首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Many vector-borne diseases co-circulate, as the viruses from the same family are also transmitted by the same vector species. For example, Zika and dengue viruses belong to the same Flavivirus family and are primarily transmitted by a common mosquito species Aedes aegypti. Zika outbreaks have also commonly occurred in dengue-endemic areas, and co-circulation and co-infection of both viruses have been reported. As recent immunological cross-reactivity studies have confirmed that convalescent plasma following dengue infection can enhance Zika infection, and as global efforts of developing dengue and Zika vaccines are intensified, it is important to examine whether and how vaccination against one disease in a large population may affect infection dynamics of another disease due to antibody-dependent enhancement.

Methods

Through a conceptual co-infection dynamics model parametrized by reported dengue and Zika epidemic and immunological cross-reactivity characteristics, we evaluate impact of a hypothetical dengue vaccination program on Zika infection dynamics in a single season when only one particular dengue serotype is involved.

Results

We show that an appropriately designed and optimized dengue vaccination program can not only help control the dengue spread but also, counter-intuitively, reduce Zika infections. We identify optimal dengue vaccination coverages for controlling dengue and simultaneously reducing Zika infections, as well as the critical coverages exceeding which dengue vaccination will increase Zika infections.

Conclusion

This study based on a conceptual model shows the promise of an integrative vector-borne disease control strategy involving optimal vaccination programs, in regions where different viruses or different serotypes of the same virus co-circulate, and convalescent plasma following infection from one virus (serotype) can enhance infection against another virus (serotype). The conceptual model provides a first step towards well-designed regional and global vector-borne disease immunization programs.
  相似文献   

2.

Background

Dengue is a major public health problem worldwide, especially in the tropical and subtropical regions of the world. Infection with a single Dengue virus (DENV) serotype causes a mild, self-limiting febrile illness called dengue fever. However, a subset of patients experiencing secondary infection with a different serotype progresses to the severe form of the disease, dengue hemorrhagic fever/dengue shock syndrome. Currently, there are no licensed vaccines or antiviral drugs to prevent or treat dengue infections. Biodegradable nanoparticles coated with proteins represent a promising method for in vivo delivery of vaccines.

Findings

Here, we used a murine model to evaluate the IgG production after administration of inactivated DENV corresponding to all four serotypes adsorbed to bovine serum albumin nanoparticles. This formulation induced a production of anti-DENV IgG antibodies (p < 0.001). However, plaque reduction neutralization assays with the four DENV serotypes revealed that these antibodies have no neutralizing activity in the dilutions tested.

Conclusions

Our results show that while the nanoparticle system induces humoral responses against DENV, further investigation with different DENV antigens will be required to improve immunogenicity, epitope specicity, and functional activity to make this platform a viable option for DENV vaccines.  相似文献   

3.

Background

Dengue virus type 1 (DENV-1) have been mostly circulating silently with dominant serotypes DENV-2 and DENV-3 in India. However recent times have marked an increase in DENV-1 circulation in yearly outbreaks. Many studies have not been carried out on this virus type, leaving a lacunae pertaining to the circulating genotypes, since its earliest report in India. In the present study, we sequenced CprM gene junction of 13 DENV-1 isolated from Delhi and Gwalior (North India) between 2001–2007 and one 1956 Vellore isolate as reference. For comparison, we retrieved 11 other Indian and 70 global reference sequences from NCBI database, making sure that Indian and global isolates from all decades are available for comparative analysis.

Results

The region was found to be AT rich with no insertion or deletion. Majority of the nucleotide substitutions were silent, except 3 non-conservative amino acid changes (I → T, A → T and L → S at amino acid positions 59,114 and 155 respectively) in the Indian DENV-1 sequences, sequenced in this study. Except two 1997–98 Delhi isolates, which group in genotype I; all other Indian isolates group in genotype III. All Indian genotype III DENV-1 exhibited diversity among them, giving rise to at least 4 distinct lineages (India 1–4) showing proximity to isolates from diverse geographic locations.

Conclusion

The extensive phylogenetic analysis revealed consistent existence of multiple lineages of DENV-1 genotype III during the last 5 decades in India.  相似文献   

4.

Background

Dengue virus is transmitted by mosquitoes and has four serotypes. Cross-protection to other serotypes lasting for a few months is observed following infection with one serotype. There is evidence that low-affinity T and/or B cells from primary infections contribute to the severe syndromes often associated with secondary dengue infections. such pronounced immune-mediated enhancement suggests a dengue-specific pattern of immune cell activation. This study investigates the acute and early convalescent B cell response leading to the generation of cross-reactive and neutralizing antibodies following dengue infection.

Methodology/Principal Findings

We assayed blood samples taken from dengue patients with primary or secondary infection during acute disease and convalescence and compared them to samples from patients presenting with non-dengue related fever. Dengue induced massive early plasmablast formation, which correlated with the appearance of polyclonal, cross-reactive IgG for both primary and secondary infection. Surprisingly, the contribution of IgG to the neutralizing titer 4–7 days after fever onset was more than 50% even after primary infection.

Conclusions/Significance

Poly-reactive and virus serotype cross-reactive IgG are an important component of the innate response in humans during both primary and secondary dengue infection, and “innate specificities” seem to constitute part of the adaptive response in dengue. While of potential importance for protection during secondary infection, cross-reactive B cells will also compete with highly neutralizing B cells and possibly interfere with their development.  相似文献   

5.

Background

Despite infections by the dengue virus being a significant problem in tropical and sub-tropical countries, the mechanism by which the dengue virus enters into mammalian cells remains poorly described.

Methods

A combination of biochemical inhibition, dominant negative transfection of Eps15 and siRNA mediated gene silencing was used to explore the entry mechanism of dengue into HepG2 cells.

Results

Results were consistent with entry via multiple pathways, specifically via clathrin coated pit mediated endocytosis and macropinocytosis, with clathrin mediated endocytosis being the predominant pathway.

Conclusion

We propose that entry of the dengue virus to mammalian cells can occur by multiple pathways, and this opens the possibility of the virus being directed to multiple cellular compartments. This would have significant implications in understanding the interaction of the dengue virus with the host cell machinery.  相似文献   

6.

Background

Dengue virus (DENV), a mosquito borne flavivirus is an important pathogen causing more than 50 million infections every year around the world. Dengue diagnosis depends on serology, which is not useful in the early phase of the disease and virus isolation, which is laborious and time consuming. There is need for a rapid, sensitive and high throughput method for detection of DENV in the early stages of the disease. Several real-time PCR assays have been described for dengue viruses, but there is scope for improvement. The new generation TaqMan Minor Groove Binding (MGB) probe approach was used to develop an improved real time RT-PCR (qRT-PCR) for DENV in this study.

Results

The 3'UTR of thirteen Indian strains of DENV was sequenced and aligned with 41 representative sequences from GenBank. A region conserved in all four serotypes was used to target primers and probes for the qRT-PCR. A single MGB probe and a single primer pair for all the four serotypes of DENV were designed. The sensitivity of the two step qRT-PCR assay was10 copies of RNA molecules per reaction. The specificity and sensitivity of the assay was 100% when tested with a panel of 39 known positive and negative samples. Viral RNA could be detected and quantitated in infected mouse brain, cell cultures, mosquitoes and clinical samples. Viral RNA could be detected in patients even after seroconversion till 10 days post onset of infection. There was no signal with Japanese Encephalitis (JE), West Nile (WN), Chikungunya (CHK) viruses or with Leptospira, Plasmodium vivax, Plasmodium falciparum and Rickettsia positive clinical samples.

Conclusion

We have developed a highly sensitive and specific qRT-PCR for detection and quantitation of dengue viruses. The assay will be a useful tool for differential diagnosis of dengue fever in a situation where a number of other clinically indistinguishable infectious diseases like malaria, Chikungunya, rickettsia and leptospira occur. The ability of the assay to detect DENV-2 in inoculated mosquitoes makes it a potential tool for detecting DENV in field-caught mosquitoes.  相似文献   

7.

Background

In Southeast Asia, dengue viruses often co-circulate with other flaviviruses such as Japanese encephalitis virus, and due to the presence of shared antigenic epitopes it is often difficult to use serological methods to distinguish between previous infections by these flaviviruses.

Results

Convalescent sera from 69 individuals who were known to have had dengue or Japanese encephalitis virus infection were tested by western blotting against dengue, Japanese encephalitis and West Nile virus antigens. We determined that individuals who had been infected with dengue viruses had IgG responses against the premembrane protein of dengue viruses but not Japanese encephalitis, whereas individuals who had been infected with Japanese encephalitis had IgG specific for the premembrane protein of Japanese encephalitis virus but not the dengue viruses. None reacted with the premembrane protein of West Nile virus. Using the Pearson Chi Square test, it was determined that the difference between the two groups was highly significant with a p value of <0.001.

Conclusion

The use of flavivirus premembrane protein in seroepidemiological studies will be useful in determining what flaviviruses have circulated in a community.  相似文献   

8.

Objectives

Frequent outbreaks of dengue are considered to be associated with an increased risk for endemicity of the disease. The occurrence of a large number of indigenous dengue cases in consecutive years indicates the possibility of a changing dengue epidemic pattern in Guangdong, China.

Methods

To have a clear understanding of the current dengue epidemic, a retrospective study of epidemiological profile, serological response, and virological features of dengue infections from 2005–2011 was conducted. Case data were collected from the National Notifiable Infectious Diseases Reporting Network. Serum samples were collected and prepared for serological verification and etiological confirmation. Incidence, temporal and spatial distribution, and the clinical manifestation of dengue infections were analyzed. Pearson''s Chi-Square test was used to compare incidences between different age groups. A seroprevalence survey was implemented in local healthy inhabitants to obtain the overall positive rate for the specific immunoglobulin (Ig) G antibody against dengue virus (DENV).

Results

The overall annual incidence rate was 1.87/100000. A significant difference was found in age-specific incidence (Pearson''s Chi-Square value 498.008, P<0.001). Children under 5 years of age had the lowest incidence of 0.28/100000. The vast majority of cases presented with a mild manifestation typical to dengue fever. The overall seroprevalence of dengue IgG antibody in local populations was 2.43% (range 0.28%–5.42%). DENV-1 was the predominant serotype in circulation through the years, while all 4 serotypes were identified in indigenous patients from different outbreak localities since 2009.

Conclusions

A gradual change in the epidemic pattern of dengue infection has been observed in recent years in Guangdong. With the endemic nature of dengue infections, the transition from a monotypic to a multitypic circulation of dengue virus in the last several years will have an important bearing on the prevention and control of dengue in the province and in the neighboring districts.  相似文献   

9.

Background

Shigella flexneri is the major pathogen causing bacillary dysentery. Fifteen serotypes have been recognized up to now. The genesis of new S. flexneri serotypes is commonly mediated by serotype-converting bacteriophages. Untypeable or novel serotypes from natural infections had been reported worldwide but have not been generated in laboratory.

Results

A new S. flexneri serotype-serotype 1 d was generated when a S. flexneri serotype Y strain (native LPS) was sequentially infected with 2 serotype-converting bacteriophages, SfX first and then SfI. The new serotype 1 d strain agglutinated with both serotype X-specific anti-7;8 grouping serum and serotype 1a-specific anti- I typing serum, and differed from subserotypes 1a, 1b and 1c. Twenty four S. flexneri clinical isolates of serotype X were all converted to serotype 1 d by infection with phage SfI. PCR and sequencing revealed that SfI and SfX were integrated in tandem into the proA-yaiC region of the host chromosome.

Conclusions

These findings suggest a new S. flexneri serotype could be created in nature. Such a conversion may be constrained by susceptibility of a strain to infection by a given serotype-converting bacteriophage. This finding has significant implications in the emergence of new S. flexneri serotypes in nature.  相似文献   

10.

Background

Dengue has emerged as one of the most important infectious diseases in the last five decades. Evidence indicates the expansion of dengue virus endemic areas and consequently the exponential increase of dengue virus infections across the subtropics. The clinical manifestations of dengue virus infection include sudden fever, rash, headache, myalgia and in more serious cases, spontaneous bleeding. These manifestations occur in children as well as in adults. Defining the epidemiology of dengue in a given area is critical to understanding the disease and devising effective public health strategies.

Methodology/Principal Findings

Here, we report the results from a prospective cohort study of 4380 adults in West Java, Indonesia, from 2000–2004 and 2006–2009. A total of 2167 febrile episodes were documented and dengue virus infections were confirmed by RT-PCR or serology in 268 cases (12.4%). The proportion ranged from 7.6 to 41.8% each year. The overall incidence rate of symptomatic dengue virus infections was 17.3 cases/1,000 person years and between September 2006 and April 2008 asymptomatic infections were 2.6 times more frequent than symptomatic infections. According to the 1997 WHO classification guidelines, there were 210 dengue fever cases, 53 dengue hemorrhagic fever cases (including one dengue shock syndrome case) and five unclassified cases. Evidence for sequential dengue virus infections was seen in six subjects. All four dengue virus serotypes circulated most years. Inapparent dengue virus infections were predominantly associated with DENV-4 infections.

Conclusions/Significance

Dengue virus was responsible for a significant percentage of febrile illnesses in an adult population in West Java, Indonesia, and this percentage varied from year to year. The observed incidence rate during the study period was 43 times higher than the reported national or provincial rates during the same time period. A wide range of clinical severity was observed with most infections resulting in asymptomatic disease. The circulation of all four serotypes of dengue virus was observed in most years of the study.  相似文献   

11.

Background

In 2009, an outbreak of dengue caused high fatality in Sri Lanka. We conducted 5 autopsies of clinically suspected myocarditis cases at the General Hospital, Peradeniya to describe the histopathology of the heart and other organs.

Methods

The diagnosis of dengue was confirmed with specific IgM and IgG ELISA, HAI and RT-PCR techniques. The histology was done in tissue sections stained with hematoxylin and eosin.

Results

Of the 319 cases of dengue fever, 166(52%) had severe infection. Of them, 149 patients (90%) had secondary dengue infection and in 5 patients, DEN-1 was identified as the causative serotype. The clinical diagnosis of myocarditis was considered in 45(27%) patients. The autopsies were done in 5 patients who succumbed to shock (3 females and 2 males) aged 13- 31 years. All had pleural effusions, ascites, bleeding patches in tissue planes and histological evidence of myocarditis. The main histological findings of the heart were interstitial oedema with inflammatory cell infiltration and necrosis of myocardial fibers. One patient had pericarditis. The concurrent pulmonary abnormalities were septal congestion, pulmonary haemorrhage and diffuse alveolar damage; one case showed massive necrosis of liver.

Conclusions

The histology supports occurrence of myocarditis in dengue infection.
  相似文献   

12.

Background

The relationships between the infecting dengue serotype, primary and secondary infection, viremia and dengue severity remain unclear. This cross-sectional study examined these interactions in adult patients hospitalized with dengue in Ha Noi.

Methods and Findings

158 patients were enrolled between September 16 and November 11, 2008. Quantitative RT-PCR, serology and NS1 detection were used to confirm dengue infection, determine the serotype and plasma viral RNA concentration, and categorize infections as primary or secondary. 130 (82%) were laboratory confirmed. Serology was consistent with primary and secondary infection in 34% and 61%, respectively. The infecting serotype was DENV-1 in 42 (32%), DENV-2 in 39 (30%) and unknown in 49 (38%). Secondary infection was more common in DENV-2 infections (79%) compared to DENV-1 (36%, p<0.001). The proportion that developed dengue haemorrhagic fever (DHF) was 32% for secondary infection compared to 18% for primary infection (p = 0.14), and 26% for DENV-1 compared to 28% for DENV-2. The time until NS1 and plasma viral RNA were undetectable was shorter for DENV-2 compared to DENV-1 (p≤0.001) and plasma viral RNA concentration on day 5 was higher for DENV-1 (p = 0.03). Plasma viral RNA concentration was higher in secondary infection on day 5 of illness (p = 0.046). We didn''t find an association between plasma viral RNA concentration and clinical severity.

Conclusion

Dengue is emerging as a major public health problem in Ha Noi. DENV-1 and DENV-2 were the prevalent serotypes with similar numbers and clinical presentation. Secondary infection may be more common amongst DENV-2 than DENV-1 infections because DENV-2 infections resulted in lower plasma viral RNA concentrations and viral RNA concentrations were higher in secondary infection. The drivers of dengue emergence in northern Viet Nam need to be elucidated and public health measures instituted.  相似文献   

13.

Background

Dengue is one of the most important human diseases transmitted by an arthropod vector and the incidence of dengue virus infection has been increasing – over half the world''s population now live in areas at risk of infection. Most infections are asymptomatic, but a subset of patients experience a potentially fatal shock syndrome characterised by plasma leakage. Severe forms of dengue are epidemiologically associated with repeated infection by more than one of the four dengue virus serotypes. Generally attributed to the phenomenon of antibody-dependent enhancement, recent observations indicate that T-cells may also influence disease phenotype.

Methods and Findings

Virus-specific cytotoxic T lymphocytes (CTL) showing high level cross reactivity between dengue serotypes could be expanded from blood samples taken during the acute phase of secondary dengue infection. These could not be detected in convalescence when only CTL populations demonstrating significant serotype specificity were identified. Dengue cross-reactive CTL clones derived from these patients were of higher avidity than serotype-specific clones and produced much higher levels of both type 1 and certain type 2 cytokines, many previously implicated in dengue pathogenesis.

Conclusion

Dengue serotype cross-reactive CTL clones showing high avidity for antigen produce higher levels of inflammatory cytokines than serotype-specific clones. That such cells cannot be expanded from convalescent samples suggests that they may be depleted, perhaps as a consequence of activation-induced cell death. Such high avidity cross-reactive memory CTL may produce inflammatory cytokines during the course of secondary infection, contributing to the pathogenesis of vascular leak. These cells appear to be subsequently deleted leaving a more serotype-specific memory CTL pool. Further studies are needed to relate these cellular observations to disease phenotype in a large group of patients. If confirmed they have significant implications for understanding the role of virus-specific CTL in pathogenesis of dengue disease.  相似文献   

14.

Background

Mosquito-borne dengue virus (DENV, genus Flavivirus) has emerged as a major threat to global human health in recent decades, and novel strategies to contain the escalating dengue fever pandemic are urgently needed. RNA interference (RNAi) induced by exogenous small interfering RNAs (siRNAs) has shown promise for treatment of flavivirus infections in hosts and prevention of transmission by vectors. However, the impact of RNAi triggered by authentic virus infection on replication of DENV, or any flavivirus, has received little study. The objectives of the current study were threefold: first, to assess the utility of Drosophila melanogaster S2 cells for the study of DENV, second to investigate the impact of multiple enzymes in the RNAi pathway on DENV replication; and third to test for variation in the response of the four serotypes of DENV to modulation of RNAi.

Results

Three strains from each of the four DENV serotypes showed replication in S2 cells following infection at multiplicity of infection (MOI) 0.1 and MOI 10; each strain achieved titers > 4.0 log10pfu/ml five days after infection at MOI 10. The four serotypes did not differ in mean titer. S2 cells infected with DENV-1, 2, 3 or 4 produced siRNAs, indicating that infection triggered an RNAi response. Knockdown of one of the major enzymes in the RNAi pathway, Dicer-2 (Dcr-2), resulted in a 10 to 100-fold enhancement of replication of all twelve strains of DENV in S2 cells. While serotypes did not differ in their average response to Dcr-2 knockdown, strains within serotypes showed significant differences in their sensitivity to Dcr-2 knockdown. Moreover, knockdown of three additional components of the RNAi pathway, Argonaute 2 (Ago-2), Dcr-1 and Ago-1, also resulted in a significant increase in replication of the two DENV strains tested, and the magnitude of this increase was similar to that resulting from Dcr-2 knockdown.

Conclusions

These findings indicate that DENV can replicate in Drosophila S2 cells and that the RNAi pathway plays a role in modulating DENV replication in these cells. S2 cells offer a useful cell culture model for evaluation of the interaction between DENV and the RNAi response.  相似文献   

15.

Background

Infants born to dengue immune mothers acquire maternal antibodies to dengue. These antibodies, though initially protective, decline during the first year of life to levels thought to be disease enhancing, before reaching undetectable levels. Infants have long been studied to understand the interaction between infection and disease on an individual level.

Methods/Findings

Considering infants (cases <1 year old) as a unique group, we analyzed serotype specific dengue case data from patients admitted to a pediatric hospital in Bangkok, Thailand. We show differences in the propensity of serotypes to cause disease in individuals with dengue antibodies (infants and post-primary cases) and in individuals without dengue antibodies (primary cases). The mean age of infant cases differed among serotypes, consistent with previously observed differential waning of maternal antibody titers by serotype. We show that trends over time in epidemiology of infant cases are consistent with those observed in the whole population, and therefore with trends in the force of infection.

Conclusions/Significance

Infants with dengue are informative about the interaction between antibody and the dengue serotypes, confirming that in this population DENV-2 and DENV-4 almost exclusively cause disease in the presence of dengue antibody despite infections occurring in others. We also observe differences between the serotypes in the mean age in infant cases, informative about the interaction between waning immunity and disease for the different serotypes in infants. In addition, we show that the mean age of infant cases over time is informative about transmission in the whole population. Therefore, ongoing surveillance for dengue in infants could provide useful insights into dengue epidemiology, particularly after the introduction of a dengue vaccine targeting adults and older children.  相似文献   

16.
17.

Background

Nearly half of the world’s population is at risk for dengue, yet no licensed vaccine or anti-viral drug is currently available. Dengue is caused by any of four dengue virus serotypes (DENV-1 through DENV-4), and infection by a DENV serotype is assumed to provide life-long protection against re-infection by that serotype. We investigated the validity of this fundamental assumption during a large dengue epidemic caused by DENV-2 in Iquitos, Peru, in 2010–2011, 15 years after the first outbreak of DENV-2 in the region.

Methodology/Principal Findings

We estimated the age-dependent prevalence of serotype-specific DENV antibodies from longitudinal cohort studies conducted between 1993 and 2010. During the 2010–2011 epidemic, active dengue cases were identified through active community- and clinic-based febrile surveillance studies, and acute inapparent DENV infections were identified through contact tracing studies. Based on the age-specific prevalence of DENV-2 neutralizing antibodies, the age distribution of DENV-2 cases was markedly older than expected. Homologous protection was estimated at 35.1% (95% confidence interval: 0%–65.2%). At the individual level, pre-existing DENV-2 antibodies were associated with an incomplete reduction in the frequency of symptoms. Among dengue cases, 43% (26/66) exhibited elevated DENV-2 neutralizing antibody titers for years prior to infection, compared with 76% (13/17) of inapparent infections (age-adjusted odds ratio: 4.2; 95% confidence interval: 1.1–17.7).

Conclusions/Significance

Our data indicate that protection from homologous DENV re-infection may be incomplete in some circumstances, which provides context for the limited vaccine efficacy against DENV-2 in recent trials. Further studies are warranted to confirm this phenomenon and to evaluate the potential role of incomplete homologous protection in DENV transmission dynamics.  相似文献   

18.
19.
Dengue fever is the most important arboviral disease in the tropical and sub-tropical countries of the world. Delhi, the metropolitan capital state of India, has reported many dengue outbreaks, with the last outbreak occurring in 2013. We have recently reported predominance of dengue virus serotype 2 during 2011–2014 in Delhi. In the present study, we report molecular characterization and evolutionary analysis of dengue serotype 2 viruses which were detected in 2011–2014 in Delhi. Envelope genes of 42 DENV-2 strains were sequenced in the study. All DENV-2 strains grouped within the Cosmopolitan genotype and further clustered into three lineages; Lineage I, II and III. Lineage III replaced lineage I during dengue fever outbreak of 2013. Further, a novel mutation Thr404Ile was detected in the stem region of the envelope protein of a single DENV-2 strain in 2014. Nucleotide substitution rate and time to the most recent common ancestor were determined by molecular clock analysis using Bayesian methods. A change in effective population size of Indian DENV-2 viruses was investigated through Bayesian skyline plot. The study will be a vital road map for investigation of epidemiology and evolutionary pattern of dengue viruses in India.  相似文献   

20.

Background

Dengue is the most prevalent arboviral disease in tropical and sub-tropical areas of the world. The incidence of infection is estimated to be 390 million cases and 25,000 deaths per year. Despite these numbers, neither a specific treatment nor a preventive vaccine is available to protect people living in areas of high risk.

Results

With the aim of seeking a treatment that can mitigate dengue infection, we demonstrated that the quinic acid derivatives known as compound 2 and compound 10 were effective against all four dengue virus serotypes and safe for use in a human hepatoma cell line (Huh7.5). Both compounds were non-virucidal to dengue virus particles and did not interfere with early steps of the dengue virus life cycle, including binding and internalization. Experiments using a replicon system demonstrated that compounds 2 and 10 impaired dengue virus replication in Huh7.5 cells. Additionally, the anti-dengue virus effects of the quinic acid derivatives were preserved in human peripheral blood mononuclear cells.

Conclusions

Taken together, these data suggest that quinic acid derivatives represent a novel chemical class of active compounds that could be used to combat dengue virus infection.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号