首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Objective

Coreceptor switch from CCR5 to CXCR4 is associated with HIV disease progression. The molecular and evolutionary mechanisms underlying the CCR5 to CXCR4 switch are the focus of intense recent research. We studied the HIV-1 tropism dynamics in relation to coreceptor usage, the nature of quasispecies from ultra deep sequencing (UDPS) data and their phylogenetic relationships.

Methods

Here, we characterized C2-V3-C3 sequences of HIV obtained from 19 patients followed up for 54 to 114 months using UDPS, with further genotyping and phylogenetic analysis for coreceptor usage. HIV quasispecies diversity and variability as well as HIV plasma viral load were measured longitudinally and their relationship with the HIV coreceptor usage was analyzed. The longitudinal UDPS data were submitted to phylogenetic analysis and sampling times and coreceptor usage were mapped onto the trees obtained.

Results

Although a temporal viral genetic structuring was evident, the persistence of several viral lineages evolving independently along the infection was statistically supported, indicating a complex scenario for the evolution of viral quasispecies. HIV X4-using variants were present in most of our patients, exhibiting a dissimilar inter- and intra-patient predominance as the component of quasispecies even on antiretroviral therapy. The viral populations from some of the patients studied displayed evidences of the evolution of X4 variants through fitness valleys, whereas for other patients the data favored a gradual mode of emergence.

Conclusions

CXCR4 usage can emerge independently, in multiple lineages, along the course of HIV infection. The mode of emergence, i.e. gradual or through fitness valleys seems to depend on both virus and patient factors. Furthermore, our analyses suggest that, besides becoming dominant after population-level switches, minor proportions of X4 viruses might exist along the infection, perhaps even at early stages of it. The fate of these minor variants might depend on both viral and host factors.  相似文献   

2.

Background

HIV-1 infects the host cell by interacting with the primary receptor CD4 and a coreceptor CCR5 or CXCR4. Maraviroc, a CCR5 antagonist binds to CCR5 receptor. Thus, it is important to identify the coreceptor used by the HIV strains dominating in the patient. In past, a number of experimental assays and in-silico techniques have been developed for predicting the coreceptor tropism. The prediction accuracy of these methods is excellent when predicting CCR5(R5) tropic sequences but is relatively poor for CXCR4(X4) tropic sequences. Therefore, any new method for accurate determination of coreceptor usage would be of paramount importance to the successful management of HIV-infected individuals.

Results

The dataset used in this study comprised 1799 R5-tropic and 598 X4-tropic third variable (V3) sequences of HIV-1. We compared the amino acid composition of both types of V3 sequences and observed that certain types of residues, e.g., Asparagine and Isoleucine, were preferred in R5-tropic sequences whereas residues like Lysine, Arginine, and Tryptophan were preferred in X4-tropic sequences. Initially, Support Vector Machine-based models were developed using amino acid composition, dipeptide composition, and split amino acid composition, which achieved accuracy up to 90%. We used BLAST to discriminate R5- and X4-tropic sequences and correctly predicted 93.16% of R5- and 75.75% of X4-tropic sequences. In order to improve the prediction accuracy, a Hybrid model was developed that achieved 91.66% sensitivity, 81.77% specificity, 89.19% accuracy and 0.72 Matthews Correlation Coefficient. The performance of our models was also evaluated on an independent dataset (256 R5- and 81 X4-tropic sequences) and achieved maximum accuracy of 84.87% with Matthews Correlation Coefficient 0.63.

Conclusion

This study describes a highly efficient method for predicting HIV-1 coreceptor usage from V3 sequences. In order to provide a service to the scientific community, a webserver HIVcoPred was developed (http://www.imtech.res.in/raghava/hivcopred/) for predicting the coreceptor usage.  相似文献   

3.

Background

Cellular infection with human immunodeficiency virus (HIV) both in vitro and in vivo requires a member of the chemokine receptor family to act as a co-receptor for viral entry. However, it is presently unclear to what extent the interaction of HIV proteins with chemokine receptors generates intracellular signals that are important for productive infection.

Results

In this study we have used a recently described family of chemokine inhibitors, termed BSCIs, which specifically block chemokine-induced chemotaxis without affecting chemokine ligands binding to their receptors. The BSCI termed Peptide 3 strongly inhibited CCR5 mediated HIV infection of THP-1 cells (83 ± 7% inhibition assayed by immunofluoresence staining), but had no effect on gp120 binding to CCR5. Peptide 3 did not affect CXCR4-dependent infection of Jurkat T cells.

Conclusion

These observations suggest that, in some cases, intracellular signals generated by the chemokine coreceptor may be required for a productive HIV infection.  相似文献   

4.
5.

Background

HIV-1 entry into cells is a multifaceted process involving target cell CD4 and the chemokine receptors, CXCR4 or CCR5. The lipid composition of the host cell plays a significant role in the HIV fusion process as it orchestrates the appropriate disposition of CD4 and co-receptors required for HIV-1 envelope glycoprotein (Env)-mediated fusion. The cell membrane is primarily composed of sphingolipids and cholesterol. The effects of lipid modulation on CD4 disposition in the membrane and their role in HIV-1 entry have extensively been studied. To focus on the role of lipid composition on chemokine receptor function, we have by-passed the CD4 requirement for HIV-1 Env-mediated fusion by using a CD4-independent strain of HIV-1 Env.

Results

Cell fusion mediated by a CD4-independent strain of HIV-1 Env was monitored by observing dye transfer between Env-expressing cells and NIH3T3 cells bearing CXCR4 or CCR5 in the presence or absence of CD4. Chemokine receptor signaling was assessed by monitoring changes in intracellular [Ca2+] mobilization induced by CCR5 or CXCR4 ligand. To modulate target membrane cholesterol or sphingolipids we used Methyl-β-cyclodextrin (MβCD) or 1-phenyl-2-hexadecanoylamino-3-morpholino-1-propanol (PPMP), respectively. Treatment of the target cells with these agents did not change the levels of CD4 or CXCR4, but reduced levels of CCR5 on the cell surface. Chemokine receptor signalling was inhibited by cholesterol removal but not by treatment with PPMP. HIV-1 Env mediated fusion was inhibited by >50% by cholesterol removal. Overall, PPMP treatment appeared to slow down the rates of CD4-independent HIV-1 Env-mediated Fusion. However, in the case of CXCR4-dependent fusion, the differences between untreated and PPMP-treated cells did not appear to be significant.

Conclusion

Although modulation of cholesterol and sphingolipids has similar effects on CD4 -dependent HIV-1 Env-mediated fusion, sphingolipid modulation had little effect on CD4-independent HIV-1 Env-mediated fusion. Chemokine receptor function remained intact following treatment of cells with PPMP. Therefore such treatment may be considered a more suitable agent to inhibit CD4 dependent HIV-1 infection.  相似文献   

6.
7.
Human immunodeficiency virus type 1 (HIV-1) uses a variety of chemokine receptors as coreceptors for virus entry, and the ability of the virus to be neutralized by antibody may depend on which coreceptors are used. In particular, laboratory-adapted variants of the virus that use CXCR4 as a coreceptor are highly sensitive to neutralization by sera from HIV-1-infected individuals, whereas primary isolates that use CCR5 instead of, or in addition to, CXCR4 are neutralized poorly. To determine whether this dichotomy in neutralization sensitivity could be explained by differential coreceptor usage, virus neutralization by serum samples from HIV-1-infected individuals was assessed in MT-2 cells, which express CXCR4 but not CCR5, and in mitogen-stimulated human peripheral blood mononuclear cells (PBMC), where multiple coreceptors including CXCR4 and CCR5 are available for use. Our results showed that three of four primary isolates with a syncytium-inducing (SI) phenotype and that use CXCR4 and CCR5 were neutralized poorly in both MT-2 cells and PBMC. The fourth isolate, designated 89.6, was more sensitive to neutralization in MT-2 cells than in PBMC. We showed that the neutralization of 89.6 in PBMC was not improved when CCR5 was blocked by having RANTES, MIP-1α, and MIP-1β in the culture medium, indicating that CCR5 usage was not responsible for the decreased sensitivity to neutralization in PBMC. Consistent with this finding, a laboratory-adapted strain of virus (IIIB) was significantly more sensitive to neutralization in CCR5-deficient PBMC (homozygous Δ32-CCR5 allele) than were two of two SI primary isolates tested. The results indicate that the ability of HIV-1 to be neutralized by sera from infected individuals depends on factors other than coreceptor usage.Human immunodeficiency virus type 1 (HIV-1), the etiologic agent of AIDS, utilizes the HLA class II receptor, CD4, as its primary receptor to gain entry into cells (17, 30). Entry is initiated by a high-affinity interaction between CD4 and the surface gp120 of the virus (32). Subsequent to this interaction, conformational changes that permit fusion of the viral membrane with cellular membranes occur within the viral transmembrane gp41 (9, 58, 59). In addition to CD4, one or more recently described viral coreceptors are needed for fusion to take place. These coreceptors belong to a family of seven-transmembrane G-protein-coupled proteins and include the CXC chemokine receptor CXCR4 (3, 4, 24, 44), the CC chemokine receptors CCR5 (1, 12, 13, 18, 21, 23, 45) and, less commonly, CCR3 and CCR2b (12, 21), and two related orphan receptors termed BONZO/STRL33 and BOB (19, 34). Coreceptor usage by HIV-1 can be blocked by naturally occurring ligands, including SDF-1 for CXCR4 (4, 44), RANTES, MIP-1α, and MIP-1β in the case of CCR5 (13, 45), and eotaxin for CCR3 (12).The selective cellular tropisms of different strains of HIV-1 may be determined in part by coreceptor usage. For example, all culturable HIV-1 variants replicate initially in mitogen-stimulated human peripheral blood mononuclear cells (PBMC), but only a minor fraction are able to infect established CD4+ T-cell lines (43). This differential tropism is explained by the expression of CXCR4 together with CCR5 and other CC chemokine coreceptors on PBMC and the lack of expression of CCR5 on most T-cell lines (5, 10, 19, 35, 39, 50, 53). Indeed, low-passage field strains (i.e., primary isolates) of HIV-1 that fail to replicate in T-cell lines use CCR5 as their major coreceptor and are unable to use CXCR4 (1, 12, 18, 21, 23, 28). Because these isolates rarely produce syncytia in PBMC and fail to infect MT-2 cells, they are often classified as having a non-syncytium-inducing (NSI) phenotype. Primary isolates with a syncytium-inducing (SI) phenotype are able to use CXCR4 alone or, more usually, in addition to CCR5 (16, 20, 51). HIV-1 variants that have been passaged multiple times in CD4+ T-cell lines, and therefore considered to be laboratory adapted, exhibit a pattern of coreceptor usage that resembles that of SI primary isolates. Most studies have shown that the laboratory-adapted strain IIIB uses CXCR4 alone (3, 13, 20, 24, 51) and that MN and SF-2 use CXCR4 primarily and CCR5 to a lesser degree (11, 13). Sequences within the V3 loop of gp120 have been shown to be important, either directly or indirectly, for the interaction of HIV-1 with both CXCR4 (52) and CCR5 (12, 14, 54, 60). This region of gp120 contains multiple determinants of cellular tropism (43) and is a major target for neutralizing antibodies to laboratory-adapted HIV-1 but not to primary isolates (29, 46, 57).It has been known for some time that the ability of sera from HIV-1-infected individuals to neutralize laboratory-adapted strains of HIV-1 does not predict their ability to neutralize primary isolates in vitro (7). In general, the former viruses are highly sensitive to neutralization whereas the latter viruses are neutralized poorly by antibodies induced in response to HIV-1 infection (7, 43). Importantly, neutralizing antibodies generated by candidate HIV-1 subunit vaccines have been highly specific for laboratory-adapted viruses (26, 37, 38). In principle, the dichotomy in neutralization sensitivity between these two categories of virus could be related to coreceptor usage. To test this, we investigated whether the use of CXCR4 in the absence of CCR5 would render SI primary isolates highly sensitive to neutralization in vitro by sera from HIV-1-infected individuals. Two similar studies using human monoclonal antibodies and soluble CD4 have been reported (31a, 55).  相似文献   

8.

Background

Entry of human immunodeficiency virus type 1 (HIV-1) into cells involves the interaction of the viral gp120 envelope glycoproteins (Env) with cellular CD4 and a secondary coreceptor, which is typically one of the chemokine receptors CCR5 or CXCR4. CCR5-using (R5) HIV-1 strains that display reduced sensitivity to CCR5 antagonists can use antagonist-bound CCR5 for entry. In this study, we investigated whether naturally occurring gp120 alterations in HIV-1 subtype C (C-HIV) variants exist in antiretroviral therapy (ART)-naïve subjects that may influence their sensitivity to the CCR5 antagonist maraviroc (MVC).

Results

Using a longitudinal panel of 244 R5 Envs cloned from 20 ART-naïve subjects with progressive C-HIV infection, we show that 40% of subjects (n = 8) harbored viruses that displayed incomplete inhibition by MVC, as shown by plateau’s of reduced maximal percent inhibitions (MPIs). Specifically, when pseudotyped onto luciferase reporter viruses, 16 Envs exhibited MPIs below 98% in NP2–CCR5 cells (range 79.7–97.3%), which were lower still in 293-Affinofile cells that were engineered to express high levels of CCR5 (range 15.8–72.5%). We further show that Envs exhibiting reduced MPIs to MVC utilized MVC-bound CCR5 less efficiently than MVC-free CCR5, which is consistent with the mechanism of resistance to CCR5 antagonists that can occur in patients failing therapy. Mutagenesis studies identified strain-specific mutations in the gp120 V3 loop that contributed to reduced MPIs to MVC.

Conclusions

The results of our study suggest that some ART-naïve subjects with C-HIV infection harbor HIV-1 with reduced MPIs to MVC, and demonstrate that the gp120 V3 loop region contributes to this phenotype.
  相似文献   

9.
We previously reported coreceptor switch in rhesus macaques inoculated intravenously with R5 simian-human immunodeficiency virus SF162P3N (SHIVSF162P3N). Whether R5-to-X4 virus evolution occurs in mucosally infected animals and in which anatomic site the switch occurs, however, were not addressed. We herein report a change in coreceptor preference in macaques infected intrarectally with SHIVSF162P3N. The switch occurred in infected animals with high levels of virus replication and undetectable antiviral antibody response and required sequence changes in the V3 loop of the gp120 envelope protein. X4 virus emergence was associated with an accelerated drop in peripheral CD4+ T-cell count but followed rather than preceded the onset of CD4+ T-cell loss. The conditions, genotypic requirements, and patterns of coreceptor switch in intrarectally infected animals were thus remarkably consistent with those found in macaques infected intravenously. They also overlapped with those reported for humans, suggestive of a common mechanism for coreceptor switch in the two hosts. Furthermore, two independent R5-to-X4 evolutionary pathways were identified in one infected animal, giving rise to dual-tropic and X4 viruses which differed in switch kinetics and tissue localization. The dual-tropic switch event predominated early, and the virus established infection in multiple tissues sites. In contrast, the switch to X4 virus occurred later, initiating and expanding mainly in peripheral lymph nodes. These findings help define R5 SHIVSF162P3N infection of rhesus macaques as a model to study the mechanistic basis, dynamics, and sites of HIV-1 coreceptor switch.The human immunodeficiency virus (HIV) enters target cells via binding of the viral envelope glycoprotein to the CD4 receptor, triggering envelope conformational changes that allow for interaction with either the CCR5 or CXCR4 chemokine receptor (1, 3, 8, 15, 16, 18). Most HIV type 1 (HIV-1) transmissions are initiated with CCR5-using (R5) viruses (58, 68). With time, CXCR4-tropic (X4) viruses emerge and coexist with R5 viruses in close to 50% of subtype B-infected individuals, and this is accompanied by a rise in viremia, rapid CD4+ T-cell loss, and progression to disease (4, 7, 11, 34, 57, 65). The mechanistic basis and reasons for HIV-1 coreceptor switch, however, are still not well understood. Several factors including high viral load, low CD4+ T-cell numbers, reduced availability of CCR5+ cells, and progressive immune dysfunction have been proposed as playing important roles (48, 54). Since X4 virus emergence is associated with a faster rate of disease progression, insights into the determinants of HIV-1 coreceptor switch are of interest in understanding viral pathogenesis. Furthermore, with the introduction of CCR5 entry inhibitors as anti-HIV therapeutics (19, 23, 24, 38), there is a need not only to identify the presence of X4 variants in patients when treatment options are considered but also to understand the factors that influence X4 virus evolution. Although the majority of individuals failing on short-term CCR5 antagonist monotherapy harbor preexisting minor X4 variants (71), it is conceivable that given the right conditions and selective forces, inhibiting HIV-1 entry via CCR5 may drive the virus to evolve to CXCR4 usage and exacerbate disease. An animal model that faithfully recapitulates the process of coreceptor switch will be highly useful to study and identify the determinants and conditions that facilitate the change in coreceptor preference. In addition, an animal model provides the opportunity to track the kinetics of coreceptor switching at different anatomical sites, which may inform on the mechanisms of X4 virus emergence.In this regard, we recently reported coreceptor switch in two of nine rhesus macaques (RM) inoculated intravenously with simian-human immunodeficiency virus SF162P3N (SHIVSF162P3N) that bears an HIV-1 CCR5-tropic Env (28, 29). In order to establish a reproducible model for coreceptor switch, however, it was crucial to document additional switching events. Furthermore, since the majority of HIV transmission occurs via mucosal surfaces, it was important to demonstrate coreceptor switch in macaques infected with R5 SHIVSF162P3N by the mucosal route to validate this animal model in studying the in vivo evolution of HIV-1 coreceptor usage. Additionally, the tissue compartment(s) where CXCR4-using viruses evolve and expand is not well characterized. A recent study indicates that the thymus may play an important role in the evolution and/or amplification of coreceptor variants in pediatric HIV infection (56). Since the thymus is the primary source of T lymphopoiesis during early life (45) and since CXCR4 is the predominant coreceptor expressed on thymocytes (33, 64), this organ would seem to provide the ideal milieu for X4 amplification in infants and children. Indeed, we previously showed that whereas X4 SHIV infection of newborn RM resulted in severe thymic involution, R5 SHIV infection induced only a minor disruption in thymic morphology (55), lending support to the idea that the thymus is a preferred site for X4 replication in pediatric HIV infections. Nevertheless, thymopoietic function declines with age (17, 42, 60), and naïve T cells that express high levels of CXCR4 are also enriched in peripheral lymph nodes (5, 27, 36, 66). Thus, the role of the thymus and other lymphoid tissues in HIV-1 coreceptor switch in older individuals remains to be determined. To address these issues, we inoculated adult RM intrarectally (i.r.) with R5 SHIVSF162P3N and performed frequent longitudinal blood and tissue samplings. Our goal was to document changes in coreceptor preference in mucosally infected macaques, as well as to obtain a more detailed picture of the kinetics and site of X4 virus evolution and amplification in vivo.  相似文献   

10.
Like human immunodeficiency virus type 1 (HIV-1), most simian immunodeficiency virus (SIV) strains use CCR5 to establish infection. However, while HIV-1 can acquire the ability to use CXCR4, SIVs that utilize CXCR4 have rarely been reported. To explore possible barriers against SIV coreceptor switching, we derived an R5X4 variant, termed 239-ST1, from the R5 clone SIVmac239 by serially passaging virus in CD4+ CXCR4+ CCR5 SupT1 cells. A 239-ST1 env clone, designated 239-ST1.2-32, used CXCR4 and CCR5 in cell-cell fusion and reporter virus infection assays and conferred the ability for rapid, cytopathic infection of SupT1 cells to SIVmac239. Viral replication was inhibitable by the CXCR4-specific antagonist AMD3100, and replication was abrogated in a novel CXCR4 SupT1 line. Surprisingly, parental SIVmac239 exhibited low-level replication in SupT1 cells that was not observed in CXCR4 SupT1 cells. Only two mutations in the 239-ST1.2-32 Env, K47E in the C1 domain and L328W in the V3 loop, were required for CXCR4 use in cell-cell fusion assays, although two other V3 changes, N316K and I324M, improved CXCR4 use in infection assays. An Env cytoplasmic tail truncation, acquired during propagation of 239-ST1 in SupT1 cells, was not required. Compared with SIVmac239, 239-ST1.2-32 was more sensitive to neutralization by five of seven serum and plasma samples from SIVmac239-infected rhesus macaques and was approximately 50-fold more sensitive to soluble CD4. Thus, SIVmac239 can acquire the ability to use CXCR4 with high efficiency, but the changes required for this phenotype may be distinct from those for HIV-1 CXCR4 use. This finding, along with the increased neutralization sensitivity of this CXCR4-using SIV, suggests a mechanism that could select strongly against this phenotype in vivo.Simian immunodeficiency viruses (SIVs) share many structural and biological features with human immunodeficiency virus (HIV), including target cell entry via interactions of the viral envelope glycoprotein (Env) with CD4 and a chemokine coreceptor. For HIV, the most important coreceptors in vivo are CCR5 (2, 13, 19, 21, 22) and CXCR4 (30). HIV type 1 (HIV-1) strains that use only CCR5 (R5 viruses) predominate during the early stages of infection and are critical for transmission (84, 90), as evidenced by the finding that individuals lacking a functional CCR5 protein due to a homozygous 32-bp deletion in the CCR5 gene (ccr532) are largely resistant to HIV-1 infection (16, 54, 82). Although R5 viruses generally persist in late-stage disease, viruses that can use CXCR4, either exclusively (X4 viruses) or in addition to CCR5 (R5X4 viruses), emerge in approximately 50% of subtype B-infected individuals (15, 43). This coreceptor switch is associated with a more rapid decline in peripheral blood CD4+ T cells and a faster progression to AIDS (15, 43, 77), although it is unclear if CXCR4-using viruses are a cause or a consequence of progressing immunodeficiency. Like HIV, the vast majority of SIVs use CCR5 to establish infection (11, 12, 45). However, although CXCR4-using SIVs have been reported (47, 52, 65, 68, 69), their occurrence is rare, especially in models of pathogenic infection, where only one CXCR4-using SIV has been identified (17, 60, 71).This paucity of CXCR4-using SIVs is surprising for several reasons. First, SIV Envs tend to be more promiscuous than HIV-1 Envs and frequently use alternative coreceptors in addition to CCR5, including GPR1, GPR15, CXCR6, and CCR8 (20, 27, 29, 80, 81, 92) but not CXCR4. Second, HIV-2, which is more closely related to SIVmac than to HIV-1 (56, 57), commonly uses CXCR4 in vitro and in vivo (3, 28, 33, 58, 59, 67). Third, rhesus CXCR4 is ∼98% identical to human CXCR4 in amino acid sequence and can function as a coreceptor for HIV-1 in vitro (12). Finally, chimeric simian-human immunodeficiency viruses (SHIVs) that contain X4 HIV Envs on an SIV core can replicate to high levels in vivo and cause disease in rhesus macaques (39, 86). Moreover, it was recently shown that coreceptor switching can occur in rhesus macaques infected with an R5 SHIV (35). Thus, there does not appear to be any block per se against the use of rhesus CXCR4 as an entry coreceptor either in vitro or in vivo, suggesting that SIV is less capable of adapting to use CXCR4 and/or that mutations required for CXCR4 utilization may lead to a virus that is less fit and/or more susceptible to immune control in this host.For HIV-1, the Env determinants for CXCR4 use have been well documented and often involve the acquisition of positively charged amino acids in the V3 loop (18, 32, 87), particularly at positions 11, 24, and 25 (6, 18, 31, 32, 38, 75). Although the SIVmac239 V3 loop is a critical determinant for Env-coreceptor interactions (44, 63, 72), attempts to create an X4 SIVmac239 by introducing positively charged residues into the V3 loop (63) or by inserting a V3 loop from X4 HIV-1 (44) have been unsuccessful. SIVmac155T3, the only CXCR4-using variant of SIVmac that has been identified to date, was isolated from a rhesus macaque with advanced disease and contains additional positively charged residues in V3, although the determinants for CXCR4 use have not been determined (60, 71).Given questions concerning the possible determinants for and/or barriers to coreceptor switching in SIV, we sought to derive a CXCR4-using variant of the well-characterized pathogenic R5 SIV clone SIVmac239. Here we show that SIVmac239 could indeed acquire CXCR4 utilization when it was adapted in vitro for high-efficiency replication in the CXCR4+ CCR5 human SupT1 cell line. An env clone from this virus could use CXCR4 in cell-cell fusion and reporter virus infection assays and conferred CXCR4 tropism to a replication-competent SIV. Although V3 mutations were important for CXCR4 use, an L328W change at the V3 crown rather than the acquisition of positively charged residues was required, as was an unusual K47E mutation in the conserved C1 domain of gp120. These changes also caused the highly neutralization-resistant SIVmac239 strain to become more neutralization sensitive to sera and plasmas from SIVmac239-infected animals, and particularly to soluble CD4. These results indicate that mutations distinct from those typically seen for HIV-1 may be required for SIVmac to gain CXCR4 utilization and suggest that these changes render this virus more susceptible to humoral immune control. Collectively, our findings indicate that there are likely to be strong viral and host selection pressures against CXCR4 use that may contribute to the paucity of X4 coreceptor switching for SIVmac in vivo.  相似文献   

11.
12.
Human immunodeficiency virus type 1 (HIV-1) preferentially utilizes the CCR5 coreceptor for target cell entry in the acute phase of infection, while later in disease progression the virus switches to the CXCR4 coreceptor in approximately 50% of patients. In response to HIV-1 the adaptive immune response is triggered, and antibody (Ab) production is elicited to block HIV-1 entry. We recently determined that dendritic cells (DCs) can efficiently capture Ab-neutralized HIV-1, restore infectivity, and transmit infectious virus to target cells. Here, we tested the effect of Abs on trans transmission of CCR5 or CXCR4 HIV-1 variants. We observed that transmission of HIV-1 by immature as well as mature DCs was significantly higher for CXCR4- than CCR5-tropic viral strains. Additionally, neutralizing Abs directed against either the gp41 or gp120 region of the envelope such as 2F5, 4E10, and V3-directed Abs inhibited transmission of CCR5-tropic HIV-1, whereas Ab-treated CXCR4-tropic virus demonstrated unaltered or increased transmission. To further study the effects of coreceptor usage we tested molecularly cloned HIV-1 variants with modifications in the envelope that were based on longitudinal gp120 V1 and V3 variable loop sequences from a patient progressing to AIDS. We observed that DCs preferentially facilitated infection of CD4+ T lymphocytes of viral strains with an envelope phenotype found late in disease. Taken together, our results illustrate that DCs transmit CXCR4-tropic HIV-1 much more efficiently than CCR5 strains; we hypothesize that this discrimination could contribute to the in vivo coreceptor switch after seroconversion and could be responsible for the increase in viral load.  相似文献   

13.
We have investigated whether the identity of the coreceptor (CCR5, CXCR4, or both) used by primary human immunodeficiency virus type 1 (HIV-1) isolates to enter CD4+ cells influences the sensitivity of these isolates to neutralization by monoclonal antibodies and CD4-based agents. Coreceptor usage was not an important determinant of neutralization titer for primary isolates in peripheral blood mononuclear cells. We also studied whether dualtropic primary isolates (able to use both CCR5 and CXCR4) were differentially sensitive to neutralization by the same antibodies when entering U87MG-CD4 cells stably expressing either CCR5 or CXCR4. Again, we found that the coreceptor used by a virus did not greatly affect its neutralization sensitivity. Similar results were obtained for CCR5- or CXCR4-expressing HOS cell lines engineered to express green fluorescent protein as a reporter of HIV-1 entry. Neutralizing antibodies are therefore unlikely to be the major selection pressure which drives the phenotypic evolution (change in coreceptor usage) of HIV-1 that can occur in vivo. In addition, the increase in neutralization sensitivity found when primary isolates adapt to growth in transformed cell lines in vitro has little to do with alterations in coreceptor usage.Human immunodeficiency virus type 1 (HIV-1) enters CD4+ T cells via an interaction with CD4 and coreceptor molecules, the most important of which yet identified are the chemokine receptors CXCR4 and CCR5 (4, 12, 23, 26, 28, 32). CXCR4 is used by T-cell line-tropic (T-tropic) primary isolates or T-cell line-adapted (TCLA) lab strains, whereas CCR5 is used by primary isolates of the macrophage-tropic (M-tropic) phenotype (4, 12, 23, 26, 28, 32). Most T-tropic isolates and some TCLA strains are actually dualtropic in that they can use both CXCR4 and CCR5 (and often other coreceptors such as CCR3, Bonzo/STRL33, and BOB/gpr15), at least in coreceptor-transfected cells (18, 24, 30, 54, 89). The M-tropic and T-tropic/dualtropic nomenclature has often been used interchangeably with the terms “non-syncytium-inducing” (NSI) and “syncytium-inducing” (SI), although it is semantically imprecise to do so.M-tropic viruses are those most commonly transmitted sexually (3, 33, 87, 106) and from mother to infant (2, 72, 81). If T-tropic strains are transmitted, or when they emerge, this is associated with a more rapid course of disease in both adults (17, 37, 46, 51, 52, 76, 78, 82, 92, 101) and children (6, 45, 84, 90). However, T-tropic viruses emerge in only about 40% of infected people, usually only several years after infection (76, 78). A well-documented, albeit anecdotal, study found that when a T-tropic strain was transmitted by direct transfer of blood, its replication was rapidly suppressed: the T-tropic virus was eliminated from the body, and M-tropic strains predominated (20). These results suggest that there is a counterselection pressure against the emergence of T-tropic strains during the early stages of HIV-1 infection in most people. But what is this pressure?Since the M-tropic and T-tropic phenotypes are properties mediated by the envelope glycoproteins whose function is to associate with CD4 and the coreceptors, a selection pressure differentially exerted on M- and T-tropic viruses could, in principle, act at the level of virus entry. In other words, neutralizing antibodies to the envelope glycoproteins, or the chemokine ligands of the coreceptors, could theoretically interfere more potently with the interactions of T-tropic strains with CXCR4 than with M-tropic viruses and CCR5. A differential effect of this nature could suppress the emergence of T-tropic viruses. Consistent with this possibility, neutralizing antibodies are capable of preventing the CD4-dependent association of gp120 with CCR5 (42, 94, 103), and chemokines can also prevent the coreceptor interactions of HIV-1 (8, 13, 23, 28, 70).Here, we explore whether the efficiency of HIV-1 neutralization is affected by coreceptor usage. Although earlier studies have not found T-tropic strains to be inherently more neutralization sensitive than M-tropic ones (20, 40, 44), previously available reagents and techniques may not have been adequate to fully address this question. One major problem is that even single residue changes can drastically affect both antibody binding to neutralization epitopes and the HIV-1 phenotype (25, 55, 62, 67, 83, 91), and so studies using relatively unrelated viruses and a fixed antibody (polyclonal or monoclonal) preparation have two variables to contend with: the viral phenotype (coreceptor use) and the antigenic structure of the virus and hence the efficiency of the antibody-virion interaction.We have used a new experimental strategy to explore whether coreceptor usage affects neutralization sensitivity in the absence of other confounding variables: the use of dualtropic viruses able to enter CD4+ cells via either CCR5 or CXCR4. By using a constant HIV-1 isolate or clone and the same monoclonal antibodies (MAbs) or CD4-based reagents as neutralizing agents, we can ensure that the only variable under study in the neutralization reaction is the nature of the coreceptor used for entry. Our major conclusion is that there is no strong association between coreceptor usage and neutralization sensitivity for primary HIV-1 isolates. Independent studies have reached the same conclusion (53a, 59). The emergence of T-tropic (SI) viruses in vivo may be unlikely to be due to escape from antibody-mediated selection pressure.  相似文献   

14.
15.
Several members of the seven-transmembrane chemokine receptor family have been shown to serve, with CD4, as coreceptors for entry by human immunodeficiency virus type 1 (HIV-1). While coreceptor usage by HIV-1 primary isolates has been studied by several groups, there is only limited information available concerning coreceptor usage by primary HIV-2 isolates. In this study, we have analyzed coreceptor usage of 15 primary HIV-2 isolates, using lymphocytes from a donor with nonfunctional CCR5 (CCR5 −/−; homozygous 32-bp deletion). Based on the infections of PBMCs, seven of these primary isolates had an absolute requirement for CCR5 expression, whereas the remaining eight exhibited a broader coreceptor usage. All CCR5-requiring isolates were non-syncytium inducing, whereas isolates utilizing multiple coreceptors were syncytium inducing. Blocking experiments using known ligands for chemokine receptors provided indirect evidence for additional coreceptor utilization by primary HIV-2 isolates. Analysis of GHOST4 cell lines expressing various chemokine receptors (CCR1, CCR2b, CCR3, CCR4, CCR5, CXCR4, BONZO, and BOB) further defined specific coreceptor usage of primary HIV-2 isolates. The receptors used included CXCR4, CCR1-5, and the recently described receptors BONZO and BOB. However, the efficiency at which the coreceptors were utilized varied greatly among the various isolates. Analysis of V3 envelope sequences revealed no specific motif that correlated with coreceptor usage. Our data demonstrate that primary HIV-2 isolates are capable of using a broad range of coreceptors for productive infection in vitro. Additionally, our data suggest that expanded coreceptor usage by HIV-2 may correlate with disease progression.  相似文献   

16.
The V3 loop of human immunodeficiency virus type 1 (HIV-1) is critical for coreceptor binding and is the main determinant of which of the cellular coreceptors, CCR5 or CXCR4, the virus uses for cell entry. The aim of this study is to provide a large-scale data driven analysis of HIV-1 coreceptor usage with respect to the V3 loop evolution and to characterize CCR5- and CXCR4-tropic viral phenotypes previously studied in small- and medium-scale settings. We use different sequence similarity measures, phylogenetic and clustering methods in order to analyze the distribution in sequence space of roughly 1000 V3 loop sequences and their tropism phenotypes. This analysis affords a means of characterizing those sequences that are misclassified by several sequence-based coreceptor prediction methods, as well as predicting the coreceptor using the location of the sequence in sequence space and of relating this location to the CD4+ T-cell count of the patient. We support previous findings that the usage of CCR5 is correlated with relatively high sequence conservation whereas CXCR4-tropic viruses spread over larger regions in sequence space. The incorrectly predicted sequences are mostly located in regions in which their phenotype represents the minority or in close vicinity of regions dominated by the opposite phenotype. Nevertheless, the location of the sequence in sequence space can be used to improve the accuracy of the prediction of the coreceptor usage. Sequences from patients with high CD4+ T-cell counts are relatively highly conserved as compared to those of immunosuppressed patients. Our study thus supports hypotheses of an association of immune system depletion with an increase in V3 loop sequence variability and with the escape of the viral sequence to distant parts of the sequence space.  相似文献   

17.
AIDS-associated, CCR5-tropic (R5) HIV-1 clones, isolated from a patient that never developed CXCR4-tropic HIV-1, replicate to a greater extent and cause greater cytopathic effects than R5 HIV-1 clones isolated before the onset of AIDS. Previously, we showed that HIV-1 Env substantially contributed to the enhanced replication of an AIDS clone. In order to determine if Nef makes a similar contribution, we cloned and phenotypically analyzed nef genes from a series of patient ACH142 derived R5 HIV-1 clones. The AIDS-associated Nef contains a series of residues found in Nef proteins from progressors [1]. In contrast to other reports [13], this AIDS-associated Nef downmodulated MHC-I to a greater extent and CD4 less than pre-AIDS Nef proteins. Additionally, all Nef proteins enhanced infectivity similarly in a single round of replication. Combined with our previous study, these data show that evolution of the HIV-1 env gene, but not the nef gene, within patient ACH142 significantly contributed to the enhanced replication and cytopathic effects of the AIDS-associated R5 HIV-1 clone.  相似文献   

18.
Stromal cell-Derived Factor 1 (SDF1) is the natural ligand of CXCR4, the coreceptor of HIV-1 X4 viruses. This study investigated the role of the single nucleotide polymorphism (SNP) rs1801157 (NM_000609.5:c.*519G>A) of the SDF1 gene in the natural history of mother-to-child transmission of HIV-1 and disease progression of HIV-1-infected children. The study was conducted in 428 children born to HIV-1-seropositive mothers, who had not undergone antiretroviral therapy (ART) during pregnancy, and in 120 HIV-1-infected children for whom the end-point was the onset of AIDS or the initiation of ART; 16 children developed early AIDS (<24 months of life), 13 from 24 to 84 months of age, and 14 had late AIDS (>84 months). The rs1801157 SNP was not associated with risk of perinatal infection in any genetic models tested. By contrast, this SNP influenced disease progression in a time-dependent manner. rs1801157 GA heterozygous children had a higher risk of late AIDS (HR = 6.3, 95%CI 1.9–20.7, p = 0.002) than children with the rs1801157 GG genotype. Children were studied for viral coreceptor usage at birth, after 84 months of age and/or at AIDS onset. While R5 viruses using CCR5 coreceptor were predominant at birth (94%) and at early AIDS (85%), viruses using CXCR4 coreceptor emerged during the course of infection and were detected in 49% of children older than 84 months and in 62% of late AIDS. The rs1801157 SNP did not influence the emergence of R5X4 viruses, but children with the rs1801157 GA genotype and R5X4 viruses were at significantly higher risk of late AIDS than children with rs1801157 GG genotype (OR = 8.0, 95% CI 1.2–52.2, p = 0.029). Our results indicate that the rs1801157 SNP does not influence perinatal infection, but impacts disease progression. This effect is time-dependent and linked to the coreceptor-usage of viral variants that undergo evolution during the course of HIV-1 infection.  相似文献   

19.
20.

Background

HIV-1 R5 viruses are characterized by a large phenotypic variation, that is reflected by the mode of coreceptor use. The ability of R5 HIV-1 to infect target cells expressing chimeric receptors between CCR5 and CXCR4 (R5broad viruses), was shown to correlate with disease stage in HIV-1 infected adults. Here, we ask the question whether phenotypic variation of R5 viruses could play a role also in mother-to-child transmission (MTCT) of HIV-1 and pediatric disease progression.

Methodology/Principal Findings

Viral isolates obtained from a total of 59 HIV-1 seropositive women (24 transmitting and 35 non transmitting) and 28 infected newborn children, were used to infect U87.CD4 cells expressing wild type or six different CCR5/CXCR4 chimeric receptors. HIV-1 isolates obtained from newborn infants had predominantly R5narrow phenotype (n = 20), but R5broad and R5X4 viruses were also found in seven and one case, respectively. The presence of R5broad and R5X4 phenotypes correlated significantly with a severe decline of the CD4+ T cells (CDC stage 3) or death within 2 years of age. Forty-three percent of the maternal R5 isolates displayed an R5broad phenotype, however, the presence of the R5broad virus was not predictive for MTCT of HIV-1. Of interest, while only 1 of 5 mothers with an R5X4 virus transmitted the dualtropic virus, 5 of 6 mothers carrying R5broad viruses transmitted viruses with a similar broad chimeric coreceptor usage. Thus, the maternal R5broad phenotype was largely preserved during transmission and could be predictive of the phenotype of the newborn''s viral variant.

Conclusions/Significance

Our results show that R5broad viruses are not hampered in transmission. When transmitted, immunological failure occurs earlier than in children infected with HIV-1 of R5narrow phenotype. We believe that this finding is of utmost relevance for therapeutic interventions in pediatric HIV-1 infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号