首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
14-3-3 proteins function as major regulators of primary metabolism and cellular signal transduction in plants. However, their involvement in plant defense and stress responses is largely unknown. In order to better address functions of the rice 14-3-3/GF14 proteins in defense and abiotic stress responses, we examined the rice GF14 family that comprises eight numbers. The phylogenetic comparison with the Arabidopsis 14-3-3 family revealed that the majority of rice GF14s might have evolved as an independent branch. At least four rice GF14 genes, GF14b, GF14c, GF14e and Gf14f were differentially regulated in the interactions of rice-Magnaporthe grisea and rice-Xanthomonas oryzae pv. oryzae, and the incompatible interactions stronger induced the genes than the compatible interactions. These GF14 genes were also induced by the defense compounds, benzothiadiazole, methyl jasmonate, ethephon and hydrogen peroxide. Similarly, they were differentially regulated by salinity, drought, wounding and abscisic acid. Tissue-specific analysis and expression of GF14-YFP fusions revealed that the four GF14 isoforms were expressed with tissue specificity and accumulated differentially in the cytoplasm and nucleus. Our current study provides fundamental information for the further investigation of the rice GF14 proteins.  相似文献   

3.
为了探讨14-3-3基因在小麦逆境胁迫应答中的调控作用,利用RACE技术克隆了两个包含完整编码框的14-3-3基因(命名为Ta14R1和Ta14R2),其中Ta14R1 cDNA长999 bp,编码262个氨基酸,而Ta14R2 cDNA长897 bp,编码261个氨基酸。Ta14R1/Ta14R2-GFP融合载体瞬时表达结果显示,Ta14R1和Ta14R2蛋白均定位于细胞质和细胞膜,但不在叶绿体中。荧光定量PCR分析表明,Ta14R1和Ta14R2均在萌发1 d的胚芽鞘中表达量最高;在高温、低温、模拟干旱和ABA处理下,两个基因在小麦的根和叶中都受胁迫诱导而且显著上调表达,推测这两个14-3-3基因通过依赖ABA的非生物胁迫响应途径发挥作用,可能参与了小麦中高温、低温和干旱胁迫的耐受调节过程。  相似文献   

4.
14-3-3蛋白是一种在真核生物细胞中普遍存在且高度保守的蛋白。该蛋白在大多数物种中由一个基因家族编码,并以同源或异源二聚体的形式存在。不同的14-3-3蛋白同工型具有不同的细胞特异性,可通过识别特异的磷酸化或非磷酸化序列与靶蛋白相互作用。14-3-3蛋白在植物生长和发育的各个方面都起重要作用。本文主要围绕植物14-3-3蛋白的种类、结构、磷酸化或非磷酸化识别序列及其响应干旱、冷冻、盐碱、营养和机械胁迫等的分子机制研究进展进行综述。  相似文献   

5.
Drought and salinity are the major abiotic stresses, which reduce agricultural productivity. In plants, 14-3-3s function as regulators of many target proteins through direct protein-protein interactions and play an important role during response to abiotic stresses. Here we report that CaMV 35S promoter driven overexpression of a Pyrus pyrifolia 14-3-3 gene, Pp14-3-3, improves drought and NaCl tolerance in T1 generation plants of transgenic tobacco (Nicotiana tabacum L. cv Xanthi). Under drought and NaCl stresses, the Pp14-3-3 was largely expressed in T1 transgenic tobacco lines, and compared with the wild-type (WT), transgenic tobacco plants showed relatively normal growth condition. In addition, the levels of membrane lipid peroxidation in T1 transgenic lines were definitely lower than that in WT according to the significantly decreased content of malondialdehyde. Meanwhile, the T1 transgenic tobacco lines showed significantly slower superoxide anion production rate than the WT under abiotic stress. Moreover, both the glutathione S-transferase (GST) and ascorbate peroxidase (APX) activities in T1 transgenic lines were markedly higher than those in WT. GSTs and APXs are important components of plant antioxidant system, and the results of present study suggested that Pp14-3-3 should play a crucial role in reducing oxidative damage caused by drought and salt stresses.  相似文献   

6.
Members of the 14-3-3 protein family are known to be important regulators of plant primary metabolism, hormonal signal transduction, and ion homeostasis. We identified nine isoforms of 14-3-3 genes of Thellungiella salsuginea, an extremophile relative of Arabidopsis thaliana. All the identified isoforms were designated according to their Arabidopsis orthologs: Chi, Omega, Psi, Phi, Upsilon, Lambda, Mu, Epsilon, and Omicron. Comparison of the deduced amino acid sequences reveals high degree of identity between the members of this protein family. Isoforms, designated as Ts14-3-3 Chi, Omicron, and Mu, display noticeable differences in their C-terminal domain as compared to their Arabidopsis homologs. Phylogenetic analysis demonstrated that the identified isoforms split into two groups, epsilon and non-epsilon, according to the common classification of the 14-3-3 family genes. The Thellungiella 14-3-3 isoforms are differentially expressed in various plant tissues, and real-time RT-PCR revealed that most of the isoforms are highly expressed even under normal growth conditions. In response to abiotic stress, low temperatures and high concentrations of salts, 14-3-3 genes exhibited different expression patterns. Our data suggest that, due to the high expression levels of the 14-3-3 genes, Thellungiella plants are likely pre-adapted to the stress conditions. Differences between the C-terminal domains of some Thellungiella 14-3-3 proteins and their Arabidopsis homologs may result in differences in target protein specificity.  相似文献   

7.
8.
9.
10.
11.
Li X  Dhaubhadel S 《Planta》2011,233(3):569-582
The 14-3-3s are a group of proteins that are ubiquitously found in eukaryotes. Plant 14-3-3 proteins are encoded by a large multigene family and are involved in signaling pathways to regulate plant development and protection from stress. Recent studies in Arabidopsis and rice have demonstrated the isoform specificity in 14-3-3s and their client protein interactions. However, detailed characterization of 14-3-3 gene family in legumes has not been reported. In this study, soybean 14-3-3 proteins were identified and their molecular characterization performed. Data mining of soybean genome and expressed sequence tag databases identified 18 14-3-3 genes, of them 16 are transcribed. All 16 SGF14s have higher expression in embryo tissues suggesting their potential role in seed development. Subcellular localization of all transcribed SGF14s demonstrated that 14-3-3 proteins in soybean have isoform specificity, however, some overlaps were also observed between closely related isoforms. A comparative analysis of SGF14s with Arabidopsis and rice 14-3-3s indicated that SGF14s also group into epsilon and non-epsilon classes. However, unlike Arabidopsis and rice 14-3-3s, SGF14s contained only one kind of gene structure belonging to each class. Overall, soybean consists of the largest family of 14-3-3 proteins characterized to date. Our results provide a solid framework for further investigations into the role of SGF14s and their involvement in legume-specific functions.  相似文献   

12.
13.
Xu WF  Shi WM 《Annals of botany》2006,98(5):965-974
BACKGROUND AND AIMS Mineral nutrient deficiencies and salinity constitute major limitations for crop plant growth on agricultural soils. 14-3-3 proteins are phosphoserine-binding proteins that regulate the activities of a wide array of targets via direct protein-protein interactions and may play an important role in responses to mineral nutrients deficiencies and salt stress. In the present study, the expression profiling of the 14-3-3 gene family in response to salt stress and potassium and iron deficiencies in young tomato (Solanum lycopersicum) roots was investigated in order to analyse the 14-3-3 roles of the proteins in these abiotic stresses. METHODS: Sequence identities and phylogenetic tree creation were performed using DNAMAN version 4.0 (Lynnon Biosoft Company). Real-time RT-PCR was used to examine the expression of each 14-3-3 gene in response to salt stress and potassium and iron deficiencies in young tomato roots. KEY RESULTS: The phylogenetic tree shows that the 14-3-3 gene family falls into two major groups in tomato plants. By using real-time RT-PCR, it was found that (a) under normal growth conditions, there were significant differences in the mRNA levels of 14-3-3 gene family members in young tomato roots and (b) 14-3-3 proteins exhibited diverse patterns of gene expression in response to salt stress and potassium and iron deficiencies in tomato roots. CONCLUSIONS: The results suggest that (a) 14-3-3 proteins may be involved in the salt stress and potassium and iron deficiency signalling pathways in young tomato roots, (b) the expression pattern of 14-3-3 gene family members in tomato roots is not strictly related to the position of the corresponding proteins within a phylogenetic tree, (c) gene-specific expression patterns indicate that isoform-specificity may exist in the 14-3-3 gene family of tomato roots, and (d) 14-3-3 proteins (TFT7) might mediate cross-talk between the salt stress and potassium and iron-deficiency signalling pathways in tomato roots.  相似文献   

14.
Cho SK  Kim JE  Park JA  Eom TJ  Kim WT 《FEBS letters》2006,580(13):3136-3144
Xyloglucan endotransglucosylase/hydrolase (XTH) has been recognized as a cell wall-modifying enzyme, participating in the diverse physiological roles. From water-stressed hot pepper plants, we isolated three different cDNA clones (pCaXTH1, pCaXTH2, and pCaXTH3) that encode XTH homologs. RT-PCR analysis showed that three CaXTH mRNAs were concomitantly induced by a broad spectrum of abiotic stresses, including drought, high salinity and cold temperature, and in response to stress hormone ethylene, suggesting their role in the early events in the abiotic-related defense response. Transgenic Arabidopsis plants that constitutively expressed the CaXTH3 gene under the control of the CaMV 35S promoter exhibited abnormal leaf morphology; the transgenic leaves showed variable degrees of twisting and bending along the edges, resulting in a severely wrinkled leaf shape. Microscopic analysis showed that 35S-CaXTH3 leaves had increased numbers of small-sized cells, resulting in disordered, highly populated mesophyll cells in each dorsoventral layer, and appeared to contain a limited amount of starch. In addition, the 35S-CaXTH3 transgenic plants displayed markedly improved tolerance to severe water deficit, and to lesser extent to high salinity in comparison with the wild-type plants. These results indicate that CaXTH3 is functional in heterologous Arabidopsis cells, thereby effectively altering cell growth and also the response to abiotic stresses. Although the physiological function of CaXTHs is not yet clear, there are several possibilities for their involvement in a subset of physiological responses to counteract dehydration and high salinity stresses in transgenic Arabidopsis plants.  相似文献   

15.
The 14-3-3s are a ubiquitous class of eukaryotic proteins that participate in a second regulatory step in many phosphorylation-based signal transduction systems. The Arabidopsis family of 14-3-3 proteins represents a rather large 14-3-3 gene family. The biological motive for such diversity within a single protein family is not yet completely understood. The work presented here utilizes 14-3-3 micro-affinity chromatography in conjunction with Fourier transform ion cyclotron resonance mass spectrometry to survey the substrate sequence selectivity of two Arabidopsis 14-3-3 isoforms that represent the two major subclasses of this protein family. A method was developed to compare the relative binding of eight synthetic phosphopeptide sequences. The degree to which each phosphopeptide bound to either isoform was assigned a relative value, defined here as the binding ratio. The method provided a simple means for visualizing differences in substrate sequence selection among different 14-3-3 isoforms. A reproducible preference for specific phosphopeptide sequences was measured for both isoforms. This binding preference was consistent among the two classes of isoforms, suggesting that any pressure for isoform selectivity must reside outside the central core that interacts with the phosphopeptide sequence of the client.  相似文献   

16.
《Genomics》2020,112(5):3537-3548
DNA methylation governs gene regulation in plants in response to environmental conditions. Here, we analyzed role of DNA methylation under desiccation and salinity stresses in three (IR64, stress-sensitive; Nagina 22, drought-tolerant and Pokkali, salinity-tolerant) rice cultivars via bisulphite sequencing. Methylation in CG context within gene body and methylation in CHH context in distal promoter regions were positively correlated with gene expression. Hypomethylation in Nagina 22 and hypermethylation in Pokkali in response to desiccation and salinity stresses, respectively, were correlated with higher expression of few abiotic stress response related genes. Most of the differentially methylated and differentially expressed genes (DMR-DEGs) were cultivar-specific, suggesting an important role of DNA methylation in abiotic stress responses in rice in cultivar-specific manner. DMR-DEGs harboring differentially methylated cytosines due to DNA polymorphisms between the sensitive and tolerant cultivars in their promoter regions and/or coding regions were identified, suggesting the role of epialleles in abiotic stress responses.  相似文献   

17.
AtSAP5, one of approximately 14 members of the Stress Associated Protein gene family in Arabidopsis, was identified by its expression in response to salinity, osmotic, drought and cold stress. AtSAP5 shows strong homology to OSISAP1, an A20/AN1-type zinc finger protein implicated in stress tolerance in rice. To evaluate the function of AtSAP5 in the regulation of abiotic stress responses, transgenic Arabidopsis plants that over-express AtSAP5 (35S::AtSAP5) were characterized, along with wild-type and T-DNA knock-down plants. Plants that over-express AtSAP5 showed increased tolerance to environmental challenges including salt stress, osmotic stress and water deficit. Comparison of gene expression patterns between 35S::AtSAP5 transgenic plants and wild-type plants under normal conditions and water deficit stress indicated that over-expression of AtSAP5 correlates with up-regulation of drought stress responsive gene expression. Analysis of transgenic plants that express GFP-AtSAP5 showed that it is localized primarily in nuclei of root cells and recombinant AtSAP5 has E3 ubiquitin ligase activity in vitro. These results indicate that AtSAP5 has E3 ligase activity and acts as a positive regulator of stress responses in Arabidopsis.  相似文献   

18.
DREB2s是植物特有的转录因子,隶属于AP2/EREBP转录因子家族,对干旱、高盐或低温、高温等非生物胁迫应答基因的表达有重要的调控作用。不同植物来源的DREB2在基因结构上有细微差异,对非生物胁迫的响应亦有不同表现。本文阐述了DREB2s的蛋白质结构特征及其对多种非生物胁迫的应答反应,并深入分析了DREB2s转录水平和转录后加工水平的表达调控分子机制的最新研究进展,为理解DREB2s基因功能、分子调控机制及作物抗逆基因工程提供理论依据。  相似文献   

19.
The 14-3-3s are small acidic cytosolic proteins that interact with multiple clients and participate in essential cellular functions in all eukaryotes. Available structural and functional information about 14-3-3s is largely derived from higher eukaryotes, which contain multiple members of this protein family suggesting functional specialization. The exceptional sequence conservation among 14-3-3 family members from diverse species suggests a common ancestor for 14-3-3s, proposed to have been similar to modern 14-3-3ε isoforms. Structural features of the sole family member from the protozoan Giardia duodenalis (g14-3-3), are consistent with this hypothesis, but whether g14-3-3 is functionally homologous to the epsilon isoforms is unknown. We use inter-kingdom reciprocal functional complementation and biochemical methods to determine whether g14-3-3 is structurally and functionally homologous with members of the two 14-3-3 conservation groups of the metazoan Drosophila melanogaster. Our results indicate that although g14-3-3 is structurally homologous to D14-3-3ε, functionally it diverges presenting characteristics of other 14-3-3s. Given the basal position of Giardia in eukaryotic evolution, this finding is consistent with the hypothesis that 14-3-3ε isoforms are ancestral to other family members.  相似文献   

20.
Molecular evolution of the 14-3-3 protein family   总被引:9,自引:0,他引:9  
Members of the highly conserved and ubiquitous 14-3-3 protein family modulate a wide variety of cellular processes. To determine the evolutionary relationships among specific 14-3-3 proteins in different plant, animal, and fungal species and to initiate a predictive analysis of isoform-specific differences in light of the latest functional and structural studies of 14-3-3, multiple alignments were constructed from forty-six 14-3-3 sequences retrieved from the GenBank and SwissProt databases and a newly identified second 14-3-3 gene fromCaenorhabditis elegans. The alignment revealed five highly conserved sequence blocks. Blocks 2–5 correlate well with the alpha helices 3, 5, 7, and 9 which form the proposed internal binding domain in the three-dimensional structure model of the functioning dimer. Amino acid differences within the functional and structural domains of plant and animal 14-3-3 proteins were identified which may account for functional diversity amongst isoforms. Protein phylogenic trees were constructed using both the maximum parsimony and neighbor joining methods of the PHYLIP(3.5c) package; 14-3-3 proteins fromEntamoeba histolytica, an amitochondrial protozoa, were employed as an outgroup in our analysis. Epsilon isoforms from the animal lineage form a distinct grouping in both trees, which suggests an early divergence from the other animal isoforms. Epsilons were found to be more similar to yeast and plant isoforms than other animal isoforms at numerous amino acid positions, and thus epsilon may have retained functional characteristics of the ancestral protein. The known invertebrate proteins group with the nonepsilon mammalian isoforms. Most of the current 14-3-3 isoform diversity probably arose through independent duplication events after the divergence of the major eukaryotic kingdoms. Divergence of the seven mammalian isoforms beta, zeta, gamma, eta, epsilon, tau, and sigma (stratifin/ HME1) occurred before the divergence of mammalian and perhaps before the divergence of vertebrate species. A possible ancestral 14-3-3 sequence is proposed. Correspondence to: D.C. Shakes  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号