首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lysed guard-cell protoplasts of Vicia faba L. exhibited hydrolytic activity characteristic of tonoplast inorganic pyrophosphatase (V-PPase; EC 3.6.1.1). Activity was inhibited by the specific V-PPase inhibitor aminomethylenediphosphonate, stimulated by K+ (K m = 51 mM) and inhibited by Ca2+ (80 nM free Ca2+ was required for 50% inhibition at 0.27 mM free Mg2+). Patch-clamp measurements of electrogenic activity confirmed enzyme localisation at the tonoplast. This is the first report of V-PPase activity in guard cells; its possible involvement in stomatal opening is discussed. Received: 12 February 1998 / Accepted: 24 April 1998  相似文献   

2.
An abscisic acid (ABA)-insensitive Vicia faba mutant, fia (fava bean impaired in ABA-induced stomatal closure) had previously been isolated. In this study, it was investigated how FIA functions in ABA signalling in guard cells of Vicia faba. Unlike ABA, methyl jasmonate (MeJA), H(2)O(2), and nitric oxide (NO) induced stomatal closure in the fia mutant. ABA did not induce production of either reactive oxygen species or NO in the mutant. Moreover, ABA did not suppress inward-rectifying K(+) (K(in)) currents or activate ABA-activated protein kinase (AAPK) in mutant guard cells. These results suggest that FIA functions as an early signal component upstream of AAPK activation in ABA signalling but does not function in MeJA signalling in guard cells of Vicia faba.  相似文献   

3.
4.
Accumulation of malate in guard cells of Vicia faba during stomatal opening   总被引:1,自引:3,他引:1  
W. G. Allaway 《Planta》1973,110(1):63-70
Summary The level of malate in the epidermis from illuminated leaves of Vicia faba was greater than in that from dark-treated leaves. A difference in the malate level was still detected after the epidermis had been treated by rolling so that only the guard cells remained alive. The results suggest that malate may accumulate in guard cells on illumination. In subsequent experiments, stomatal apertures were measured, and potassium as well as malate was analysed in extracts of epidermis. In illuminated leaves, the potassium content of rolled epidermis increased from about 90 to about 335 picoequivalents mm-2 of epidermis whele malate increased from about zero to about 71 pmoles mm-2 and the stomata opened; in dark-treated leaves, the potassium content of rolled epidermis decreased slightly, the malate level remained about zero, and the stomata showed very slight further closure. The measured increase in potassium is likely to represent an increase in potassium concentration in the guard cells of about 0.4 Eq l-1 with stomatal opening; the increase in malate could correspond to 0.23 Eq l-1 (with respect to potassium) in the guard cells. Thus, malate accumulating in guard cells could balance about half of the potassium taken up by guard cells when stomata open in the light.  相似文献   

5.
Gabi Lohse  Rainer Hedrich 《Planta》1992,188(2):206-214
Stomatal movement is controlled by external and internal signals such as light, phytohormones or cytoplasmic Ca2+. Using Vicia faba L., we have studied the dose-dependent effect of auxins on the modulation of stomatal opening, mediated through the activity of the plasma-membrane H+-ATPase. The patch-clamp technique was used to elucidate the electrical properties of the H+-ATPase as effected by growth regulators and seasonal changes. The solute composition of cytoplasmic and extracellular media was selected to record pump currents directly with high resolution. Proton currents through the ATPase were characterized by a voltage-dependent increase in amplitude, positive to the resting potential, reaching a plateau at more depolarized values. Upon changes in extracellular pH, the resting potential of the cell shifted with a non-Nernst potential response (±21 mV), indicating the contribution of a depolarizing ionic conductance other than protons to the permeability of the plasma membrane. The use of selective inhibitors enabled us to identify the currents superimposing the H+-pump as carried by Ca2+. Auxinstimulation of this electroenzyme resulted in a rise in the outwardly directed H+ current and membrane hyperpolarization, indicating that modulation of the ATPase by the hormone may precede salt accumulation as well as volume and turgor increase. Annual cycles in pump activity (1.5–3.8 μA · cm-2) were expressed by a minimum in pump current during January and February. Resting potentials of up to -260 mV and plasmamembrane surface area, on the other hand, did not exhibit seasonal changes. The pump activity per unit surface area was approximately 2- to 3-fold higher in guard cells than in mesophyll cells and thus correlates with their physiological demands.  相似文献   

6.
Guard cell protoplasts of Vicia faba were immobilized in cross-linked Ca-alginate. No visible morphological changes were detected under the light microscope over a period of 14 days. The entrapped cells reacted normally to changes of the external osmolarity by shrinking and swelling. Addition of the calcium complexing agent, citrate, led to dissolution of the matrix. After reequilibration with Ca ions the released cells regained their ability to swell and shrink in response to external stress. The released protoplasts could be stained with the vital dye, neutral which was accumulated in the vacuoles. It should also be noted that the protoplasts can be transported when immobilized.  相似文献   

7.
8.
The distribution of phosphoenolpyruvate carboxylase (PEPCase, EC 4.1.1.31) in different leaf‐cell‐types and tissues of Vicia faba L. cv. 3‐fach Weiße was studied. The highest specific PEPCase activity was found in guard cell protoplasts (16.3 µmol mg−1 protein h−1) whereas for epidermal and mesophyll protoplasts remarkably lower specific activities were found (1.6 and 1.0 µmol mg−1 protein h−1, respectively). On chlorophyll and protoplast basis, a similar distribution of enzyme activity was observed. Compared with epidermal extracts, the specific PEPCase activity of mesophyll tissue was 17‐fold lower. Immunological studies with polyclonal antibodies to PEPCase indicated 3 immunoreactive proteins in epidermal tissue and guard cell protoplasts with molecular masses of 107 000, 110 000, and 112 000. Only the Mr 107 000 protein was found in extracts of mesophyll and epidermis protoplasts. Western immunoblots after native electrophoresis of epidermal and mesophyll proteins showed a significant difference in PEPCase mobility. It is assumed, that the immunostained proteins of Mr 110 000 and 112 000 represent isoforms or subunits of the PEPCase and that they are involved in stomatal movements.  相似文献   

9.
10.
The use of a discontinuous single electrode voltage-clamp (dSEVC) offers an attractive alternative to the patch-clamp technique, since whole-cell measurements can be performed with a single sharp electrode. Comparison of current-voltage relations, however, revealed a weaker voltage dependence of channels measured with the dSEVC compared to patch clamp. The accuracy of the dSEVC was tested on Vicia faba guard cells impaled with double-barrelled electrodes. The actual clamp potential was measured independently of the dSEVC, at the second barrel. The weaker voltage dependence of ion channels appeared to be due to an overestimation of the clamp potential by the dSEVC. The deviation between the intended and actual clamp potential showed a linear relationship with the injected current; on average a 126 mV deviation was found for a clamp current of 1 nA. The deviation was probably caused by a slow settling capacity at the electrode, not compensated by the dSEVC amplifier. It is concluded that the dSEVC method in its current state is only suited for the study of small ion conductances in plant cells.  相似文献   

11.
12.
Zhang W  Fan LM  Wu WH 《Plant physiology》2007,143(3):1140-1151
In responses to a number of environmental stimuli, changes of cytoplasmic [Ca(2+)](cyt) in stomatal guard cells play important roles in regulation of stomatal movements. In this study, the osmo-sensitive and stretch-activated (SA) Ca(2+) channels in the plasma membrane of Vicia faba guard cells are identified, and their regulation by osmotic changes and actin dynamics are characterized. The identified Ca(2+) channels were activated under hypotonic conditions at both whole-cell and single-channel levels. The channels were also activated by a stretch force directly applied to the membrane patches. The channel-mediated inward currents observed under hypotonic conditions or in the presence of a stretch force were blocked by the Ca(2+) channel inhibitor Gd(3+). Disruption of actin filaments activated SA Ca(2+) channels, whereas stabilization of actin filaments blocked the channel activation induced by stretch or hypotonic treatment, indicating that actin dynamics may mediate the stretch activation of these channels. In addition, [Ca(2+)](cyt) imaging demonstrated that both the hypotonic treatment and disruption of actin filaments induced significant Ca(2+) elevation in guard cell protoplasts, which is consistent with our electrophysiological results. It is concluded that stomatal guard cells may utilize SA Ca(2+) channels as osmo sensors, by which swelling of guard cells causes elevation of [Ca(2+)](cyt) and consequently inhibits overswelling of guard cells. This SA Ca(2+) channel-mediated negative feedback mechanism may coordinate with previously hypothesized positive feedback mechanisms and regulate stomatal movement in response to environmental changes.  相似文献   

13.
Gao XQ  Li CG  Wei PC  Zhang XY  Chen J  Wang XC 《Plant physiology》2005,139(3):1207-1216
Stomatal movement is important for plants to exchange gas with environment. The regulation of stomatal movement allows optimizing photosynthesis and transpiration. Changes in vacuolar volume in guard cells are known to participate in this regulation. However, little has been known about the mechanism underlying the regulation of rapid changes in guard cell vacuolar volume. Here, we report that dynamic changes in the complex vacuolar membrane system play a role in the rapid changes of vacuolar volume in Vicia faba guard cells. The guard cells contained a great number of small vacuoles and various vacuolar membrane structures when stomata closed. The small vacuoles and complex membrane systems fused with each other or with the bigger vacuoles to generate large vacuoles during stomatal opening. Conversely, the large vacuoles split into smaller vacuoles and generated many complex membrane structures in the closing stomata. Vacuole fusion inhibitor, (2s,3s)-trans-epoxy-succinyl-l-leucylamido-3-methylbutane ethyl ester, inhibited stomatal opening significantly. Furthermore, an Arabidopsis (Arabidopsis thaliana) mutation of the SGR3 gene, which has a defect in vacuolar fusion, also led to retardation of stomatal opening. All these results suggest that the dynamic changes of the tonoplast are essential for enhancing stomatal movement.  相似文献   

14.
Electrical properties of the plasma membrane of guard cell protoplasts isolated from stomates of Vicia faba leaves were studied by application of the whole-cell configuration of the patch-clamp technique. The two types of K+ currents that have recently been identified in guard cells may allow efflux of K+ during stomatal closing, and uptake of K+ during stomatal opening (Schroeder et al., 1987). A detailed characterization of ion transport properties of the inward-rectifying (IK+,in) and the outward-rectifying (IK+,out) K+ conductance is presented here. The permeability ratios of IK+,in and IK+,out currents for K+ over monovalent alkali metal ions were determined. The resulting permeability sequences (PK+ greater than PRb+ greater than PNa+ greater than PLi+ much greater than PCs+) corresponded closely to the ion specificity of guard cell movements in V. faba. Neither K+ currents exhibited significant inactivation when K+ channels were activated for prolonged periods (greater than 10 min). The absence of inactivation may permit long durations of K+ fluxes, which occur during guard cell movements. Activation potentials of inward K+ currents were not shifted when external K+ concentrations were changed. This differs strongly from the behavior of inward-rectifying K+ channels in animal tissue. Blue light and fusicoccin induce hyperpolarization by stimulation of an electrogenic pump. From slow-whole-cell recordings it was concluded that electrogenic pumps require cytoplasmic substrates for full activation and that the magnitude of the pump current is sufficient to drive K+ uptake through IK+,in channels. First, direct evidence was gained for the hypothesis that IK+,in channels are a molecular pathway for K+ accumulation by the finding that IK+,in was blocked by Al3+ ions, which are known to inhibit stomatal opening but not closing. The results presented in this study strongly support a prominent role for IK+,in and IK+,out channels in K+ transport across the plasma membrane of guard cells.  相似文献   

15.
16.
Protein Bodies of Developing Seeds of Vicia faba   总被引:2,自引:0,他引:2  
Changes in fine structure and starch, nitrogen, and solublesugar content were followed through to maturation in developingcotyledons of Vicia faba. Various ultrastructural changes wereobserved in the developing cotyledons, notably an increase inthe number of membrane-bound ribosomes which corresponded withthe onset of storage protein deposition. The build-up of storageprotein was shown to occur in the cytoplasm within membrane-boundvacuoles which subsequently became the protein bodies of themature seed, retaining the original tonoplast as the boundingmembrane of the protein body. Nuclei became lobed during thelater phases of maturation; phytoferritin was observed in plastidsof mature seeds. The deposition of reserves in the cotyledonswas complete by 85–90 days after flowering, followingwhich water was lost until the seed became hard and ‘ripe’by no days after flowering.  相似文献   

17.
The plasma-membrane H+-pump in guard cells generates the driving force for the rapid ion fluxes required for stomatal opening. Since our electrophysio-logical studies revealed a two fold higher pump-current density in guard cells than in mesophyll cells of Vicia faba L. we elucidated the biochemical properties of this proton-translocating ATPase in plasma-membrane vesicles isolated from both cell types. The capability of the H+ —ATPase to create an H+ gradient is maintained in plasma-membrane vesicles derived from purified guard cells via blender maceration, high-pressure homogenization and polymer separation. The H+-pumping activity of these vesicles coincides with the presence of two polypeptides of approx. 100 and 92 kDa which are recognized by a monoclonal antibody raised against the plasma-membrane H+-ATPase from Zea mays L. coleoptiles. Comparison of H+-pumping activities of isolated membranes revealed an approximately two fold higher activity in guard cells than in mesophyll cells with respect to the total membrane protein content. Furthermore, we demonstrated by western blotting that the difference in pump activities resulted from a higher abundance of the electroenzyme per unit membrane protein in guard-cell plasma membranes. We suggest that the high H+-pump capacity is necessary to enable guard cells to respond to sudden changes in the environment by a change in stomatal aperture.  相似文献   

18.
The organisation of membrane proteins into certain domains of the plasma membrane (PM) has been proposed to be important for signalling in yeast and animal cells. Here we describe the formation of a very distinct pattern of the K(+) channel KAT1 fused to the green fluorescent protein (KAT1::GFP) when transiently expressed in guard cells of Vicia faba. Using confocal laser scanning microscopy we observed a radially striped pattern of KAT1::GFP fluorescence in the PM in about 70% of all transfected guard cells. This characteristic pattern was found to be cell type and protein specific and independent of the stomatal aperture and the cytoskeleton. Staining of the cell wall of guard cells with Calcofluor White revealed a great similarity between the arrangement of cellulose microfibrils and the KAT1::GFP pattern. Furthermore, the radial pattern of KAT1::GFP immediately disappeared when turgor pressure was strongly decreased by changing from hypotonic to hypertonic conditions. The pattern reappeared within 15 min upon reestablishment of high turgor pressure in hypotonic solution. Evaluation of the staining pattern by a mathematical algorithm further confirmed this reversible abolishment of the radial pattern during hypertonic treatment. We therefore conclude that the radial organisation of KAT1::GFP depends on the close contact between the PM and cell wall in turgid guard cells. These results offer the first indication for a role of the cell wall in the localisation of ion channels. We propose a model in which KAT1 is located in the cellulose fibrils intermediate areas of the PM and discuss the physiological role of this phenomenon.  相似文献   

19.
Summary The whole-cell patch-clamp method has been used to measure Ca2+ influx through otherwise K+-selective channels in the plasma membrane surrounding protoplasts from guard cells of Vicia faba. These channels are activated by membrane hyperpolarization. The resulting K+ influx contributes to the increase in guard cell turgor which causes stomatal opening during the regulation of leaf-air gas exchange. We find that after opening the K+ channels by hyperpolarization, depolarization of the membrane results in tail current at voltages where there is no electrochemical force to drive K+ inward through the channels. Tail current remains when the reversal potential for permeant ions other than Ca2+ is more negative than or equal to the K+ equilibrium potential (–47 mV), indicating that the current is due to Ca2+ influx through the K+ channels prior to their closure. Decreasing internal [Ca2+] (Ca i ) from 200 to 2 nm or increasing the external [Ca2+] (Ca o ) from 1 to 10 mm increases the amplitude of tail current and shifts the observed reversal potential to more positive values. Such increases in the electrochemical force driving Ca2+ influx also decrease the amplitude of time-activated current, indicating that Ca2+ permeation is slower than K+ permeation, and so causes a partial block. Increasing Ca o also (i) causes a positive shift in the voltage dependence of current, presumably by decreasing the membrane surface potential, and (ii) results in a U-shaped current-voltage relationship with peak inward current ca. –160 mV, indicating that the Ca2– block is voltage dependent and suggesting that the cation binding site is within the electric field of the membrane. K+ channels in Zea mays guard cells also appear to have a Ca i -, and Ca o -dependent ability to mediate Ca2+ influx. We suggest that the inwardly rectiying K+ channels are part of a regulatory mechanism for Ca i . Changes in Ca o and (associated) changes in Ca i regulate a variety of intracellular processes and ion fluxes, including the K+ and anion fluxes associated with stomatal aperture change.This work was supported by grants to S.M.A. from NSF (DCB-8904041) and from the McKnight Foundation. K.F.-G. is a Charles Gilbert Heydon Travelling Fellow. The authors thank Dr. R. MacKinnon (Harvard Medical School) and two anonymous reviewers for helpful comments.  相似文献   

20.
A 48-kDa protein kinase was detected in Vicia faba guard cell protoplasts by an in-gel protein kinase assay using a recombinant peptide (KAT1C) of the carboxyl-terminus of an inward-rectifying voltage-dependent K+ channel cloned from Arabidopsis thaliana, KAT1. This protein kinase (ABR* kinase) was activated by pretreatment of guard cell protoplasts with ABA, but not by pretreatment with IAA, 2,4-D, kinetin or GA3. The activation of ABR* kinase was dependent on the time and concentration of ABA. The kinase activity was sensitive to staurosporine and K-252a, protein kinase inhibitors, and insensitive to Ca2+. No ABR* kinase activity was detected in mesophyll cell protoplasts. These characteristics of ABR* kinase are consistent with those of an ABA-responsive protein kinase (ABR kinase) reported previously [Mori and Muto (1997), Plant Physiol. 113: 833]. These results indicate that ABR* kinase phosphorylates the inward-rectifying K+ channel in response to treatment of stomatal guard cells with ABA. The data reported here provide evidence that this ABA-responsive protein kinase may promote ABA signaling by directly phosphorylating guard cell ion channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号