首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. We examined the response to chemical cues from fish and crayfish, two predators with contrasting feeding modes, and their single and combined effect on shell morphology in the freshwater snail Radix balthica. 2. Snails were subjected to four treatments: tench (Tinca tinca), signal crayfish (Pacifastacus leniusculus), a combination of tench and signal crayfish and no predators (control). Shell shape, crushing resistance and shell thickness were quantified. We also analysed whether shape or shell thickness contributes most to crushing resistance. 3. Chemical cues from the fish induced a rounder shell shape in R. balthica, a thicker shell and a higher crushing resistance, whereas crayfish chemical cues had no effect on shell morphology, shell thickness or crushing resistance. Shell shape contributed more to crushing resistance than shell thickness. 4. The combined predator treatment showed an intermediate response between the fish and crayfish treatments. Shell roundness was reduced compared with the fish treatment, but the reduced crushing resistance that comes with a less rounded shell was compensated by an increased investment in extra shell material, exceeding that of the fish treatment. 5. Our study extends previous studies of multipredator effects on phenotypically plastic freshwater snails by showing that the snails are able to fine‐tune different elements of morphology to counter predator‐specific foraging modes.  相似文献   

2.
Activity level is a key behavioral trait in many animals whichmediates a trade-off between finding food and avoiding predation.Optimal activity level will therefore depend on environment,and plasticity in response may increase fitness (if an organismencounters multiple environments in a lifetime). One groupin which activity level, and its relationship to foraging andpredation risk, has been well studied is larval anurans. Anuransinhabit a range of distinct freshwater aquatic community typesthat are created by differences in pond permanency and toppredator. Species segregate across these pond types and thereforetadpoles from different species encounter different selection regimes. I hypothesized that species from different pond typeswould therefore differ in activity behavior, and in plasticityof this behavior. I tested this in a phylogenetic frameworkto consider the evolution of plasticity in anurans diversifyinginto different pond types. Time spent active was quantifiedfor larvae of each of 13 anuran species (from three taxonomicfamilies) in four conditions: when no predator was present,and in the non-lethal presence of a dragonfly, newt, or fishpredator. Species nested within pond type by taxonomic familydiffered significantly in time spent active. A significant interaction between predator treatment and taxonomic familywas also observed. A phylogenetic analysis of change in behaviorrevealed strong positive correlations in evolution of thesebehaviors and suggests constraints on the ability of larvalanurans to independently modify activity levels in the presenceversus absence of predators.  相似文献   

3.
Anti-predator benefits increase with vigilance rate and group size in many species of animal, while simultaneously resource intake rates usually decrease. This implies that there is an optimal group size and vigilance rate that will maximize individual fitness. While this basic theory of vigilance has been modelled and tested extensively, it has often been assumed that the predator represents a 'fixed-risk' such that groups of prey are essentially independent entities that exert little or no effect on one another either directly or indirectly. We argue that this is an over-simplification, and propose that the behaviour of one group of prey will likely affect the fitness of another local group of prey if the predator preferentially attacks the most vulnerable group-rather than attack both with constant rates. Using a numerical simulation model, we make the first examination of this game and allow the prey to dynamically evolve both optimal group size distributions between two habitats and vigilance rates in response to a predator with a preference for whichever group is the more vulnerable. We show that the density of prey in the population and the sensitivity of a predator to differences in prey vulnerability are likely to drive the dynamics of such a game. This novel approach to vigilance theory opens the door to several challenging lines of future research, both experimental and theoretical.  相似文献   

4.
Abstract Predation is recognized as a major selective pressure influencing population dynamics and evolutionary processes. Prey species have developed a variety of predator avoidance strategies, not least of which is olfactory recognition. However, within Australia, European settlement has brought with it a number of introduced predators, perhaps most notably the red fox (Vulpes vulpes) and domestic cat (Felis catus), which native prey species may be unable to recognize and thus avoid due to a lack of coexistence history. This study examined the response of native Tasmanian swamp rats (Rattus lutreolus velutinus) to predators of different coexistence history (native predator‐ spotted‐tail quoll (Dasyurus maculatus), domestic cats and the recently introduced red fox). We used an aggregate behavioural response of R. l. velutinus to predator integumental odour in order to assess an overall behavioural response to predation risk. Rattus lutreolus velutinus recognized the integumental odour of the native quoll (compared with control odours) but did not respond to either cat or fox scent (compared with control odur). In contrast, analyses of singular behaviours resulted in the conclusion that rats did not respond differentially to either native or introduced predators, as other studies have concluded. Therefore, measuring risk assessment behaviours at the level of overall aggregate response may be more beneficial in understanding and analysing complex behavioural patterns such as predator detection and recognition. These results suggest that fox and cat introductions (and their interactive effects) may have detrimental impacts upon small native Tasmanian mammals due to lack of recognition and thus appropriate responses.  相似文献   

5.
6.
Enterococci are ubiquitous organisms used to both improve the flavor and texture of fermented foods, and provide protective mechanisms as either a probiotic or antimicrobial additive. However, two species, E. faecalis and E. faecium, are also associated with 10% of nosocomial infections of the bloodstream, wounds, urinary tract and heart. While the genes involved in the pathogenicity of these organisms are slowly identified along with the mechanisms behind their regulation, the environmental signals involved in the conversion to pathogenicity remain unclear. The distribution of virulence genes was determined in 13 E. faecalis isolates from medical, food and animal sources. Regardless of their source of isolation, all isolates harbored between eight and thirteen virulence genes. Relative differences in expression of the virulence associated genes clpP, clpX, gls24, agg, efaA, gelE, and cylBL(L) were examined in E. faecalis TMW 2.63 and TMW 2.622 exposed to different environments (LB, BHI, respective supernatants, pig fecal extract, LB+6.5% NaCl, LB+pH5, LB+6.5% NaCl+pH5, and sausage medium) using RT-PCR and Lightcycler technology. Significant differences in expression were influenced by growth phase, environment, and isolate, which suggests that these three factors be taken into consideration during the selection of enterococci for use in foods or as probiotics rather than their source of isolation or set of virulence genes.  相似文献   

7.
Predators are a major influence on the breeding site selection decisions of anurans. Many species actively avoid breeding in habitat with predators when given the choice between predator and predator‐free sites. However, certain factors such as site fidelity or conflicting cues may preclude avoidance behavior. We conducted two experiments examining how western chorus frogs, Pseudacris triseriata, respond to predators, western mosquitofish, Gambusia affinis, using an array of artificial ponds located at two field sites. In one experiment, we added G. affinis to half of our experimental ponds and monitored subsequent colonization by frogs. We found that frogs laid significantly fewer eggs in ponds with fish compared to fishless ponds. In another experiment, we introduced an additional cue to complicate the decision‐making process and monitored colonization of ponds in response to treatments of conspecific breeding cues only (eggs), predators (G. affinis) only, and conspecific cues and predators. We found no significant differences in number of eggs deposited among these three treatments. Based on these results, P. triseriata does not always exhibit complete avoidance of fish predators, and avoidance may vary based on factors such as site fidelity or dispersal costs. This study represents a step toward understanding how multiple biotic factors at a breeding pond may influence anuran site selection behavior in the field.  相似文献   

8.
While diel vertical migration in zooplankton has been shownrecently to be a predator avoidance behavior, the mechanismby which predators induce and maintain such behavior has beendebated. We report results of an in situ predator manipulationexperiment during which enclosed populations of the marine planktomccopepod Acaraa hudsonica rapidly changed their vertical distributionand diel migration behavior depending on presence or absenceof the planktivorous fish Casterosteus aculeatus These resultspoint unambiguously to phenotypic behavioral plasticity of individualplanktonic prey, not, as previously hypothesized, population-geneticlevel behavioral changes caused by selective fish predation,as the mechanism underlying changes in diel vertical migrationin this copepod.  相似文献   

9.
1.  Egg cannibalism by larvae is common in Coccinellidae and is known to be advantageous for the cannibals. Furthermore, larvae of aphidophagous ladybirds usually produce an oviposition-deterring pheromone (ODP), which inhibits oviposition by adult females. It has been proposed that the response to ODP has evolved because of the high costs of cannibalism. However, this has never been formally proved.
2.  In this paper, we study the theoretical evolution of this system. We first look at the conditions under which cannibalism and the response to ODP can evolve. Subsequently, we examine the occurrence of polymorphism both in the production of larval tracks and in the sensitivity of females to specific pheromones.
3.  The models predict that the amount of cannibalism should not depend on prey density and that evolution should lead to a continuous increase in cannibalism, and consequently larvae should always cannibalize eggs when possible. In response to the cost of cannibalism, ODP recognition can evolve, so that females avoid laying eggs in patches of prey already occupied by conspecific larvae. The result is an arms race between larvae and adult females, which favours a diversification of ODP pheromones. Our models show that: (i) females should be able to recognize mixtures of hydrocarbons rather than a single molecule; and (ii) females should be more sensitive to the tracks of their own offspring than those of non-related larvae.  相似文献   

10.
A key step in the evolution of multicellular organisms is the formation of cooperative multicellular groups. It has been suggested that predation pressure may promote multicellular group formation in some algae and bacteria, with cells forming groups to lower their chance of being eaten. We use the green alga Chlorella vulgaris and the protist Tetrahymena thermophila to test whether predation pressure can initiate the formation of colonies. We found that: (1) either predators or just predator exoproducts promote colony formation; (2) higher predator densities cause more colonies to form; and (3) colony formation in this system is facultative, with populations returning to being unicellular when the predation pressure is removed. These results provide empirical support for the hypothesis that predation pressure promotes multicellular group formation. The speed of the reversion of populations to unicellularity suggests that this response is due to phenotypic plasticity and not evolutionary change.  相似文献   

11.
正Dear Editor,Roots,as a major organ of plants,are involved in nutrient and water acquisition,and might play a vital role in yield increase and efficient N absorption with genetic improvement.Because of the great differences in growth period and pattern between the old and new rice cultivars,it is difficult to clarify how genetic improvements contribute to root growth in rice.For example,for a solution culture system,Wu et al.suggested that total root length increased with increasing year of release for maize hybrids,while shoot dry weight,  相似文献   

12.
Summary Occurrence and diet of ten carnivorous predators (four falconiforms, four owls, and two foxes), and population levels of their mammalian prey, were monitored over 45 months at a semi-arid site in north-central Chile. Early in this period, small mammals irrupted and then declined markedly to a density 7% of that at peak. All four falconiforms (Buteo polyosoma, Falco sparverius, Geranoaetus melanoleucus, Parabuteo unicinctus) and one owl (Tyto alba) responded numerically to the decline in mammalian prey by virtually abandoning the study site. The three other owls (Athene cunicularia, Bubo virginianus, Glaucidium nanum) and the two foxes (Pseudalopex culpaeus and P. griseus) remained. With few exceptions, throughout the study predators maintained species-specific preferences among small mammal species regardless of the absolute and proportional abundance of these prev. At no time did the two prey species most responsible for the irruption (the rodents Phyllotis darwini and Akodon olivaceus) occur in predators' diets out of proportion to their estimated relative abundance in the field. Predators were clearly unable to prevent the irruption from occurring. Given the absence of a clear functional response to the most irruptive species, predators seemed unlikely to have been responsible for the observed crash. At present, however, predators may be prolonging the crash and delaying the return of small-mammal populations to typical densities.  相似文献   

13.
We conducted three replicated field experiments to test the population response of two ecologically-divergent wolf spider species ( Hogna helluo and Pardosa milvina ) to three correlates of landscape fragmentation: area reduction, spatial subdivision, and increased edge to core ratio. We selected these two species because they differ in vagility and habitat selectivity. Hogna helluo is relatively large, averse to disturbed substrata, and has poor colonization abilities. Conversely, Pardosa is small, vagile, and will use barren, disturbed areas. In a test for the effect of area reduction on populations of the two wolf spiders, we destroyed 0%, 20% or 80% of randomly selected habitat islands in replicated experimental landscapes. We found that population densities of Hogna declined significantly, even at the lowest level of area reduction (20%), and that there was an increase in numbers of Pardosa . In a test for the response to an increase in landscape subdivision, we created four levels of habitat fragmentation in replicate plots. We found a significant decline in Hogna populations with increasing fragmentation. Pardosa populations did not respond to the fragmentation. In the third experiment we kept landscape area and subdivision constant, but manipulated the edge-to-core ratio. We found that populations of Hogna declined sharply with increasing edge, and that populations of Pardosa did not respond. These two syntopic wolf spiders have distinctly different responses to landscape fragmentation.  相似文献   

14.
Predators of parasites have recently gained attention as important parts of food webs and ecosystems. In aquatic systems, many taxa consume free‐living stages of parasites, and can thus reduce parasite transmission to hosts. However, the importance of the functional and numerical responses of parasite predators to disease dynamics is not well understood. We collected host–parasite–predator cooccurrence data from the field, and then experimentally manipulated predator abundance, parasite abundance, and the presence of alternative prey to determine the consequences for parasite transmission. The parasite predator of interest was a ubiquitous symbiotic oligochaete of mollusks, Chaetogaster limnaei limnaei, which inhabits host shells and consumes larval trematode parasites. Predators exhibited a rapid numerical response, where predator populations increased or decreased by as much as 60% in just 5 days, depending on the parasite:predator ratio. Furthermore, snail infection decreased substantially with increasing parasite predator densities, where the highest predator densities reduced infection by up to 89%. Predators of parasites can play an important role in regulating parasite transmission, even when infection risk is high, and especially when predators can rapidly respond numerically to resource pulses. We suggest that these types of interactions might have cascading effects on entire disease systems, and emphasize the importance of considering disease dynamics at the community level.  相似文献   

15.
1. Plant resistance against herbivores can act directly (e.g. by producing toxins) and indirectly (e.g. by attracting natural enemies of herbivores). If plant secondary metabolites that cause direct resistance against herbivores, such as glucosinolates, negatively influence natural enemies, this may result in a conflict between direct and indirect plant resistance. 2. Our objectives were (i) to test herbivore‐mediated effects of glucosinolates on the performance of two generalist predators, the marmalade hoverfly (Episyrphus balteatus) and the common green lacewing (Chrysoperla carnea) and (ii) to test whether intraspecific plant variation affects predator performance. 3. Predators were fed either Brevicoryne brassicae, a glucosinolate‐sequestering specialist aphid that contains aphid‐specific myrosinases, or Myzus persicae, a non‐sequestering generalist aphid that excretes glucosinolates in the honeydew, reared on four different white cabbage cultivars. Predator performance and glucosinolate concentrations and profiles in B. brassicae and host‐plant phloem were measured, a novel approach as previous studies often measured glucosinolate concentrations only in total leaf material. 4. Interestingly, the specialist aphid B. brassicae selectively sequestered glucosinolates from its host plant. The performance of predators fed this aphid species was lower than when fed M. persicae. When fed B. brassicae reared on different cultivars, differences in predator performance matched differences in glucosinolate profiles among the aphids. 5. We show that not only the prey species, but also the plant cultivar can have an effect on the performance of predators. Our results suggest that in the tritrophic system tested, there might be a conflict between direct and indirect plant resistance.  相似文献   

16.
17.
18.
崔家宝  魏晨  王宁  曹建军 《生态学报》2023,43(8):3327-3338
以根径级表征根系形态结构,可以反映植物资源利用和生物量分配状况。研究高寒草地不同径级根形态,对了解地下碳分配、水分和养分吸收及生产力具有重要意义。围封被认为是防治草地退化的最有效措施之一,但目前有关围封年限对不同径级根形态影响的研究还极度缺乏,以致无法确定有利于根生态效益,即资源吸收利用能力最大化的围封年限。以位于青海省海北台站围封5、13、22、39 a的高寒草地为研究对象,季节性放牧草地为对照,探讨围封年限对不同径级根形态(包括根长、根表面积和根尖数)的影响。结果表明:在0—15 cm土层中,径级小于0.5 mm时,围封13 a的根尖数显著高于围封5 a的草地,其对应的生物量也最大;径级小于0.6 mm时,围封13 a的根长和根表面积均显著高于围封5 a和放牧草地,且其对应的生物量也达最大;径级大于0.5 mm时,各草地之间的根尖数均无差异;径级大于0.6 mm时,围封39 a的根长和根表面积均显著高于放牧草地,且其对应的生物量最大。在15—30 cm土层中,各径级下,围封5 a的根长、根表面积和根尖数均显著大于围封39 a和放牧草地,但其对应的生物量在围封13 a时达最大。土壤硝...  相似文献   

19.
Two major theories of community assembly – based on the assumption of ‘limiting similarity’ or ‘habitat filtering’, respectively – predict contrasting patterns in the spatial arrangement of functional traits. Previous analyses have made progress in testing these predictions and identifying underlying processes, but have also pointed to theoretical as well as methodological shortcomings. Here we applied a recently developed methodology for spatially explicit analysis of phylogenetic meta‐community structure to study the pattern of co‐occurrence of functional traits in Afrotropical and Neotropical bird species inhabiting forest fragments. Focusing separately on locomotory, dietary, and dispersal traits, we tested whether environmental filtering causes spatial clustering, or competition leads to spatial segregation as predicted by limiting similarity theory. We detected significant segregation of species co‐occurrences in African fragments, but not in the Neotropical ones. Interspecific competition had a higher impact on trait co‐occurrence than filter effects, yet no single functional trait was able to explain the observed degree of spatial segregation among species. Despite high regional variability spanning from spatial segregation to aggregation, we found a consistent tendency for a clustered spatial patterning of functional traits among communities in fragmented landscapes, particularly in non‐territorial species. Overall, we show that behavioural effects, such as territoriality, and environmental effects, such as the area of forest remnants or properties of the landscape matrix in which they are embedded, can strongly affect the pattern of trait co‐occurrence. Our findings suggest that trait‐based analyses of community structure should include behavioural and environmental covariates, and we here provide an appropriate method for linking functional traits, species ecology and environmental conditions to clarify the drivers underlying spatial patterns of species co‐occurrence.  相似文献   

20.
Invertebrate predators and parasitoids have long been characterized as having a hyperbolic (Type 2) functional response. Modifications were made to Holling's sand paper disc experiment which consisted of limiting the initial period of search during which a host must be contacted. Failure to contact a host during this initial period causes the predator to emigrate from the search area. The modification generated a sigmoid (Type 3) functional response. This response resulted from the low probability of encountering a host during the initial period of search at low host densities in the time allotted. A limited period of search has been found in several insect parasitoids. Such a strategy would minimize the time (energy) spent per offspring produced by minimizing the time invested in searching microhabitats in which hosts are scarce or absent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号