首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Surfactant protein A (SP-A) is an important lung innate immune protein that kills microbial pathogens by opsonization and membrane permeabilization. We investigated the basis of SP-A-mediated pulmonary clearance of Pseudomonas aeruginosa using genetically-engineered SP-A mice and a library of signature-tagged P. aeruginosa mutants. A mutant with an insertion into flgE, the gene that encodes flagellar hook protein, was preferentially cleared by the SP-A(+/+) mice, but survived in the SP-A(-/-) mice. Opsonization by SP-A did not play a role in flgE clearance. However, exposure to SP-A directly permeabilized and killed the flgE mutant, but not the wild-type parental strain. P. aeruginosa strains with mutation in other flagellar genes, as well as mucoid, nonmotile isolates from cystic fibrosis patients, were also permeabilized by SP-A. Provision of the wild-type fliC gene restored the resistance to SP-A-mediated membrane permeabilization in the fliC-deficient bacteria. In addition, non-mucoid, motile revertants of CF isolates reacquired resistance to SP-A-mediated membrane permeability. Resistance to SP-A was dependent on the presence of an intact flagellar structure, and independent of flagellar-dependent motility. We provide evidence that flagellar-deficient mutants harbor inadequate amounts of LPS required to resist membrane permeabilization by SP-A and cellular lysis by detergent targeting bacterial outer membranes. Thus, the flagellum of P. aeruginosa plays an indirect but important role resisting SP-A-mediated clearance and membrane permeabilization.  相似文献   

2.
3.
Kuzmenko AI  Wu H  McCormack FX 《Biochemistry》2006,45(8):2679-2685
We have reported that Gram-negative organisms decorated with rough lipopolysaccharide (LPS) are particularly susceptible to the direct antimicrobial actions of the pulmonary collectins, surfactant proteins A (SP-A) and D (SP-D). In this study, we examined the lipid and LPS components required for the permeabilizing effects of the collectins on model bacterial membranes. Liposomes composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE), with or without rough Escherichia coli LPS (J5), smooth E. coli LPS (B5), or cholesterol, were loaded with self-quenching probes and exposed to native or oxidatively modified SP-A. Fluorescence that resulted from permeabilization of liposomes and diffusion of dyes was assessed by microscopy or fluorimetry. Human SP-A and melittin increased the permeability of J5 LPS/POPE liposomes, but not B5 LPS/POPE liposomes or control (POPE only) liposomes. At a human SP-A concentration of 100 microg/mL, the permeability of the J5 LPS/POPE membranes increased 4.4-fold (p < 0.02) compared to the control with no added SP-A. Rat SP-A and SP-D also permeabilized the J5-containing liposomes. Incorporation of cholesterol into J5 LPS/POPE liposomes at a POPE:cholesterol molar ratio of 1:0.15 blocked human SP-A or melittin-induced permeability (p < 0.05) compared to cholesterol-free liposomes. Exposure of human SP-A to surfactant lipid peroxidation blocked the permeabilizing activity of the protein. We conclude that SP-A permeabilizes phospholipid membranes in an LPS-dependent and rough LPS-specific manner, that the effect is neither SP-A- nor species-specific, and that oxidative damage to SP-A abolishes its membrane destabilizing properties. Incorporation of cholesterol into the membrane enhances resistance to permeabilization by SP-A, most likely by increasing the packing density and membrane rigidity.  相似文献   

4.
Surfactant protein A (SP-A) is known to cause bacterial permeabilization. The aim of this work was to gain insight into the mechanism by which SP-A induces permeabilization of rough lipopolysaccharide (Re-LPS) membranes. In the presence of calcium, large interconnected aggregates of fluorescently labeled TR-SP-A were observed on the surface of Re-LPS films by epifluorescence microscopy. Using Re-LPS monolayer relaxation experiments at constant surface pressure, we demonstrated that SP-A induced Re-LPS molecular loss by promoting the formation of three-dimensional lipid-protein aggregates in Re-LPS membranes. This resulted in decreased van der Waals interactions between Re-LPS acyl chains, as determined by differential scanning calorimetry, which rendered the membrane leaky. We also showed that the coexistence of gel and fluid lipid phases within the Re-LPS membrane conferred susceptibility to SP-A-mediated permeabilization. Taken together, our results seem to indicate that the calcium-dependent permeabilization of Re-LPS membranes by SP-A is related to the extraction of LPS molecules from the membrane due to the formation of calcium-mediated protein aggregates that contain LPS.  相似文献   

5.
Pulmonary collectins and innate host defense of the lung   总被引:17,自引:0,他引:17  
Surfactant proteins A and D (SP-A and SP-D) are members of the collectin family of polypeptides expressed in the respiratory tract that bind bacterial, fungal and viral pathogens, enhancing their opsonization and killing by phagocytic cells. Clearance of bacterial pathogens including group B streptococci, Haemophilus influenza, Pseudomonas aeruginosa and viral pathogens, respiratory syncytial virus, adenovirus and influenza A virus, was deficient in SP-A(-/-) mice. SP-A deficiency was associated with enhanced inflammation and synthesis of proinflammatory cytokines. SP-D(-/-) mice cleared these bacteria as efficiently as wild-type mice; however, clearance of viral pathogens was deficient in SP-D(-/-) mice and associated with increased inflammation. SP-A and SP-D play critical and distinct roles in the regulation of alveolar macrophage function and inflammation, contributing to innate defense of the lung.  相似文献   

6.
Wang G  Myers C  Mikerov A  Floros J 《Biochemistry》2007,46(28):8425-8435
Four "core" amino acid differences within the collagen-like domain distinguish the human surfactant protein A1 (SP-A1) variants from the SP-A2 variants. One of these, cysteine 85 that could form intermolecular disulfide bonds, is present in SP-A1 (Cys85) and absent in SP-A2 (Arg85). We hypothesized that residue 85 affects both the structure and function of SP-A1 and SP-A2 variants. To test this, wild-type (WT) variants, 6A2 of SP-A1 and 1A0 of SP-A2, and their mutants (6A2(C85R) and 1A0(R85C)) were generated and studied. We found the following: (1) Residue 85 affected the binding ability to mannose and the oligomerization pattern of SP-As. The 1A0(R85C) and 6A2(C85R) patterns were similar and/or resembled those of WT 6A2 and 1A0, respectively. (2) Both SP-A WT and mutants differentially induced rough LPS and Pseudomonas aeruginosa aggregation in the following order: 1A0 > 6A2 > 6A2(C85R) > 1A0(R85C) for Re-LPS aggregation and 1A0 > 6A2 = 6A2(C85R) = 1A0(R85C) for bacterial aggregation. (3) SP-A WT and mutants enhanced phagocytosis of P. aeruginosa by rat alveolar macrophages. Their phagocytic index order was 6A2(C85R) > 1A0 > 6A2 = 1A0(R85C). The activity of mutant 1A0(C85R) was significantly lower than WT 1A0 but similar to 6A2. Compared to WT 6A2, the 6A2(C85R) mutant exhibited a significantly higher activity. These results indicate that the SP-A variant/mutant with Arg85 exhibits a higher ability to enhance bacterial phagocytosis than that with Cys85. Residue 85 plays an important role in the structure and function of SP-A and is a major factor for the differences between SP-A1 and SP-A2 variants.  相似文献   

7.
Aminoglycosides are among the most potent antimicrobials to eradicate Pseudomonas aeruginosa. However, the emergence of resistance has clearly led to a shortage of treatment options, especially for critically ill patients. In the search for new antibiotics, we have synthesized derivatives of the small aminoglycoside, neamine. The amphiphilic aminoglycoside 3',4',6-tri-2-naphtylmethylene neamine (3',4',6-tri-2NM neamine) has appeared to be active against sensitive and resistant P. aeruginosa strains as well as Staphylococcus aureus strains (Baussanne et al., 2010). To understand the molecular mechanism involved, we determined the ability of 3',4',6-tri-2NM neamine to alter the protein synthesis and to interact with the bacterial membranes of P. aeruginosa or models mimicking these membranes. Using atomic force microscopy, we observed a decrease of P. aeruginosa cell thickness. In models of bacterial lipid membranes, we showed a lipid membrane permeabilization in agreement with the deep insertion of 3',4',6-tri-2NM neamine within lipid bilayer as predicted by modeling. This new amphiphilic aminoglycoside bound to lipopolysaccharides and induced P. aeruginosa membrane depolarization. All these effects were compared to those obtained with neamine, the disubstituted neamine derivative (3',6-di-2NM neamine), conventional aminoglycosides (neomycin B and gentamicin) as well as to compounds acting on lipid bilayers like colistin and chlorhexidine. All together, the data showed that naphthylmethyl neamine derivatives target the membrane of P. aeruginosa. This should offer promising prospects in the search for new antibacterials against drug- or biocide-resistant strains.  相似文献   

8.
The inability of neutrophils to eradicate Pseudomonas aeruginosa within the cystic fibrosis (CF) airway eventually results in chronic infection by the bacteria in nearly 80 percent of patients. Phagocytic killing of P. aeruginosa by CF neutrophils is impaired due to decreased cystic fibrosis transmembrane conductance regulator (CFTR) function and virulence factors acquired by the bacteria. Recently, neutrophil extracellular traps (NETs), extracellular structures composed of neutrophil chromatin complexed with granule contents, were identified as an alternative mechanism of pathogen killing. The hypothesis that NET-mediated killing of P. aeruginosa is impaired in the context of the CF airway was tested. P. aeruginosa induced NET formation by neutrophils from healthy donors in a bacterial density dependent fashion. When maintained in suspension through continuous rotation, P. aeruginosa became physically associated with NETs. Under these conditions, NETs were the predominant mechanism of killing, across a wide range of bacterial densities. Peripheral blood neutrophils isolated from CF patients demonstrated no impairment in NET formation or function against P. aeruginosa. However, isogenic clinical isolates of P. aeruginosa obtained from CF patients early and later in the course of infection demonstrated an acquired capacity to withstand NET-mediated killing in 8 of 9 isolates tested. This resistance correlated with development of the mucoid phenotype, but was not a direct result of the excess alginate production that is characteristic of mucoidy. Together, these results demonstrate that neutrophils can kill P. aeruginosa via NETs, and in vitro this response is most effective under non-stationary conditions with a low ratio of bacteria to neutrophils. NET-mediated killing is independent of CFTR function or bacterial opsonization. Failure of this response in the context of the CF airway may occur, in part, due to an acquired resistance against NET-mediated killing by CF strains of P. aeruginosa.  相似文献   

9.
Pseudomonas aeruginosa is an opportunistic pathogen that causes both acute pneumonitis in immunocompromised patients and chronic lung infections in individuals with cystic fibrosis and other bronchiectasis. Over 75% of clinical isolates of P. aeruginosa secrete elastase B (LasB), an elastolytic metalloproteinase that is encoded by the lasB gene. Previously, in vitro studies have demonstrated that LasB degrades a number of components in both the innate and adaptive immune systems. These include surfactant proteins, antibacterial peptides, cytokines, chemokines and immunoglobulins. However, the contribution of LasB to lung infection by P. aeruginosa and to inactivation of pulmonary innate immunity in vivo needs more clarification. In this study, we examined the mechanisms underlying enhanced clearance of the ΔlasB mutant in mouse lungs. The ΔlasB mutant was attenuated in virulence when compared to the wild-type strain PAO1 during lung infection in SP-A+/+ mice. However, the ΔlasB mutant was as virulent as PAO1 in the lungs of SP-A-/- mice. Detailed analysis showed that the ΔlasB mutant was more susceptible to SP-A-mediated opsonization but not membrane permeabilization. In vitro and in vivo phagocytosis experiments revealed that SP-A augmented the phagocytosis of ΔlasB mutant bacteria more efficiently than the isogenic wild-type PAO1. The ΔlasB mutant was found to have a severely reduced ability to degrade SP-A, consequently making it unable to evade opsonization by the collectin during phagocytosis. These results suggest that P. aeruginosa LasB protects against SP-A-mediated opsonization by degrading the collectin.  相似文献   

10.
The alveolar epithelium is lined by surfactant, a lipoprotein complex that both reduces surface tension and mediates several innate immune functions including bacterial aggregation, alteration of alveolar macrophage function, and regulation of bacterial clearance. Surfactant protein-D (SP-D) participates in several of these immune functions, and specifically it enhances the clearance of the pulmonary pathogen Pseudomonas aeruginosa, a common cause of morbidity and mortality in cystic fibrosis (CF) patients. P. aeruginosa secretes a variety of virulence factors including elastase, a zinc-metalloprotease, which degrades both SP-A and SP-D. Here we show that SP-D is cleaved by elastase to produce a stable 35-kDa fragment in a time-, temperature-, and dose-dependent manner. Degradation is inhibited by divalent metal cations, a metal chelator, and the elastase inhibitor, phosphoramidon. Sequencing the SP-D degradation products localized the major cleavage sites to the C-terminal lectin domain. The SP-D fragment fails to bind or aggregate bacteria that are aggregated by intact SP-D. SP-D fragment is observed when normal rat bronchoalveolar lavage (BAL) is treated with Pseudomonas aeruginosa elastase, and SP-D fragments are present in the BAL of CF lung allograft patients. These data show that degradation of SP-D occurs in the BAL environment and that degradation eliminates many normal immune functions of SP-D.  相似文献   

11.
The effect of lactic acid on the outer membrane permeability of Escherichia coli O157:H7, Pseudomonas aeruginosa, and Salmonella enterica serovar Typhimurium was studied utilizing a fluorescent-probe uptake assay and sensitization to bacteriolysis. For control purposes, similar assays were performed with EDTA (a permeabilizer acting by chelation) and with hydrochloric acid, the latter at pH values corresponding to those yielded by lactic acid, and also in the presence of KCN. Already 5 mM (pH 4.0) lactic acid caused prominent permeabilization in each species, the effect in the fluorescence assay being stronger than that of EDTA or HCl. Similar results were obtained in the presence of KCN, except for P. aeruginosa, for which an increase in the effect of HCl was observed in the presence of KCN. The permeabilization by lactic and hydrochloric acid was partly abolished by MgCl(2). Lactic acid sensitized E. coli and serovar Typhimurium to the lytic action of sodium dodecyl sulfate (SDS) more efficiently than did HCl, whereas both acids sensitized P. aeruginosa to SDS and to Triton X-100. P. aeruginosa was effectively sensitized to lysozyme by lactic acid and by HCl. Considerable proportions of lipopolysaccharide were liberated from serovar Typhimurium by these acids; analysis of liberated material by electrophoresis and by fatty acid analysis showed that lactic acid was more active than EDTA or HCl in liberating lipopolysaccharide from the outer membrane. Thus, lactic acid, in addition to its antimicrobial property due to the lowering of the pH, also functions as a permeabilizer of the gram-negative bacterial outer membrane and may act as a potentiator of the effects of other antimicrobial substances.  相似文献   

12.
Chronic airway inflammation caused by Pseudomonas aeruginosa is an important feature of cystic fibrosis (CF). Surfactant protein A (SP-A) enhances phagocytosis of P. aeruginosa. Two genes, SP-A1 and SP-A2, encode human SP-A. We hypothesized that genetically determined differences in the activity of SP-A1 and SP-A2 gene products exist. To test this, we studied association of a nonmucoid P. aeruginosa strain (ATCC 39018) with rat alveolar macrophages in the presence or absence of insect cell-expressed human SP-A variants. We used two trios, each consisting of SP-A1, SP-A2, and their coexpressed SP-A1/SP-A2 variants. We tested the 6A(2) and 6A(4) alleles (for SP-A1), the 1A(0) and 1A alleles (for SP-A2), and their respective coexpressed SP-A1/SP-A2 gene products. After incubation of alveolar macrophages with P. aeruginosa in the presence of the SP-A variants at 37 degrees C for 1 h, the cell association of bacteria was assessed by light microscopy analysis. We found 1) depending on SP-A concentration and variant, SP-A2 variants significantly increased the cell association more than the SP-A1 variants (the phagocytic index for SP-A1 was approximately 52-95% of the SP-A2 activity); 2) coexpressed variants at certain concentrations were more active than single gene products; and 3) the phagocytic index for SP-A variants was approximately 18-41% of the human SP-A from bronchoalveolar lavage. We conclude that human SP-A variants in vitro enhance association of P. aeruginosa with rat alveolar macrophages differentially and in a concentration-dependent manner, with SP-A2 variants having a higher activity compared with SP-A1 variants.  相似文献   

13.
Pseudomonas aeruginosa causes chronic lung infections in the airways of cystic fibrosis (CF) patients. Psl is an extracellular polysaccharide expressed by non-mucoid P. aeruginosa strains, which are believed to be initial colonizers. We hypothesized that Psl protects P. aeruginosa from host defences within the CF lung prior to their conversion to the mucoid phenotype. We discovered that serum opsonization significantly increased the production of reactive oxygen species (ROS) by neutrophils exposed to a psl-deficient mutant, compared with wild-type (WT) and Psl overexpressing strains (Psl(++)). Psl-deficient P. aeruginosa were internalized and killed by neutrophils and macrophages more efficiently than WT and Psl(++) variants. Deposition of complement components C3, C5 and C7 was significantly higher on psl-deficient strains compared with WT and Psl(++) bacteria. In an in vivo pulmonary competition assay, there was a 4.5-fold fitness advantage for WT over psl-deficient P. aeruginosa. Together, these data show that Psl inhibits efficient opsonization, resulting in reduced neutrophil ROS production, and decreased killing by phagocytes. This provides a survival advantage in vivo. Since phagocytes are critical in early recognition and control of infection, therapies aimed at Psl could improve the quality of life for patients colonized with P. aeruginosa.  相似文献   

14.
Pseudomonas aeruginosa responds to phosphate limitation by inducing the expression of phosphate transport systems, phosphatases, hemolysins and a DNase, many of which are important for virulence. Here we report that under phosphate-limiting conditions, P. aeruginosa produces a phosphate-free ornithine lipid (OL) as the primary membrane lipid. The olsBA (PA4350-PA4351) genes were highly induced under phosphate-limiting conditions. The production and structure of the OL was confirmed by MS, revealing diagnostic fragment ions and mainly C16 : 0 and C18 : 1 dialkyl chains. It was shown that olsA is required for production of these lipids and genetic complementation of the olsA∷lux mutant restored OL production. Studies in other bacteria have correlated increased resistance to antimicrobial peptides with the production of OLs. Here it was demonstrated that resistance to antimicrobial peptides increased under phosphate-limiting conditions, but OLs were not required for this increased resistance. OL production was also not required for virulence in the Caenorhabditis elegans infection model. The production of OLs is a strategy to reduce phosphate utilization in the membrane, but mutants unable to produce OLs have no observable phenotype with respect to growth, antibiotic resistance or virulence.  相似文献   

15.
16.
The population interactions of Pseudomonas aeruginosa virulent bacteriophages phi kF77 and phi mnF82 with host bacterial cells were studied in dynamics under the conditions of continuous cultivation in the chemostat regime with glucose limitation. Two different types of maintaining the bacterium and its specific bacteriophages in the population were detected. When P. aeruginosa was cultivated with phage phi mnF82, such a maintenance was realized due to the successive appearance of bacterial mutants resistant to the phage and of phage mutants overcoming this resistance. When P. aeruginosa was cultivated with phage phi kF77, these were maintained owing to the ability of P. aeruginosa to form unstable phage-resistant variants with the segregation of phage-sensitive cells.  相似文献   

17.
Type-4 fimbriae (pili) are associated with a phenomenon known as twitching motility, which appears to be involved with bacterial translocation across solid surfaces. Pseudomonas aeruginosa mutants which produce fimbriae, but which have lost the twitching motility function, display altered colony morphology and resistance to fimbrial-specific bacteriophage. We have used phenotypic complementation of such mutants to isolate a region of DNA involved in twitching motility. This region was physically mapped to a SpeI fragment around 20 min on the P. aeruginosa PAO chromosome, remote from the major fimbrial locus (around 75 min) where the structural subunit-encoding gene (fimA/pilA) and ancillary genes required for fimbrial assembly (pilB, C and D) are found. A gene, pilT, within the twitching motility region is predicted to encode a 344-amino acid protein which has strong homology to a variety of other bacterial proteins. These include the P. aeruginosa PilB protein, the ComG ORF-1 protein from the Bacillus subtilis comG operon (necessary for competence), the PulE protein from the Klebsiella oxytoca (formerly K. pneumoniae) pulC-O operon (involved in pullulanase export), and the VirB-11 protein from the virB operon (involved in virulence) which is located on the Agrobacterium tumefaciens Ti plasmid. We have also identified other sets of homologies between P. aeruginosa fimbrial assembly (Pil) proteins and B. subtilis Com and K. oxytoca Pul proteins, which suggest that these are all related members of a specialised protein export pathway which is widespread in the eubacteria.  相似文献   

18.
Several strains of the human opportunistic pathogen Pseudomonas aeruginosa infect plants, nematodes and insects. Our laboratory has developed a multihost pathogenesis system based on the P. aeruginosa clinical isolate PA14, in which non-mammalian hosts are used to screen directly for virulence-attenuated mutants. The majority of PA14 mutants isolated using non-mammalian hosts also displayed reduced virulence in a burned mouse model. Surprisingly, only a few host-specific virulence factors were identified, and many of the P. aeruginosa mutants were attenuated in virulence in all the hosts. These studies illustrate the extensive conservation in the virulence mechanisms used by P. aeruginosa to infect evolutionarily diverged hosts, and validate the multihost method of screening for virulence factors relevant to mammalian pathogenesis. Through the use of genetically tractable hosts, the multihost pathogenesis model also provides tools for elucidating host responses and dissecting the fundamental molecular interactions that underlie bacterial pathogenesis.  相似文献   

19.
Evans EA  Chen WC  Tan MW 《Aging cell》2008,7(6):879-893
The Caenorhabditis elegans DAF-2 insulin-like signaling pathway, which regulates lifespan and stress resistance, has also been implicated in resistance to bacterial pathogens. Loss-of-function daf-2 and age-1 mutants have increased lifespans and are resistant to a variety of bacterial pathogens. This raises the possibility that the increased longevity and the pathogen resistance of insulin-like signaling pathway mutants are reflections of the same underlying mechanism. Here we report that regulation of lifespan and resistance to the bacterial pathogen Pseudomonas aeruginosa is mediated by both shared and genetically distinguishable mechanisms. We find that loss of germline proliferation enhances pathogen resistance and this effect requires daf-16, similar to the regulation of lifespan. In contrast, the regulation of pathogen resistance and lifespan is decoupled within the DAF-2 pathway. Long-lived mutants of genes downstream of daf-2, such as pdk-1 and sgk-1, show wildtype resistance to pathogens. However, mutants of akt-1 and akt-2, which we find to individually have modest effects on lifespan, show enhanced resistance to pathogens. We also demonstrate that pathogen resistance of daf-2, akt-1, and akt-2 mutants is associated with restricted bacterial colonization, and that daf-2 mutants are better able to clear an infection after challenge with P. aeruginosa. Moreover, we find that pathogen resistance among insulin-like signaling mutants is associated with increased expression of immunity genes during infection. Other processes that affect organismal longevity, including Jun kinase signaling and caloric restriction, do not affect resistance to bacterial pathogens, further establishing that aging and innate immunity are regulated by genetically distinct mechanisms.  相似文献   

20.
Xie Y  Fleming E  Chen JL  Elmore DE 《Peptides》2011,32(4):677-682
Buforin II (BF2) is a histone-derived antimicrobial peptide that causes cell death by translocating across membranes and interacting with nucleic acids. It contains one proline residue critical for its function. Previous research found that mutations replacing proline lead to decreased membrane translocation and antimicrobial activity as well as increased membrane permeabilization. This study further investigates the role of proline in BF2's antimicrobial mechanism by considering the effect of changing proline position on membrane translocation, membrane permeabilization, and antimicrobial activity. For this purpose, four mutants were made with proline substitution (P11A) or relocation (P11A/G7P, P11A/V12P, P11A/V15P). These mutations altered the amount of helical content. Although antimicrobial activity correlated with the α-helical content for the peptides containing proline, membrane translocation did not. This observation suggests that factors in BF2's bactericidal mechanism other than translocation must be altered by these mutations. To better explain these trends we also measured the nucleic acid binding and membrane permeabilization of the mutant peptides. A comparison of mutant and wild type BF2 activity revealed that BF2 relies principally on membrane translocation and nucleic acid binding for antimicrobial activity, although membrane permeabilization may play a secondary role for some BF2 variants. A better understanding of the role of proline in the BF2 antimicrobial mechanism will contribute to the further design and development of BF2 analogs. Moreover, since proline residues are prevalent among other antimicrobial peptides, this systematic characterization of BF2 provides general insights that can promote our understanding of other systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号