共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Westphal H 《Comptes rendus biologies》2002,325(10):1045-1048
Legislative bodies in the international arena and in individual countries are actively engaged in developing policies regarding the establishment, distribution and use of human embryonic stem cells. Present and anticipated policies concerning research on human adult and embryonic stem cells of possible medical importance reflect the wide spectrum of popular views that range from complete rejection to enthusiastic support. Since the public debate concerning the use of human gametes or embryos for research purposes is not likely to abate anytime soon, all the more urgent becomes the quest for alternative approaches toward generating stem cells that are not embryonic and yet are pluripotent. 相似文献
4.
5.
6.
7.
Functional heterogeneity within stem and progenitor cells has been shown to influence cell fate decisions. Similarly, intracellular signaling activated by external stimuli is highly heterogeneous and its spatiotemporal activity is linked to future cell behavior. To quantify these heterogeneous states and link them to future cell fates, it is important to observe cell populations continuously with single cell resolution. Live cell imaging in combination with fluorescent biosensors for signaling activity serves as a powerful tool to study cellular and molecular heterogeneity and the long-term biological effects of signaling. Here, we describe these methodologies, their advantages over classical approaches, and we illustrate how they could be applied to improve our understanding of the importance of heterogeneous cellular and molecular responses to external signaling cues. 相似文献
8.
During the last decade, there has been enormous progress in understanding both multipotent stem cells such as hematopoietic stem cells and pluripotent stem cells such as embryonic stem cells and induced pluripotent stem cells. However, it has been challenging to study developmental potentials of these stem cells because they reside in complex cellular environments and aspects of their distribution, migration, engraftment, survival, proliferation, and differentiation often could not be sufficiently elucidated based on limited snapshot images of location or environment or molecular markers. Therefore, reliable imaging methods to monitor or track the fate of the stem cells are highly desirable. Both short-term and more permanent monitoring of stem cells in cultures and in live organisms have benefited from recently developed imaging approaches that are designed to investigate cell behavior and function. Confocal and multiphoton microscopy, time-lapse imaging technology, and series of noninvasive imaging technologies enable us to investigate cell behavior in the context of a live organism. In turn, the knowledge gained has brought our understanding of stem cell biology to a new level. In this review, we discuss the application of current imaging modalities for research of hematopoietic stem cells and pluripotent stem cells and the challenges ahead. 相似文献
9.
肿瘤组织中存在一小群能够自我更新、增殖和分化,对肿瘤的发生、发展、复发、转移起决定作用的细胞,即肿瘤干细胞(cancer stem cells,CSCs)。在传统理论方法已不能攻克癌症的情况下,肿瘤干细胞理论为我们重新认识肿瘤的起源和本质提供了新的方向和视角。从20世纪50年代至今,随着生物技术的发展,肿瘤干细胞理论经历了从设想到验证的漫长历程。但该理论自提出之日起便受到来自各方面不同观点的质疑。当今针对肿瘤干细胞癌症治疗主要集中在靶向问题上。因此,寻找特异的肿瘤干细胞标志物,探索肿瘤干细胞与周围微环境间的复杂关系以及发现调控其功能的关键信号通路成为当前研究的热点。 相似文献
10.
11.
12.
目前,癌症是导致人类死亡的主要因素之一。尽管在癌症治疗方面取得了巨大进展,但是,其较高的复发率还是会导致死亡。连续治疗失败的一个可能原因是,残留的恶性细胞有类似干细胞的分化潜能,这样就能再次形成肿瘤和造成病灶转移。肿瘤干细胞(cancer stem cell,CSC)假说认为,肿瘤组织中存在具有自我跟新能力,无限增殖和肿瘤形成能力的一小部分肿瘤细胞,近年来,随着在血液肿瘤和实体瘤中相继发现CSC存在的相关证据,对CSC的生物学特性的认识不断深入,对肿瘤的复发、病灶转移、耐药性形成也有了新的观点和研究方向,目前的研究主要集中在其分离鉴定阶段,本文就近年来该方面的研究进展作一综述。 相似文献
13.
Kyu Won Jung 《Journal of cellular physiology》2009,220(3):535-537
Human stem cell research draws not only scientists' but the public's attention. Human stem cell research is considered to be able to identify the mechanism of human development and change the paradigm of medical practices. However, there are heated ethical and legal debates about human stem cell research. The core issue is that of human dignity and human life. Some prefer human adult stem cell research or iPS cell research, others hES cell research. We do not need to exclude any type of stem cell research because each has its own merits and issues, and they can facilitate the scientific revolution when working together. J. Cell. Physiol. 220: 535–537, 2009. © 2009 Wiley‐Liss, Inc. 相似文献
14.
Fuchs E 《Cell Stem Cell》2012,10(6):640-641
Induced pluripotent stem cell research has broadened possibilities for regenerative medicine and captured the world's attention in a way that science rarely does. However, clinical applications utilizing cultured stem cells have existed for >30 years and can assist benchers and bedsiders in identifying and expediting promising avenues for future therapies. 相似文献
15.
干细胞可塑性的研究进展 总被引:1,自引:0,他引:1
传统的观点认为 ,生物体的不同组织与器官内存在不同类型的定向干细胞 ,可以分化产生所在组织与器官的细胞类型 ,参与组织的正常更新或者损伤后的再生。但是 ,最近一系列的研究表明 ,一些胚胎与成年动物体内的定向干细胞转移到其它环境时 ,能够产生一些适合新环境的、与干细胞来源组织不相关的细胞 ,被称为干细胞可塑性 相似文献
16.
17.
Challenges of primate embryonic stem cell research 总被引:2,自引:0,他引:2
Embryonic stem (ES) cells hold great promise for treating degenerative diseases, including diabetes, Parkinson's, Alzheimer's, neural degeneration, and cardiomyopathies. This research is controversial to some because producing ES cells requires destroying embryos, which generally means human embryos. However, some of the surplus human embryos available from in vitro fertilization (IVF) clinics may have a high rate of genetic errors and therefore would be unsuitable for ES cell research. Although gross chromosome errors can readily be detected in ES cells, other anomalies such as mitochondrial DNA defects may have gone unrecognized. An insurmountable problem is that there are no human ES cells derived from in vivo-produced embryos to provide normal comparative data. In contrast, some monkey ES cell lines have been produced using in vivo-generated, normal embryos obtained from fertile animals; these can represent a "gold standard" for primate ES cells. In this review, we argue a need for strong research programs using rhesus monkey ES cells, conducted in parallel with studies on human ES and adult stem cells, to derive the maximum information about the biology of normal stem cells and to produce technical protocols for their directed differentiation into safe and functional replacement cells, tissues, and organs. In contrast, ES cell research using only human cell lines is likely to be incomplete, which could hinder research progress, and delay or diminish the effective application of ES cell technology to the treatment of human diseases. 相似文献
18.
Advances in stem cell biology have raised legal challenges to the patentability of stem cells and any derived technologies and processes. In 1999, Oliver Brüstle was granted a patent for the generation and therapeutic use of neural cells derived from human embryonic stem cells (hESCs). The patent was challenged and put before the European Court of Justice, which ruled that inventions involving the prior destruction of human embryos cannot be patented. The legal maneuvering around this case demonstrates that the future of stem cell‐based patents in Europe remains unsettled. Furthermore, owing to the European Court's broad definition of hESC as ‘any cell that is capable of commencing development into a human being,’ novel technologies that could eliminate the need for hESCs, such as induced pluripotent stem cells (iPSCs), are at risk of being included under the same ruling. Advances in the in vitro development of germ cells from pluripotent stem cells may one day provide a direct developmental path from iPSC to oocyte and sperm, and, according to the European Court's reasoning, legally equate iPSCs with human embryos. In this review, we will briefly discuss the Brüstle v Greenpeace case and the implications of the European Court of Justice's ruling. We will identify potential risks for stem cell research and future therapeutics resulting from the broad legal definition of the human embryo. Finally, we will broach the current legal landscape, as this broad definition has also created great uncertainty about the status of human iPSCs. 相似文献
19.
Fox JL 《Nature biotechnology》2004,22(12):1485-1486
20.
Haruhisa Inoue 《Experimental cell research》2010,316(16):2560-2564
Neurodegenerative disease-specific induced pluripotent stem cell (iPSC) research contributes to the following 3 areas; “Disease modeling”, “Disease material” and “Disease therapy”.“Disease modeling”, by recapitulating the disease phenotype in vitro, will reveal the pathomechanisms. Neurodegenerative disease-specific iPSC-derived non-neuronal cells harboring disease-causative protein(s), which play critical roles in neurodegeneration including motor neuron degeneration in amyotrophic lateral sclerosis, could be “Disease material”, the target cell(s) for drug screening. These differentiated cells also could be used for “Disease therapy”, an autologous cellular replacement/neuroprotection strategy, for patients with neurodegenerative disease.Further progress in these areas of research can be made for currently incurable neurodegenerative diseases. 相似文献