首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Replication rate and replicon sizes in chromosomal DNA of in vitro cultured diploid D. melanogaster cells were determined using autoradiography of 3H-thymidine labeled DNA. Synthesis of DNA in euchromatic and heterochromatic regions of Drosophila diploid cells occurs at different periods of the S phase which lasts 10 h. During the first 4 h the synthesis is observed only in euchromatic regions. The heterochromatic synthesis starts shortly before the synthesis in euchromatic regions is completed and lasts for 6 h until the end of the S phase. The cells were synchronized by 5fluorodeoxyuridine which blocked the diploid cell DNA synthesis. Synthesis was found to start simultaneously in most euchromatic replicons. In the majority of the replicons the synthesis started at a single point and proceeded bidirectionally. The average rate of DNA synthesis per fork was 12.5 m/h (38 kb). The mean distance between the middle points of adjacent labeled regions was 70 m (210 kb). The size of most replicons ranged from 40 to 120 m. — These estimates do not apply to the heterochromatic portions of the D. melanogaster genome since the measurements have been carried out on DNA preparations obtained during the first 2 h of the S phase. — On the average, a replicon can consist of 7 chromomeres since the size of a replicon in diploid cell chromosomal DNA and DNA length of a polytene chromomere average 210 and 30 kb, respectively.  相似文献   

2.

Background

Birds have smaller average genome sizes than other tetrapod classes, and it has been proposed that a relatively low frequency of repeating DNA is one factor in reduction of avian genome sizes.

Results

DNA repeat arrays in the sequenced portion of the chicken (Gallus gallus) autosomes were quantified and compared with those in human autosomes. In the chicken 10.3% of the genome was occupied by DNA repeats, in contrast to 44.9% in human. In the chicken, the percentage of a chromosome occupied by repeats was positively correlated with chromosome length, but even the largest chicken chromosomes had repeat densities much lower than those in human, indicating that avoidance of repeats in the chicken is not confined to minichromosomes. When 294 simple sequence repeat types shared between chicken and human genomes were compared, mean repeat array length and maximum repeat array length were significantly lower in the chicken than in human.

Conclusions

The fact that the chicken simple sequence repeat arrays were consistently smaller than arrays of the same type in human is evidence that the reduction in repeat array length in the chicken has involved numerous independent evolutionary events. This implies that reduction of DNA repeats in birds is the result of adaptive evolution. Reduction of DNA repeats on minichromosomes may be an adaptation to permit chiasma formation and alignment of small chromosomes. However, the fact that repeat array lengths are consistently reduced on the largest chicken chromosomes supports the hypothesis that other selective factors are at work, presumably related to the reduction of cell size and consequent advantages for the energetic demands of flight.  相似文献   

3.
Summary Tn17221K, a derivative of transposon Tn1721 lacking one terminal inverted repeat (IR) and conferring kanamycin resistance, promotes transposition of the resistance marker to a target replicon at about 100-fold lower frequency than the wild-type element. A study involving restriction analysis of 16 independent Tn17221K-mediated events led to the following results: (i) Tn17221K mediates fusions of the donor (pRU506) and target (RSF1010) replicons; the fused entities are non-permuted. (ii) Tn17221K promotes insertions of donor DNA at many different sites in the target replicon. (iii) The analyzed fusion plasmids contain the entire target and various lengths of donor DNA. Eleven products contain the entire donor plasmid plus a duplication of the IR (class A), whereas five products contain only portions adjacent to the single IR (class B). (iv) In each case the two replicons are joined at (or very close to) the single IR. The second junction is located shortly beyond the duplicated IR in class A and at different sites within the donor plasmid in class B. These results are interpreted in terms of asymmetric replicative transposition.  相似文献   

4.
Reassociation kinetics of DNA from the macronucleus of the ciliate, Tetrahymena pyriformis GL, has been studied. The genome size determined by the kinetic complexity of DNA was found to be 2.0×108 base pairs (or 1.2×1011 daltons). About 90% of the macronuclear DNA fragments 200–300 nucleotides in length reassociate at a rate corresponding to single-copy nucleotide sequences, and 7–9% at a rate corresponding to moderate repetitive sequences; 3–4% of such DNA fragments reassociate at C0t practically equal to zero. To investigate the linear distribution of repetitive sequences, DNA fragments of high molecular weight were reassociated and reassociation products were treated with Sl-nuclease. DNA double-stranded fragments were then fractionated by size. It has been established that in the Tetrahymena genome long regions containing more than 2000 nucleotides make up about half of the DNA repetitive sequences. Another half of the DNA repetitive sequences (short DNA regions about 200–300 nucleotides long) intersperse with single-copy sequences about 1,000 nucleotides long. Thus, no more than 15% of the Tetrahymena genome is patterned on the principle of interspersing single-copy and short repetitive sequences. Most of the so called zero time binding or foldback DNA seem to be represented by inverted self-complementary (palindromic) nucleotide sequences. The conclusion has been drawn from the analysis of this fraction isolated preparatively by chromatography. About 75% of the foldback DNA is resistant to Sl-nuclease treatment. The Sl-nuclease resistance is independent of the original DNA concentration. Heat denaturation and renaturation are reversible and show both hyper and hypochromic effects. The majority of the inverted sequences are unique and about 20% are repeated tens of times. According to the equilibrium distribution in CsCl density gradients the average nucleotide content of the palindromic fraction does not differ significantly from that of total macronuclear DNA. It was shown that the largest part of this fraction of the Tetrahymena genome are not fragments of ribosomal genes.  相似文献   

5.
The region immediately 3 of histidine-3 has been cloned and sequenced from two laboratory strains of the ascomycete fungus Neurospora crassa; St Lawrence 74A and Lindegren, which have different derivations from wild collections. Amongst the differences distinguishing these sequences are insertions ranging in size from 20 to 101 by present only in St Lawrence. The largest of these is flanked by a 3 by direct repeat, has terminal inverted repeats (TIR) and shares features with several known transposable elements. At 98 bp, it may be the smallest transposable element yet found in eukaryotes. There are multiple copies of the TIR in the Neurospora genome, similar but not identical to the one sequenced. PCR amplification of Neurospora genomic DNA, using 26 by of the TIR as a single primer, gave products of discrete sizes ranging from 100 by to about 1.3 kb, suggesting that the element isolated (Guest) may be a deletion derivative of a family of larger transposable elements. Guest appears to be the first transposable element reported in fungi that is not a retrotransposon.  相似文献   

6.
DNA fibre autoradiography of highly polytenized nuclei in salivary glands of Drosophila nasuta larvae reveals two distinct types of active replicons. Type I replicons are longer (mean size=64 m), have a very high rate of fork migration (average rate=0.95 m/min) and generally occur in large arrays often extending over several thousand m. In contrast, the type II replicons are smaller (mean size= 20 m), slow replicating (average rate=0.07 m/min) and occur in short arrays containing only a few closely spaced active replicons. Evidence is presented that type I replicons are active in the early S and type II in the late S. Observations on autoradiographic labelling of partially lysed polytene chromosomes provide evidence for a lack of temporal and spatial agreement in the activation of origin points in homologous regions of the lateral polytene strands; these observations also suggest local variations in levels of polyteny within a chromosome. On the basis of this and other available information on replication in polytene chromosomes the possible roles of the two replicon types in the generation of the different 3H-thymidine labelling patterns of polytene chromosomes are discussed.We take pleasure in dedicating this paper to our inspiring teacher Prof. S.P. Ray Chaudhuri on his completing 75 years of fruitful life  相似文献   

7.
The organization of the 5S genes in macro- and micronuclei of Tetrahymena pyriformis was studied using restriction endonucleases. After complete digestion of macronuclear DNA with BamH-I or Hpa I, 5S RNA hybridized to a DNA fragment of approximately 280 base pairs (bp). When macronuclear DNA was only partially digested with these enzymes, hybridization with 32P-5S RNA demonstrated an oligomeric series with a spacing of 280 bp. These results indicate that the 5S genes are tandemly repeated in macronuclei and that the repeating unit is 280 bp (or 180,000 daltons). Since 5S RNA is 120 nucleotides, we conclude that the 5S repeat units contain a 120 bp transcribed region and a 160 bp spacer region. When macronuclear DNA was digested with Eco RI, Bgl I, or Eco RI + Bgl I, 5S RNA hybridized to DNA of molecular weight 3–4×106, suggesting that these enzymes do not cleave within a 5S repeat. These 3–4×106 dalton fragments define the maximum size of an average cluster of 5S repeated units. Assuming the size of the 5S repeat to be 0.18×106 daltons, there are about 15–20 5S repeats per average tandem cluster, and since there are 350 5S-genes per haploid genome, there must be approximately 15–20 tandem arrays. Results obtained using micronuclear DNA suggest that organization of the 5S-genes is very similar in macro- and micronuclei. Macronuclear rRNA genes are extracnromosomal palindromic dimers. In contrast, 5S genes in Tetrahymena were found to be integrated within the genomes of both macro- and micronuclei and not linked to the rRNA genes. Moreover, it is unlikely that they are palindromes; rather they appear to be tandemly repeated in head-to-tail linkages. Thus, the organization of the 5S genes in Tetrahymena is similar to that of higher eukaryotes.  相似文献   

8.
Chromosomal replicons have been described as the cytological counterpart of DNA replicon clusters and have previously been studied in vitro using premature chromosome condensation-sister chromatid differentiation (PCC-SCD) techniques. Chromosomal replicons are visualized as small SCD segments in S-phase cells, and measurement of these segments can provide estimates of relative chromosomal replicon size corresponding to DNA replicon clusters functioning coordinately in S-phase. Current hypotheses of sister chromatid exchange (SCE) formation postulate that sites of SCE induction are associated with active replicons or replicon clusters. We have applied the PCC-SCD technique to in vivo studies of mouse bone marrow cells that have been treated with cyclophosphamide (CP) for two cell cycles. We have been able to visualize chromosomal replicons, as well as SCEs which have been induced in vivo by CP treatment, simultaneously in the same cells. Chromosomal replicons visualized as small SCD segments were measured in PCC cells classified at early or late S-phase based on SCD segment size prevalence. Early S-phase (E/S) PCC cells contained 90% of the SCD segments measured clustered in a segment size range of 0.1 to 0.8 m with a peak value around 0.3 to 0.6 m regardless of CP treatment. As the cells progressed through S-phase, late S-phase (L/S) PCC cells were characterized by the appearance of larger SCD segments and even whole SCD chromosomes in addition to small SCD segments. A concentration of units around 0.4 to 1.0 m was found for L/S SCD segment size distributions regardless of CP treatment with an apparent bimodal profile. Our in vivo data support the existence of a subunit organization of chromosomal replication with a basic functional unit being 0.3 to 0.6 m in size. In addition, we have found that this chromosomal unit of replication or chromosomal replicon does not seem to be functionally perturbed by the mutagen CP. We also found that small SCD segments of 0.4 to 0.7 m in length were involved in the formation of an SCE, suggesting that both spontaneous and CP-induced SCEs occur between chromosomal replicons. These findings provide direct cytogenetic evidence to support a replicon cluster/chromosomal replicon model for SCE formation.  相似文献   

9.
Premature ovarian failure (POF) is the occurrence of menopause before the age of 40 and affects 1% of the female population. Whereas the etiology of POF is largely unexplained, FMR1 premutation carriers are known to be at increased risk of POF compared with the general population. The FMR1 premutation alleles have 55–200 copies of a CGG repeat in the 5 untranslated region of the FMR1 gene. However, functional effects on gene expression may occur even for repeat sizes in what has been considered the normal range. To evaluate the role of the FMR1 repeat in POF, repeat sizes were examined in 53 women with idiopathic POF, 161 control women from the general population, and 21 women with proven fertility at an advanced maternal age. A significant increase in the number of FMR1 alleles between and including 35 and 54 CGG repeats was found in the POF patient population; 15 of 106 (14.2%) POF alleles were between and including 35 and 54 repeats, whereas only 21 of 322 (6.5%) alleles in the general population (P=0.02) and 2 of 42 (4.8%) alleles from women with proven late fertility (P=0.09) were of this size (P=0.01 versus combined controls). The effect was also significant for comparisons of genotype repeat size (repeat size weighted by the relative activity of the two FMR1 alleles) and biallelic mean (average size of the two alleles). These results are clinically relevant and suggest that the FMR1 gene plays a more significant role in the incidence of POF than has previously been thought.  相似文献   

10.
Summary Our recent physical mapping of chloroplast DNA (cpDNA) from Chlamydomonas moewusii, a unicellular green alga which is interfertile with Chlamydomonas eugametos, has revealed a two-fold size difference between the inverted repeat sequences of these algae. With a size of 42 kbp, the inverted repeat of C. moewusii is the largest yet identified in any chloroplast genome. Here we have compared the arrangement of conserved sequences within the two algal inverted repeats by hybridizing cloned restriction fragments representing over 90% of these repeats to Southern blots of cpDNA digests from the two algae. We found that the size difference between the two algal inverted repeats is due to the presence of an extra DNA segment of 21 kilobase pairs (kbp) in C. moewusii. Except for this sequence, the C. moewusii inverted repeat is highly homologous to the entire C. eugametos repeat and the arrangement of conserved sequences in the two repeats is identical. Southern hybridizations with specific gene probes revealed that the conserved sequences include the rDNA region and the genes coding for the large subunit of ribulose 1,5 bisphosphate carboxylase-oxygenase (rbcL) and for the 32 kilodalton thylakoid membrane protein (psbA). With respect to the conserved sequences, the extra 21 kbp DNA segment of C. moewusii lies in the region of psbA, most probably slightly downstream from this gene.  相似文献   

11.
Polymerase chain reaction (PCR)-amplified, sequenced, and digitally typed intergenic spacers (IGSs) of the ribosomal (r)DNA in D. melanogaster reveal unexpected features of the mechanisms of turnover involved with the concerted evolution of the gene family. Characterization of the structure of three isolated IGS length variants reveals breakage hot spots within the 330-base-pair (bp) subrepeat array found in the spacers. Internal mapping of variant repeats within the 240-bp subrepeat array using a novel digital DNA typing procedure (minisatellite variant repeat [MVR]-PCR) shows an unexpected pattern of clustering of variant repeats. Each 240-bp subrepeat array consists of essentially two halves with the repeats in each half identified by specific mutations. This bipartite structure, observed in a cloned IGS unit, in the majority of genomic DNA of laboratory and wild flies and in PCR-amplified products, has been widely homogenized yet is not predicted by a model of unequal crossing over with randomly placed recombination breakpoints. Furthermore, wild populations contain large numbers of length variants in contrast to uniformly shared length variants in laboratory stocks. High numbers of length variants coupled to the observation of a homogenized bipartite structure of the 240-bp subrepeat array suggest that the unit of turnover and homogenization is smaller than the IGS and might involve gene conversion. The use of PCR for the structural analysis of members of the rDNA gene family coupled to digital DNA typing provides powerful new inroads into the mechanisms of DNA turnover affecting the course of molecular evolution in this family. Correspondence to: G. A. Dover  相似文献   

12.
Summary The organization of the ribosomal DNA (rDNA) repcat unit in the standard wild-type strain of Neurospora crassa, 74-OR23-1A, and in 30 other wild-type strains and wild-collected strains of N. crassa, N. tetrasperma, N. sitophila, N. intermedia, and N. discreta isolated from nature, was investigated by restriction enzyme digestion of genomic DNA, and probing of the Southern-blotted DNA fragments with specific cloned pieces of the rDNA unit from 74-OR23-1A. The size of the rDNA unit in 74-OR23-1A was shown to be 9.20 kilobase pairs (kb) from blotting data, and the average for all strains was 9.11+0.21 kb; standard error=0.038; coefficient of variation (C.V.)=2.34%. These data indicate that the rDNA repeat unit size has been highly conserved among the Neurospora strains investigated. However, while all strains have a conserved HindIII site near the 5 end of the 25 S rDNA coding sequence, a polymorphism in the number and/or position of HindIII sites in the nontranscribed spacer region was found between strains. The 74-OR23-1A strain has two HindIII sites in the spacer, while others have from 0 to at least 3. This restriction site polymorphism is strain-specific and not species-specific. It was confirmed for some strains by restriction analysis of clones containing most of the rDNA repeat unit. The current restriction map of the 74-OR23-1A rDNA repeat unit is presented.  相似文献   

13.
Summary HRS60.1, a monomer unit (184 bp) of a highly repeated nuclear DNA sequence of Nicotiana tabacum, has been cloned and sequenced. Following BamHI digestion of tobacco DNA, Southern hybridization with HRS60.1 revealed a ladder of hybridization bands corresponding to multiples of the basic monomer unit. If the tobacco DNA was digested with restriction endonucleases which have no target site in HRS60.1, the larger part of DNA homologous to HRS60.1 remained as uncleaved relic DNA. These results suggest a tandem arrangement of this DNA repeat unit. Four other clones of tobacco nuclear DNA cross-hybridized with HRS60.1, thus forming a HRS60-family. Sequencing their inserts has shown their strong mutual homology. HRS60-family comprised about 2% of the nuclear genome of N. tabacum. Computer comparisons with other tandem plant-repeated DNA sequences could not detect any other homologous sequence.  相似文献   

14.
Summary Replication and incompatibility properties in Escherichia coli of DNA segments from the replication origin region of plasmid RK2 have been investigated. A 393 bp HpaII fragment, derived from the region of the RK2 origin of replication, carries an active origin when essential RK2 encoded functions are provided in trans and will form a mini RK2 replicon when linked to a non-replicating selective fragment. This small ori RK2 plasmid cannot stably coexist with other functional RK2 replicons and is thus incompatible with RK2 replicons. However, the 393 bp ori RK2 segment when cloned into a high copy number plasmid, where plasmid maintenance is no longer dependent on ori RK2, does not interfere with maintenance of a resident RK2 replicon. This is in contrast to larger segments from the origin region that, when cloned at high copy number, cause the loss of a resident RK2 replicon. The apparent ability of the small HpaII oriRK2 plasmid to displace resident RK2 replicons may indicate the turning on of one incompatibility mechanism only when replication from ori RK2is required or may simply reflect the strong selective pressure for establishment of the incoming ori RK2 plasmid and poor ability of the HpaII ori RK2 plasmid to replicate in the presence of another RK2 replicon. The incompatibility expressed by the functional HpaII ori RK2 may be designated inc 1. The activity of a segment of RK2, cloned at high copy number, to eliminate a resident RK2 plasmid has been localized to a region of RK2 DNA, designated the inc 2 region, to distinguish it from inc 1, above, that overlaps but does not coincide with the 393 bp HpaII ori RK2. This inc 2 region also appears to be involved in segregation of RK2 derivatives since removal of a portion of this region results in both higher copy number and increased instability of the RK2 derivative. In addition to defining the region of the RK2 origin of replication, these results indicate that the ability to eliminate a resident RK2 replicon can be expressed by fragments, cloned at high copy number, that do not contain the complete ori RK2. Also, only part of the inc 2 region that appears to be responsible for efficient elimination of RK2 replicons by fragments cloned at high copy number is required for ori RK2.  相似文献   

15.
The chloroplast DNA of L. usitatissimum var. Stormont Cirrus has been mapped with respect to the recognition sites for the enzymes SalP1, Sst1 and SalG1. It is a circular molecule of about 160 kilobasepairs, with an inverted repeat containing the rDNA. Comparisons between chloroplast DNA of uninduced and induced flax genotrophs show there to be no major structural differences.  相似文献   

16.
The replication of chromosomal DNA in human and Chinese hamster cell populations has been studied by means of the DNA fiber autoradiography. It was found that the rate of DNA replication for one fork in human cells varies from 0.2 to 0.9 m/min, the average being 0.6 m/min. In the Chinese hamster cells the rate of DNA replication is greater, varying from 0.3 to 1.2 m/min, the average being 0.8 m/min. There are no clusters containing a great number of replication units in human and Chinese hamster cells. Sequences consisting of two or three replicons which belong to single DNA molecule have been observed, but their frequency was relatively low. The distances between the initiation points in such sequences of replicons vary from 40 to 280 m, the average value being 130 m. This value represents the minimum size of the replication units which have completed the DNA synthesis within 3 h of the S-period. The DNA synthesis in most replication units fails to be accomplished within the three hours of labelling. The process can be completed only in the fragments of DNA molecules of 40 to 200 m (the average value being 100 m) in human cells, whereas in the Chinese hamster cells the fragments of 40 to 250 m (the average being about 140 m) are completely replicated. Provided that the replication is bidirectional the complete replicons are supposed to contain two such fragments. Consequently, the greater part of replication units in mammalian cells covers the pieces of a few hundred microns in DNA molecules. The relation between replication process at the DNA molecules level and that at the metaphase chromosome level is discussed.  相似文献   

17.
Summary Mitochondrial (Mt) DNA from mitochondrial mutants of race s Podospora anserina and from senescent cultures of races s and A was examined. In mutants, we observed that fewer full length circles (31 ) were present; instead, smaller circles characteristic for each mutant sudied were found. Eco Rl digestion of these mutant MtDNAs indicated that in certain mutants, although specific fragments were absent, the total molecular weight of the fragments was not much different than wild-type.The properties of senescent MtDNA was strikingly different from either wild-type or mutant Mt DNA. First, a multimeric set of circular DNA was observed for both race s and A, with a monomeric repeat size of 0.89 . These circles ranged in size from 0.89 to greater than 20 ; only one molecule out of some 200 molecules was thought to be of full length (31 ). Density gradient analysis showed that there were two density species: a majority were at the same density as wild-type (1.694 g/cm3) and a second at 1.699 g/cm3. Most of the circular molecules from MtDNA isolated by either total DNA extraction or by extraction of DNA from isolated mitochondria were contained in the heavy DNA fraction. Eco R1 enzymatic digestion indicated that the light DNA had several fragments (amounting to about 23×106 daltons) missing, compared with young, wild-type MtDNA. Heavy senescent MtDNA was not cleaved by Eco R1. Analysis with Hae III restriction endonuclease showed also that light senescent MtDNA was missing certain fragments. Heavy MtDNA of average size 20×106 daltons, yielded only one fragment, 2,500 bp long, by digestion with Hae III restriction endonuclease. Digestion of heavy DNA with Alu I enzyme yielded 10 fragments totalling 2,570 bp. By three criteria, electron-microscopy, Eco R1 and Hae digestion, we conclude that the heavy MtDNA isolated from senescent cultures of Podospora anserina consisted of a monomeric tandemly repeating subunit of about 2,600 bp length.These results on the properties of senescent MtDNA are discussed with regard to the published properties of the rho - mutation in the yeast, S. cerevisiae.  相似文献   

18.
Sister chromatids of metaphase chromosomes can be differentially stained if the cells have replicated their DNA semiconservatively for two cell cycles in a medium containing 5-bromodeoxyuridine (BrdU). When prematurely condensed chromosomes (PCC) are induced in cells during the second S phase after BrdU is added to the medium, the replicated chromosome segments show sister chromatid differential (SCD) staining. Employing this PCC-SCD system on synchronous and asynchronous Chinese hamster ovary (CHO) cells, we have demonstrated that the replication patterns of the CHO cells can be categorized into G1/S, early, early-mid, mid-late, and late S phase patterns according to the amount of replicated chromosomes. During the first 4 h of the S phase, the replication patterns show SCD staining in chains of small chromosome segments. The amount of replicated chromosomes increase during the mid-late and late S categories (last 4 h). Significantly, small SCD segments are also present during these late intervals of the S phase. Measurements of these replicated segments indicate the presence of characteristic chromosome fragment sizes between 0.2 to 1.2 m in all S phase cells except those at G1/S which contain no SCD fragments. These small segments are operationally defined as chromosome replicating units or chromosomal replicons. They are interpreted to be composed of clusters of molecular DNA replicons. The larger SCD segments in the late S cells may arise by the joining of adjacent chromosomal replicons. Further application of this PCC-SCD method to study the chromosome replication process of two other rodents, Peromyscus eremicus and Microtus agrestis, with peculiar chromosomal locations of heterochromatin has demonstrated an ordered sequence of chromosome replication. The euchromatin and heterochromatin of the two species undergo two separate sequences of decondensation, replication, and condensation during the early-mid and mid-late intervals respectively of the S phase. Similar-sized chromosomal replicons are present in both types of chromatin. These data suggest that mammalian chromosomes are replicated in groups of replicating units, or chromosomal replicons, along their lengths. The organization and structure of these chromosomal replicons with respect to those of the interphase nucleus and metaphase chromosomes are discussed.  相似文献   

19.
    
Tnr1 is a repetitive sequence in rice with several features characteristic of a transposable DNA element. Its copy number was estimated to be about 3500 per haploid genome by slot-blot hybridization. We have isolated six members of Tnr1 located at different loci by PCR (polymerase chain reaction) and determined their nucleotide sequences. The Tnr1 elements were similar in size and highly homologous (about 85%) to the Tnr1 sequence identified first in the Waxy gene in Oryza glaberrima. A consensus sequence of 235 by could be derived from the nucleotide sequences of all the Tnr1 members. The consensus sequence showed that base substitutions occurred frequently in Tnr1 by transition, and that Tnr1 has terminal inverted repeat sequences of 75 bp. Almost all the chromosomal sequences that flank the Tnr1 members were 5-PuTA-3 and 5-TAPy-3, indicating that Tnr1 transposed to 5-PuTAPy-3 sites, duplicating the TA sequence. PCR-amplified fragments from some rice species did not contain the Tnr1 members at corresponding loci. Comparison of nucleotide sequences of the fragments with or without a Tnr1 member confirmed preferential transposition of Tnr1 to 5-PuTAPy-3 sites, duplicating the TA sequence. One amplified sequence suggested that imprecise excision had occurred to remove a DNA segment containing a Tnr1 member and its neighboring sequences at the Waxy locus of rice species with genome types other than AA. We also present data that may suggest that Tnr1 is a defective form of an autonomous transposable element.  相似文献   

20.
Summary Dialect-1, species-specific repetitive DNA sequence of barley Hordeum vulgare, was cloned and analysed by Southern blot and in situ hybridization. Dialect-1 is dispersed through all barley chromosomes with copy number 5,000 per genome. Two DNA fragments related to Dialect-1 were revealed in phage library, subcloned and mapped. All three clones are structurally heterogenous and it is suggested that the full-length genomic repeat encompassing Dialect-1 is large in size. The Dialect-1 DNA repeat is represented in the genomes of H. vulgare and ssp. agriocrithon and spontaneum in similar form and copy number; it is present in rearranged form with reduced copy number in the genomes of H. bulbosum and H. murinum, and it is absent from genomes of several wild barley species as well as from genomes of wheat, rye, oats and maize. Dialect-1 repeat may be used as a molecular marker in taxonomic studies and for identification of barley chromosomes in interspecies hybrids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号