy which displayed the cell death after SB treatment. SB induces DNA fragmentation and change in nuclear morphology observed by increased sub-G1 region cell population and nuclear blebbings. Cell cycle arrest at G2/M phase was found after SB treatment. UOK146 cell line shows autophagy mode of cell death as displayed by acridine orange staining and flow cytometry analysis. LC3-II, a protein marker of autophagy, was also found to be upregulated after SB treatment. A tumor suppressor gene DIRAS1 was upregulated after SB treatment, displaying its anti-cancer potential at molecular level. These findings suggest that SB could serve as a novel regulator of tumor suppressors and lead to the discovery of novel therapeutics with better and enhanced anti-cancer activity.  相似文献   

15.

Background

An important mechanism of Mycobacterium tuberculosis pathogenesis is the ability to control cell death pathways in infected macrophages: apoptotic cell death is bactericidal, whereas necrotic cell death may facilitate bacterial dissemination and transmission.

Methods

We examine M.tuberculosis control of spontaneous and chemically induced macrophage cell death using automated confocal fluorescence microscopy, image analysis, flow cytometry, plate-reader based vitality assays, and M.tuberculosis strains including H37Rv, and isogenic virulent and avirulent strains of the Beijing lineage isolate GC1237.

Results

We show that bacterial virulence influences the dynamics of caspase activation and the total level of cytotoxicity. We show that the powerful ability of M.tuberculosis to inhibit exogenously stimulated apoptosis is abrogated by loss of virulence. However, loss of virulence did not influence the balance of macrophage apoptosis and necrosis – both virulent and avirulent isogenic strains of GC1237 induced predominantly necrotic cell death compared to H37Rv which induced a higher relative level of apoptosis.

Conclusions

This reveals that macrophage necrosis and apoptosis are independently regulated during M. tuberculosis infection of macrophages. Virulence affects the level of host cell death and ability to inhibit apoptosis but other strain-specific characteristics influence the ultimate mode of host cell death and alter the balance of apoptosis and necrosis.  相似文献   

16.
In this study we investigated E6 and E7 oncogenes from the Human Papilloma Virus as targets for siRNA knockdown in order to boost the efficacy of the anti-cancer drug ‘tumor necrosis factor-related apoptosis inducing ligand’ (TRAIL). SiHa cells were treated with TRAIL following transfection with E6/E7 siRNA and the expression of death receptors DR4 and DR5, cell viability, apoptosis, senescence and cell cycle analysis were undertaken using flow cytometry, MTT viability assay and cellular β-galactosidase activity assays. E6/E7 siRNA resulted in significant upregulation of death receptors DR4 and DR5 but did not result in an enhanced sensitivity to TRAIL. Our results indicate that E6/E7-siRNA induces senescence rather than apoptosis in SiHa cells. The occurrence of senescence in drug resistant cervical cancer cells such as the SiHa cell line by E6/E7 siRNA, among other factors, may prevent TRAIL induced activation of extrinsic and intrinsic pathways that lead to apoptotic cell death. Our findings are significant for combinatorial strategies for cancer therapy since the induction of senescence can preclude apoptosis rendering cells to be recalcitrant to TRAIL treatment.  相似文献   

17.
Flow cytometry in biotechnology   总被引:6,自引:0,他引:6  
  相似文献   

18.
The precise detection of pharmaceutical drug uptake and knowledge of a drug's efficacy at the single-cell level is crucial for understanding a compound's performance. Many pharmaceutical drugs, like the model substances Doxorubicin, Mitoxantrone or Irinotecan, have a distinctive natural fluorescence that can be readily exploited for research purposes. Utilizing this respective natural fluorescence, we propose a method analyzing simultaneously in real-time the efficiency, effects and the associated kinetics of compound-uptake and efflux in mammalian cells by flow cytometry. We show that real-time flow cytometric quantification of compound-uptake is reliably measured and that analyzing their respective uptake kinetic provides additional valuable information which can be used for improving drug dosage and delivery. Exploiting the native fluorescence of natural compounds is clearly advantageous compared to the usage of non-related fluorescent uptake-reporter substances, possibly yielding in unphysiological data. Flow cytometric analysis allows live-dye based multi-parametric high-throughput screening of pharmaceutical compound activity, improving cytotoxicity testing by combining several assays into a single, high resolution readout. This approach can be a useful tool identifying potential inhibitors for multiple drug resistance (MDR), representing a major challenge to the targeted treatment of various diseases.  相似文献   

19.
Single cell analysis is an important tool to gain deeper insights into microbial physiology for the characterization and optimization of bioprocesses. In this study a novel single cell analysis technique was applied for estimating viability and membrane potential (MP) of Bacillus megaterium cells cultured in minimal medium. Its measurement principle is based on the analysis of the electrical cell properties and is called impedance flow cytometry (IFC). Comparatively, state-of-the-art fluorescence-based flow cytometry (FCM) was used to verify the results obtained by IFC. Viability and MP analyses were performed with cells at different well-defined growth stages, focusing mainly on exponential and stationary phase cells, as well as on dead cells. This was done by PI and DiOC(2)(3) staining assays in FCM and by impedance measurements at 0.5 and 10 MHz in IFC. In addition, transition growth stages of long-term cultures and agar plate colonies were characterized with both methods. FCM and IFC analyses of all experiments gave comparable results, quantitatively and qualitatively, indicating that IFC is an equivalent technique to FCM for the study of physiological cell states of bacteria.  相似文献   

20.
Flow cytometry for high-throughput, high-content screening   总被引:5,自引:0,他引:5  
Flow cytometry is a mature platform for quantitative multi-parameter measurement of cell fluorescence. Recent innovations allow up to 30-fold faster serial processing of bulk cell samples. Homogeneous discrimination of free and cell-bound fluorescent probe eliminates wash steps to streamline sample processing. Compound screening throughput may be further enhanced by multiplexing of assays on color-coded bead or cell suspension arrays and by integrating computational techniques to create smaller, focused compound libraries. Novel bead-based assay systems allow studies of real-time interactions between solubilized receptors, ligands and molecular signaling components that recapitulate and extend measurements in intact cells. These new developments, and its broad usage, position flow cytometry as an attractive analysis platform for high-throughput, high-content biological testing and drug discovery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号